BPG is committed to discovery and dissemination of knowledge
Review Open Access
Copyright ©The Author(s) 2026. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastroenterol. Jan 21, 2026; 32(3): 112437
Published online Jan 21, 2026. doi: 10.3748/wjg.v32.i3.112437
Interplay between viral infections and gut microbiota dysbiosis: Mechanisms and therapeutic potential
Tsvetelina Velikova, Dimitrina Miteva, Milena Gulinac, Latchezar Tomov, Medical Faculty, Sofia University Saint Kliment Ohridski, Sofia 1407, Bulgaria
Hassan Ali, Institute of Microbiology, Government College University Faisalabad, Faisalabad 38000, Pakistan
Hristiana Batselova, Department of Epidemiology and Disaster Medicine, Medical University, Plovdiv, University Hospital “St George”, Plovdiv 6000, Bulgaria
Lyubomir Chervenkov, Department of Diagnostic Imaging, Medical University Plovdiv, Plovdiv 4000, Bulgaria
Dimitrina Miteva, Department of Genetics, Faculty of Biology, Sofia University Saint Kliment Ohridski, Sofia 1164, Bulgaria
Milena Peruhova, Department of Gastroenterology, Heart and Brain Hospital, Burgas 8000, Bulgaria
Milena Gulinac, Department of General and Clinical Pathology, Medical University Plovdiv, Plovdiv 4002, Bulgaria
Latchezar Tomov, Department of Informatics, New Bulgarian University, Sofia 1618, Bulgaria
Yordanka Mitova-Mineva, Department of Epidemiology and Hygiene, Medical University of Sofia, Sofia 1431, Bulgaria
Valeri Velev, Department of Infectious Diseases and Parasitology, Medical University of Sofia, Sofia 1431, Bulgaria
ORCID number: Hassan Ali (0009-0001-1724-7152); Hristiana Batselova (0000-0002-6201-848X); Lyubomir Chervenkov (0000-0002-8380-5992); Milena Gulinac (0000-0001-7970-9378); Yordanka Mitova-Mineva (0000-0002-7079-9984); Valeri Velev (0000-0003-0161-6993).
Co-first authors: Tsvetelina Velikova and Hassan Ali.
Author contributions: Velikova T and Ali H contributed equally to this manuscript and are co-first authors. Velikova T contributed to the supervision, project administration, and funding acquisition; Velikova T, Ali H, and Velev V contributed to the conceptualization; Ali H and Mitova-Mineva Y contributed to the methodology; Batselova H and Tomov L contributed to software; Miteva D and Peruhova M contributed to the validation; Gulinac M and Tomov L contributed to formal analysis; Batselova H and Chervenkov L contributed to the investigation; Miteva D and Gulinac M contributed to resources; Mitova-Mineva Y and Velev V contributed to data curation; Velikova T and Ali H contributed to the writing - original draft preparation and visualization; Velev V contributed to the writing - review and editing. All authors have read and agreed to the published version of the manuscript. All of the authors approved the final version of the paper prior to submission.
Conflict-of-interest statement: The authors report no relevant conflicts of interest for this article.
Open Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Valeri Velev, DM, MD, PhD, Associate Professor, Department of Infectious Diseases and Parasitology, Medical University of Sofia, 2 Zdrave Street, Sofia 1431, Bulgaria. velev_md@abv.bg
Received: July 27, 2025
Revised: September 10, 2025
Accepted: December 10, 2025
Published online: January 21, 2026
Processing time: 173 Days and 13.9 Hours

Abstract

Viral infections, particularly those triggered by emerging pathogens like severe acute respiratory syndrome coronavirus 2, are increasingly recognized for their profound impact on the gut microbiota, causing dysbiosis, a condition characterized by an imbalance in microbial communities. Recent studies suggest that alterations in gut microbiota can influence disease progression, immune responses, and clinical outcomes. The bidirectional relationship between the gut microbiota and the host immune system is crucial in shaping responses to infection. Furthermore, dysbiosis has been linked to exacerbated inflammation, impaired mucosal barrier function, and altered drug metabolism, thereby complicating both disease pathogenesis and treatment efficacy. This review examines the interplay between viral infections and gut microbiota dysbiosis, with a focus on the underlying mechanisms and potential therapeutic strategies to modulate host immunity. We also evaluate the potential of microbiome-based interventions, such as probiotics, prebiotics, and fecal microbiota transplantation, as therapeutic strategies for restoring microbial balance and mitigating the severity of infections. The paper underscores the need for further research to optimize microbiota-targeted therapies and integrate them into clinical practice, offering a comprehensive approach to managing dysbiosis in viral infectious diseases.

Key Words: Viral infection; SARS-CoV-2; COVID-19; Human immunodeficiency virus; Influenza; Hepatitis viruses; Gut microbiota; Dysbiosis; Probiotics; Fecal microbiota transplantation

Core Tip: Viral infections, including those caused by emerging pathogens like severe acute respiratory syndrome coronavirus 2, can profoundly disrupt the gut microbiota, leading to dysbiosis that contributes to immune dysregulation, increased inflammation, and poorer clinical outcomes. These microbiota alterations can influence disease severity, increase susceptibility to secondary infections, and affect the metabolism of medications. Understanding the gut-virus-immune system interplay is essential for developing effective strategies to restore microbial balance. Microbiota-targeted therapies, including probiotics, prebiotics, and fecal microbiota transplantation, offer promising options for managing dysbiosis in the context of viral infectious diseases.



INTRODUCTION

The human intestinal tract harbors a highly diverse consortium of microorganisms - bacteria, archaea, fungi, protozoa, and viruses - collectively known as the gut microbiota[1]. This ecosystem, comprising approximately 1013-1014 cells, contributes to host homeostasis through immunomodulation, nutrient processing, epithelial barrier maintenance, and regulation of neuronal signaling[2,3]. Perturbations in the balance and function of microbial communities that may compromise gut barrier integrity, alter immune responses, and increase susceptibility to secondary infections, termed dysbiosis, have been implicated in a wide range of pathological processes, including immune dysregulation, metabolic dysfunction, neurological disorders, and oncogenesis[4,5].

Human viruses also display organ-specific tropisms, affecting the respiratory tract, gastrointestinal (GI) tract, liver, nervous system, and immune cells. Viral entry is mediated by interactions between surface proteins and host receptors, which initiate downstream pathogenic processes. Importantly, viral-bacterial crosstalk can occur via two principal modes: (1) Direct interactions, where viruses exploit bacterial surfaces or metabolites to enhance infectivity; and (2) Indirect interactions, where virus-induced host damage facilitates bacterial colonization by altering receptor availability, barrier integrity, microbial competition, or immune defenses[6,7]. These interaction patterns are summarized in Table 1[8-20].

Table 1 Human viruses interact with bacteria either directly (via bacterial products that facilitate infection) or indirectly (through host environment changes that favor bacterial colonization).
Viruses
Bacterial partner(s)
Mechanistic basis
Ref.
Direct interactions
Murine norovirusE. cloacae, enteric microbiotaBacterial histo-blood group antigen analogs support persistent viral infection in the gut[8,9]
Influenza virusStaphylococcus aureusBacterial proteases activate viral hemagglutinin through cleavage[10]
RotavirusGut microbiota (e.g., Escherichia coli, Bacteroides thetaiotaomicron)Bacterial factors promote viral infectivity while reducing antibody neutralization[11]
Reovirus T3SA+Enteric bacteria (Escherichia coli, etc.)Bacterial lipopolysaccharide mediates enhanced viral binding and replication efficiency[12]
HIVMycobacterium tuberculosisMycobacterial components enhance HIV transcriptional activity[13]
Indirect interactions
AdenovirusS. pneumoniaeEnhances bacterial attachment to respiratory epithelial cells[14]
RhinovirusRespiratory pathogensIncreases the expression of host cell adhesion molecules for bacterial binding[15]
Measles virusMultiple opportunistic pathogensSystemic immune suppression facilitates secondary bacterial infections[16,17]
HerpesvirusesPorphyromonas gingivalis, Bacteroides forsythus (now Tannerella forsythia), Campylobacter rectusViral immunosuppression enables bacterial colonization of the oral mucosa[18]
Parainfluenza virusStreptococcus pneumoniae, Haemophilus influenzaeViral infection increases bacterial adhesion to the respiratory epithelium[19,20]

Although viruses are not classically linked to the GI tract, growing evidence indicates that respiratory, hepatic, and enteric viruses can also replicate in the gut and disrupt microbial balance[21]. Viral infection can compromise epithelial integrity and alter microbiota composition, shifting from a diverse community with beneficial commensals to one enriched with opportunistic taxa. These changes contribute to increased gut permeability, systemic inflammation, and impaired immune regulation, highlighting the role of gut-viral interactions in infectious disease pathogenesis (Figure 1). This review comprehensively explores the interplay between viral infections and gut microbiota dysbiosis, focusing on underlying mechanisms and potential therapeutic strategies to modulate host immunity.

Figure 1
Figure 1 In homeostasis, the gut microbiota is balanced, dominated by beneficial bacteria such as Bacteroidetes, Firmicutes, and butyrate producers like Faecalibacterium. Viral infection can promote dysbiosis, characterized by expansion of opportunistic bacteria (e.g., Enterococcus, Clostridium, Proteobacteria), disruption of the intestinal epithelium, and release of inflammatory mediators (e.g., interleukin-6, tumor necrosis factor-α). These changes increase gut permeability and susceptibility to systemic inflammation, sepsis, and impaired immune regulation. Created in BioRender (Supplementary material). IL: Interleukin; TNF: Tumor necrosis factor.
INFLUENZA AND GUT MICROBIOTA

Influenza viruses, members of the Orthomyxoviridae family, possess segmented, single-stranded, negative-sense RNA genomes and exhibit pleomorphic virion structures. They are classified into types A (avian/human reservoirs), B (human-specific), C (mild human infections), and D (primarily cattle) based on nucleoprotein antigenicity. Seasonal epidemics driven by influenza A and B viruses occur predominantly in winter and spring due to antigenic shifts[22]. Global influenza burden results in an estimated one billion cases annually, with 3-5 million severe illnesses and 290000-650000 respiratory-related deaths (World Health Organization)[23].

Beyond respiratory pathology, influenza disrupts the gut-lung axis, causing intestinal dysbiosis that impairs metabolic activity and immune regulation[24,25]. Severe influenza A infections (H1N1, H3N2, H5N1, H7N9) reduce gut microbiota-derived short-chain fatty acids (SCFAs), particularly acetate, which are crucial for maintaining gut barrier integrity and modulating host immunity. This reduction increases susceptibility to secondary pneumococcal infections and translocation of enteric pathogens[26]. Dysbiosis also depletes small intestinal intraepithelial lymphocytes, compromising mucosal defense and triggering systemic inflammation via inflammatory crosstalk, while H9N2 infection promotes Proteobacteria overgrowth (e.g., Escherichia coli), suppresses commensals such as Lactobacillus and Enterococcus, and elevates pro-inflammatory cytokines[27-29].

In murine models, influenza induces distinct microbial shifts despite stable total bacterial loads. The abundance of segmented filamentous bacteria (SFB) and Lactobacillus/Lactococcus decrease, whereas Enterobacteriaceae (Proteobacteria) increase. Notably, SFB reduction - normally an inducer of T helper type 17 (Th17) cells - coincides with elevated interleukin (IL)-17A levels and Th17 cell numbers in the intestine, contributing to pathology. Antibiotic pretreatment to deplete the microbiota prevents Enterobacteriaceae expansion and attenuates intestinal inflammation, indicating that dysbiosis is a necessary precursor to local immune dysfunction[30,31].

Similar patterns - Proteobacteria expansion, reduced Firmicutes (including SFB and Lactobacillus/Lactococcus), and expanded Bacteroidetes - occur after influenza or respiratory syncytial virus infection, but not after live attenuated influenza vaccines, suggesting that productive viral replication is required to trigger systemic immune responses that disrupt the gut microbiota[32]. Type I interferons mediate Proteobacteria expansion, increasing susceptibility to secondary Salmonella colitis while depleting anaerobes. Lung-derived T cells migrating to the intestine produce type II interferon, indirectly reshaping gut microbial communities and reflecting systemic inflammatory crosstalk (lung → gut) rather than direct viral effects[33] (Figure 2).

Figure 2
Figure 2 Influenza-induced gut microbiome dysbiosis in mice. Acute influenza infection in the respiratory tract alters gut bacterial composition without direct gastrointestinal viral replication, suggesting regulation via systemic immune or physiological signals (e.g., type I/II interferons, caloric restriction). Observed microbial changes include increased Proteobacteria (e.g., Enterobacteriaceae) and Bacteroidetes, and reduced Firmicutes (e.g., segmented filamentous bacteria, Lactobacillus). Studies have primarily focused on specific pathogen-free-housed laboratory mice. Therefore, the relevance to humans or wild mammals with diverse microbiomes remains uncertain. Created in BioRender (Supplementary material). IFNs: Interferons; SFB: Segmented filamentous bacteria.
HUMAN IMMUNODEFICIENCY VIRUS/SIV AND GUT MICROBIOTA

First described in the early 1980s, human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) are lentiviruses of the Retroviridae family that replicate as obligate intracellular pathogens. Cross-species transmission of SIV from African non-human primates to humans initiated the HIV pandemic[34]. HIV, the causative agent of acquired immune deficiency syndrome, depletes CD4+ T-lymphocytes, drives chronic immune activation, and disrupts mucosal barriers[35]. Pathogenesis centers on the GI tract, particularly gut-associated lymphoid tissue, where viral replication triggers profound alterations in mucosal immunity[36]. CD4+ T-cell loss is greater in the colon than in the small intestine due to higher viral replication, depletion of Th17/Th22 cells, chronic immune activation, and impaired antigen-presenting cell function[37]. Damage to GI barriers compromises IL-17/IL-22-producing cells, which are critical for mucosal homeostasis. While anti-retroviral therapy (ART) partially restores IL-17+ cells, persistent inflammation may continue to drive their depletion[38].

HIV infection consistently reduces gut microbiota diversity and richness, with more pronounced effects in the large intestine due to its dense bacterial colonization. Cross-sectional human studies reveal an increase in Enterobacteriaceae, Fusobacteria, Erysipelotrichaceae, and Proteobacteria, alongside a decrease in Lachnospiraceae, Ruminococcaceae, Bacteroides, and Rikenellaceae. This dysbiosis correlates with the loss of SCFA-producing bacteria (Faecalibacterium prausnitzii, Ruminococcus spp.) and elevated inflammatory markers[39]. Men who have sex with men with HIV exhibit Prevotella-dominant enterotypes (reduced anti-inflammatory Bacteroides) and elevated fecal calprotectin (a neutrophil-derived inflammation biomarker)[40]. Pro-inflammatory soluble factors, including granulocyte-macrophage colony-stimulating factor, intercellular adhesion molecule 1, IL-1β, IL-12/23, IL-15, IL-16, tumor necrosis factor (TNF)-α, vascular cell adhesion molecule 1, and vascular endothelial growth factor are increased, while the levels of beneficial cytokines (IL-22, IL-13) decrease. Nonhuman primate models recapitulate these findings, linking the expansion of Eubacterium rectale to pro-inflammatory cytokines and Treponema spp. to barrier dysfunction[41].

Clinical and experimental studies further show enteric viral dysbiosis during HIV/SIV progression. SIV-infected macaques exhibit increased pathogenic Adenovirus, which is associated with intestinal epithelial lesions and peripheral CD4+ T-cell depletion. Bacterial and viral dysbiosis amplify key pathogenic features, including CD4+/CD8+ T-cell activation in blood and gut-associated lymphoid tissue, and elevated gut permeability and inflammatory biomarkers. These findings underscore the central role of the gut microbiome in HIV pathogenesis and highlight the potential of microbiome-directed therapies as promising adjuncts to improve clinical outcomes[42,43]. Table 2 summarizes the patterns of HIV-associated gut dysbiosis[44-54].

Table 2 Dysbiosis of gut microbiota in individuals with human immunodeficiency virus infection.
Ref.
Total cases (n)
HIV-related cases (n)
Methodology
Increased taxa
Decreased taxa
Limitations
Conclusion
Rhoades et al[44]105 (≥ 55 years)58 LTC-HIV+16S rRNA sequencing (V4)Fusobacterium, Lactobacillus, Bifidobacteriales, Prevotella (in low CD4+)Clostridia (SCFA producers), Oxalobacter, Streptococcus (vs HIV-)Cross-sectional design; cannot establish causality; majority Caucasian male cohort limits generalizabilityLTC-HIV+ individuals show gut dysbiosis - oral taxa enriched, butyrate producers depleted - with Prevotella inversely correlating with CD4+ counts, linking microbial shifts to immune dysfunction and chronic inflammation
Lu et al[45]9161 HIVMetagenomics sequencingFaecalibacterium prausnitzii, Subdoligranulum sp., Coprococcus comes, Prevotella copri, Prevotella stercorea, Bacteroides coprophilus, Bacteroides coprocola, Bacteroides intestinalis, Bacteroides salyersiaeBacteroidesSmall sample size; cross-sectional; single population (Chinese); ART regimen effects not fully differentiatedHIV infection causes gut dysbiosis; increased butyrate producers (F. prausnitzii, Subdoligranulum sp., C. comes) link to poor CD4+ T-cell recovery and activation; microbiota modulation may aid immune reconstitution
Cook et al[46]383HIV- (200) HIV+ undetectable (< 20 c/mL, n = 66) HIV+ suppressed (20-200 c/mL, n = 72) HIV+ viremic (> 200 c/mL, n = 45)16S rRNA sequencing (V4); IPTW-adjusted modelsViremic group: Peptoniphilus, Porphyromonas, Prevotella, MurdochiellaViremic group: Bacteroides, Brachyspira, Faecalibacterium, Helicobacter. All HIV+ groups: BacteroidesLack of dietary data; residual confounding possible; 16S limits species-level resolution; no data on time since ART initiationHIV viremia correlates with rectal dysbiosis in a dose-dependent manner; viremic individuals show a pro-inflammatory microbiota (Prevotella, Porphyromonas), while suppressed/undetectable viremia associates with milder dysbiosis
Villar-García et al[47]44 (HIV+, on HAART)22 immunologic responders, 22 immunologic non-responders16S rDNA gene sequencingMegamonas, Desulfovibrionales (Proteobacteria)Clostridiales (esp. Clostridiaceae, Catenibacterium), Lachnospiraceae, ProteobacteriaSmall sample size; did not analyze fungal mycobiome (including probiotic colonization); cannot establish causality; short intervention periodSaccharomyces boulardii reduced pro-inflammatory Clostridiaceae; immunologic non-responders had higher baseline Lachnospiraceae and Proteobacteria
Dillon et al[48]3218 untreated HIV+16S rRNA sequencing (colonic mucosa and stool)Prevotella stercoreaButyrate-producing bacteria: Roseburia intestinalis, Faecalibacterium prausnitzii, Eubacterium rectale (in colonic mucosa)Small cross-sectional study; sexual preference unmatched; fecal butyrate not measuredHIV reduces colonic butyrate-producing bacteria (e.g., Roseburia intestinalis); low abundance links to microbial translocation and immune activation; butyrate may protect against T cell activation and HIV replication
Dinh et al[49]21 HIV+ on ART, 16 HIV- controls21 (chronic HIV, suppressed VL)16S rRNA pyrosequencing (V3-V5 region)Proteobacteria, Gammaproteobacteria, Enterobacteriales, Enterobacteriaceae, Erysipelotrichi, Erysipelotrichales, Erysipelotrichaceae, BarnesiellaRikenellaceae, AlistipesSmall sample size; exploratory design; no correction for multiple comparisons; immune activation markers not assessedART-treated, virologically suppressed HIV+ individuals show gut dysbiosis with increased Enterobacteriaceae and decreased Alistipes, correlating with elevated sCD14 and inflammatory cytokines (IL-1β, TNF-α)
Lee et al[50]HIV+ on ART: 26 (16 oIR, 10 sIR) HIV- controls: 2026 (all on suppressive ART)16S rRNA sequencing (V4 region, rectal swabs)Fusobacterium (phylum: Fusobacteria), Gallicola, BilophilaLactobacillales, CorynebacteriumSmall sample size; all male participants; dietary data not collected; rectal swabs may not fully reflect luminal microbiotaPoor CD4+ recovery on ART associates with increased Fusobacterium, elevated T-cell activation/Tregs, and reduced naïve CD4+ cells
Machiavelli et al[51]38 (19 mother-child pairs)12 HEU children; 12 HIV+ mothers16S rRNA sequencing (V3-V4 region)HEU children: Faecalibacterium prausnitzii, Prevotella copri, Lachnospiraceae, Klebsiella, Lactococcus, Ruminococcaceae, EnterobacteriaceaeHEU children: Bacteroides uniformis, ParaprevotellaCross-sectional, small sample; breastfeeding differences between HEU and unexposed children; functional predictions inferred, not measuredHEU children of HIV+ mothers show altered gut taxa and predicted metagenome without changes in diversity, growth, or inflammation markers
Ling et al[52]83 (Chinese population)67 HIV+ (35 HAART-naïve, 32 HAART-treated)16S rRNA pyrosequencing (V1-V3 regions)Firmicutes, Prevotella, Faecalibacterium, Phascolarctobacterium, Butyricicoccus, Erysipelotrichaceae incertae sedis, Catenibacterium, Dorea, Enterobacter, Enterococcus, MegamonasBacteroidetes, Bacteroides, Dialister, Clostridium XIVa, Clostridium XIVb, Barnesiella, CoprococcusCross-sectional; all male; sexual behavior not controlled; fecal samples may not reflect mucosa-associated microbiotaHIV-1 infection causes gut dysbiosis (↑ Firmicutes/Bacteroidetes, pro-inflammatory genera); key taxa correlate with inflammation; short-term HAART only partially restores the microbiota
Liu et al[53]36 (35 male, 1 female)14 HIV+ (all ART-treated)16S rRNA sequencing (V3-V4 region)Fusobacteria, Proteobacteria, Leptotrichiaceae, Desulfovibrionaceae, Enterobacter, Paraprevotella, Allisonella, Anaerovibrio, HowardellaFirmicutes, Lachnospiraceae, Oxalobacteraceae, Eggerthella, Barnesiella, Odoribacter, Oscillospira, Oxalobacter, Roseburia, AlistipesSmall, mostly male cohort; observational; prebiotic/probiotic use uncontrolled; genus-level data limits species resolutionHIV and aging interact to alter the stool microbiome; age-related taxa changes and associations with SCFAs, diet, and inflammation differ by HIV status
Yang et al[54]168 HIV+ (HAART-naïve, low CD4 counts in 6/8)16S rRNA sequencing (V3-V4)Proteobacteria, Burkholderia (specifically Burkholderia fungorum), Bradyrhizobium (specifically Bradyrhizobium pachyrhizi), Ralstonia, FusobacteriumFirmicutes, LactobacillusSmall sample; case-control design limits causation; no HAART-treated comparison; clinical symptom correlations limitedHIV-induced immunosuppression reduces gut colonization resistance, enabling environmental bacteria (B. fungorum, B. pachyrhizi) invasion and loss of beneficial commensals, causing dysbiosis linked to immune dysfunction

Despite heterogeneity in cohort demographics, ART exposure, and sequencing methods, most studies converge on a common pattern of HIV-associated gut dysbiosis. Cross-sectional human and non-human primate data consistently demonstrate depletion of SCFA-producing commensals (Faecalibacterium prausnitzii, Roseburia, Ruminococcus) and enrichment of Proteobacteria, Prevotella, and Fusobacterium. Differences in reported taxa largely reflect variations in study design, such as stool vs mucosal sampling, regional dietary habits, duration of ART, and analytical depth (16S rRNA vs metagenomics). Nonetheless, a shared mechanistic theme emerges: Disruption of mucosal integrity and chronic immune activation mediated by microbial translocation. These consistent microbial and immunologic signatures highlight gut dysbiosis as a central driver of HIV pathogenesis and a potential target for microbiota-based therapeutic modulation.

HEPATITIS VIRUS AND GUT MICROBIOTA

Viral hepatitis cirrhosis is a progressive liver disease caused by chronic infection with hepatitis B virus (HBV) or hepatitis C virus (HCV). It is characterized by widespread hepatic fibrosis, pseudo-lobule formation, and distortion of liver architecture due to persistent viral injury[55]. The liver and intestine communicate bidirectionally via the gut-liver axis, primarily through the portal vein and enterohepatic circulation. This axis facilitates translocation of microbial components and metabolites - including dysregulated bile acids, SCFAs, bacterial products like lipopolysaccharide and peptidoglycan - and immune cell trafficking[56,57].

In HBV infection, bile acid dysregulation and Kupffer cell polarization, mediated by lipopolysaccharide-Toll-like receptor 4 (TLR4) signaling, stimulate the secretion of immunosuppressive factors like IL-10 and programmed death ligand 1. In HCV infection, complications arise from gut barrier dysfunction, metabolic dysregulation, and systemic inflammation[58]. Gut dysbiosis is evident at different disease stages. Patients with hepatitis E virus (HEV) infection show elevated Proteobacteria, particularly Gammaproteobacteria and Enterobacteriaceae, which correlate with interferon-gamma levels, serum alanine aminotransferase (ALT), and total bilirubin, suggesting Gammaproteobacteria as a potential biomarker for acute HEV severity[59].

In chronic HBV, early disease stages show selective depletion of Bacteroides spp. without evident liver injury. As the disease progresses, the gut microbiota shifts toward an Alloprevotella-dominant profile, which associates with fewer HBV DNA copies and altered lipid metabolism[60,61]. These gut-liver axis disruptions in HBV and HCV cirrhosis are comprehensively summarized in Table 3[62-74]. Although studies of hepatitis-associated dysbiosis differ in cohort composition, disease stage, sequencing depth, and antiviral therapy, they reveal overlapping microbial signatures across HBV, HCV, and HEV infections. Despite variation in specific taxa, most consistently report enrichment of opportunistic pathogens such as Klebsiella, Streptococcus, and Enterococcus alongside depletion of SCFA-producing commensals including Faecalibacterium, Roseburia, and Agathobacter. Discrepancies among reports largely reflect differences in geography, dietary background, direct acting antiviral or interferon therapy status, and methodological platforms (16S vs metagenomics). Nevertheless, a unified trend emerges in which progressive hepatic injury correlates with loss of microbial diversity, bile acid dysregulation, and pro-inflammatory metabolic shifts, underscoring gut-liver axis imbalance as a hallmark of viral hepatitis pathogenesis.

Table 3 Gut microbiota composition in hepatitis B virus/hepatitis C virus cirrhotic patients.
Ref.
Total cases (n)
Cirrhosis-related cases (n)
Methodology
Increased taxa
Decreased taxa
Limitations
Conclusion
Elsherbiny et al[62], 202580 (60 CHC patients + 20 HCs)Non-cirrhotic CHC (n = 60)16S rRNA sequencing (V3-V4)SVR group: Elusimicrobium, Christensenellaceae R-7 group, Catenibacterium, Oceanobacillus, Candidatus Melainabacteria. Relapsed group: Prevotella, Bifidobacterium, Lactobacillus, Megasphaera, Mitsuokella. Non-treated group: Faecalibacterium, Asteroeplasma, Eubacterium coprostanoligenes, Lachnospiraceae, Akkermansia, MuribaculaceaeSVR group: Actinobacteria. All CHC vs HCs: Reduced diversity; Bacteroides, Agathobacter, ParabacteroidesSingle-center design; modest sample size; unmeasured confounders (diet, lifestyle)DAA therapy markedly modulates gut microbiota; SVR restores microbial diversity and composition toward that of HCs, whereas relapse is characterized by persistent dysbiosis
Huang et al[63], 2023120 subjects (180 samples)Control: 60 HCs. CHC (pre-DAA): 60 patients. SVR24 (post-DAA): 60 patients16S rRNA sequencing (V3-V4)Ruminococcaceae, Eubacterium, Agathobacter, Alistipes, Bifidobacterium, Klebsiella, Lactobacillus, Actinobacteria, Firmicutes, LactobacillusBacteroidetes, LachnoclostridiumRelatively small sample size; short follow-up (24 weeks); unmeasured confounders (diet, smoking); baseline differences in liver function between CHC and control groupsGut microbiota diversity and composition remained unchanged 6 months after DAA therapy; minor differences in CHC vs controls were unaffected by SVR
Honda et al[64], 202570 CHB patients + 8 HCsFunctional cure: 18 (HBsAg-, HBV DNA-). Low-titer DNA: 40. High-titer DNA: 12. HC: 816S rRNA sequencing (V3-V4)Clostridium bartlettii, Butyricimonas, Coprococcus catus, Bifidobacterium breve, CampylobacterNot reportedSmall sample size; exploratory design; in vitro SCFA concentrations may not reflect physiological levels in the liverButyrate-producing bacteria are enriched in HBsAg-negative patients; sodium butyrate directly suppresses HBsAg production in infected hepatocytes, especially post-infection
Inoue et al[65], 2025272 (174 active HCV, 75 post-SVR, 23 HCs)CH-HCV: 95, LC/HCC-HCV: 79, CH-SVR: 29, LC/HCC-SVR: 46, healthy: 2316S rRNA sequencing; fecal BA profiling; RNA-seqBlautia, Fusicatenibacter, Roseburia, Faecalibacterium, Subdoligranulum, CollinsellaStreptococcus, Streptococcus salivarius, Eubacterium hallii group, Ruminococcus torques groupCohort separation for multi-omic analyses; limited SVR48 sample size; partially uses database-derived RNA-seq dataHCV eradication partially restores gut dysbiosis and BA profiles, with post-SVR Blautia enrichment correlating with improved liver fibrosis and function
Li et al[66], 202588AHE-elderly: 58, HCs-elderly: 30, self-healing: 46, non-self-healing: 1216S rRNA sequencingAHE-elderly vs HC: Firmicutes, Lactobacillales, Bacilli, Streptococcaceae. Non-self-healing vs self-healing: Bifidobacteriaceae, Bacteroidia, Bacteroides fragilisAHE-elderly vs HC: Proteobacteria, Bacteroidetes. Self-healing vs non-self-healing: Firmicutes, Bacillus, Lactobacillus, StreptococcusNo significant difference in alpha diversity; lack of longitudinal data; unclear causal relationship between microbiota changes and HEV infectionBacteroidetes distinguish AHE patients from controls, with Bacteroides fragilis enriched in non-self-healing cases and serving as a predictive biomarker
Li et al[67], 202579HBC: 46, HCs: 33, BA-N: 24, BA-H: 2216S rRNA sequencing (V4-V5)Streptococcus, Veillonella, LactobacillalesBacteroides, Akkermansia, ClostridialesCross-sectional design; small sample size; no BA composition or metabolomic analysis; potential confounders (diet, medication) not fully addressedHBC dysbiosis features reduced beneficial taxa and increased opportunistic pathogens; Akkermansiaceae decline and Lactobacillales rise with elevated BAs, which correlate with higher Child-Pugh scores, suggesting gut microbiota–BA crosstalk drives HBC progression
Shi et al[68], 2025123HBV-LC: 83, HC: 40, MELD < 21: 68, MELD ≥ 21: 15, CTP-C: 2216S rRNA sequencing (V3-V4)Klebsiella, Streptococcus, Fusobacterium, EnterococcusAlistipes, Lachnospira, Agathobacter, Parabacteroides, RoseburiaSingle-center design; modest sample size; cross-sectional design limits causal inference; 16S rRNA does not capture full functional potentialHBV-LC patients show gut dysbiosis marked by enrichment of pathobionts (Klebsiella, Streptococcus) and loss of SCFA-producers (Alistipes, Lachnospira), with metabolite alterations (tocopherols, 21-hydroxypregnenolone) linked to specific microbial shifts and disease severity
Honda et al[69], 202142Pre-DAA: 14, EOT: 14, post-24: 14 (samples from the same 14 patients)16S rRNA sequencing (V3-V4)Faecalibacterium, BacillusBacteroides, FusobacteriumSmall sample size; lack of a HC group; intra-personal comparison only; cannot determine if pre-treatment microbiota differed from healthy individualsHCV eradication did not significantly alter overall gut microbiota diversity but increased beneficial taxa such as Faecalibacterium and Bacillus at 24 weeks post-treatment, indicating a positive compositional shift despite stable global diversity
Liu et al[70], 202462OBI: 24, HBV carriers: 18, HCs: 2016S rRNA sequencing (V3-V4)Subdoligranulum, MegamonasFaecalibacteriumSmall sample size; all participants were male; potential unmeasured confounders (diet); cannot establish causalityOBI is characterized by enrichment of Subdoligranulum, potentially driving IFN-γ/IL-17A–mediated immune activation that suppresses HBV replication, alongside depletion of beneficial Faecalibacterium
Yan et al[71], 20239030 HCs + 30 HBV-LC + 30 HBV-HCC16S rRNA sequencing (V3-V4) + flow cytometryProteobacteria, Actinobacteriota, Campylobacterota, Streptococcaceae, Enterobacteriaceae, Klebsiella, StreptococcusBacteroidota, Firmicutes, Lachnospiraceae, Ruminococcaceae, Oscillospiraceae, Rikenellaceae, Barnesiella, Agathobacter, PrevotellaCross-sectional design; small sample size; dietary/age confounders; 16S limits functionHBV-CLD progression involves enrichment of pro-inflammatory taxa and depletion of butyrate producers, correlating with T-cell immunosuppression
Hsu et al[72], 2022126HCV patients: 42 (pre-Tx: 42, post-Tx: 42), HCs: 84Prospective cohort; 16S rRNA (V3-V4), DADA2, LEfSe; matched controlsCoriobacteriaceae, Staphylococcaceae, Peptostreptococcaceae, SuccinivibrionaceaeMorganellaceae, Pasteurellaceae, MoraxellaceaeShort-term follow-up (12 weeks post-DAA); modest sample size; exploratory differential taxa need validation; cirrhosis subgroup is smallGut microbiota differs between HCV patients and HCs, but DAA-induced viral eradication does not significantly alter diversity or composition, suggesting viremia is not the main driver of dysbiosis
Wang et al[73], 202520Group M (minimal injury): 9, group S (significant injury): 11Human: Metagenomic sequencing. Mouse: 16S rRNA sequencing (V3-V4), FMTParabacteroides distasonis, Bacteroides dorei, Bacteroides finegoldii, Bacteroides ovatus, Bacteroides clarusEubacterium sp. CAG_180, Gemmiger formicilis, Oscillibacter sp. ER4, Subdoligranulum variabile, Faecalibacterium sp. CAG_74_58_120Small sample size (n = 20); FMT from a single cirrhotic donor; mechanistic pathways (BA crosstalk) require further validationGut dysbiosis contributes to histological liver damage in early CHB. FMT from an HBV-cirrhosis donor aggravated fibrosis in mice, implicating BA-microbiota crosstalk in disease progression
Yang et al[74], 2023950Viral hepatitis: 656 (HBV: 546, HCV: 86, HEV: 24), HC: 294Meta-analysis of 13 studies; 16S rRNA sequencing (multiple regions)Butyricimonas, Escherichia-Shigella, Lactobacillus, VeillonellaClostridia_UCG-014, Dorea, Monoglobus, RuminococcusLack of HAV/HDV data; variability in sequencing regions/platforms; cannot establish causalityViral hepatitis reduces gut microbial diversity, with specific taxa and functions (tryptophan metabolism, LPS biosynthesis) serving as potential biomarkers and contributing to disease pathogenesis
SEVERE ACUTE RESPIRATORY SYNDROME CORONAVIRUS 2 MECHANISMS

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel enveloped RNA virus of the Coronaviridae family, first identified as the causative agent of atypical pneumonia in Wuhan, China (December 2019)[75]. Its structural architecture comprises four essential proteins: The spike glycoprotein (S), which mediates host cell entry via angiotensin-converting enzyme 2 (ACE2) receptor binding and contains a unique furin cleavage site that distinguishes it from other betacoronaviruses[76,77]; the envelope protein (E); the membrane protein (M); and the nucleocapsid protein (N). The coronavirus disease 2019 (COVID-19) pandemic, declared by the World Health Organization in March 2020[78], has resulted in approximately 690 million confirmed cases and 6.8 million deaths globally[79].

Beyond its hallmark respiratory manifestations, COVID-19 frequently affects the GI tract. Digestive symptoms such as diarrhea, nausea, and abdominal pain have been associated with worse clinical outcomes[80,81]. This GI tropism arises from high expression of ACE2 receptors, which serve as the primary portal of viral entry, particularly in enterocytes of the small intestine[82]. Numerous GI, hepatobiliary, and pancreatic manifestations have been documented in COVID-19 patients[83].

COVID-19 also disrupts the gut microbiota. It is important to distinguish microbiota, the microbial community itself, from the microbiome, the collective genetic material of these microorganisms[84]. Early in the pandemic, treatment uncertainty led to heterogeneous approaches, often involving antibiotics, corticosteroids, and remdesivir for severe cases[85]. While antibiotics effectively treat bacterial lung infections, their use in COVID-19 has revealed several unintended consequences, including disruption of microbial ecology depending on composition, dose, and duration[84]; paradoxical systemic antiviral activity against enteroviruses such as coxsackievirus B3 and poliovirus in germ-free mice via microbiota-independent pathways[85]; and potential synergy with SARS-CoV-2 orofecal transmission, driving microbiome alterations[86]. Clinical studies demonstrate that COVID-19-induced gut dysbiosis, characterized by depletion of beneficial microbes such as Bifidobacterium and Faecalibacterium and overgrowth of pathogenic taxa such as Enterococcus, directly correlates with disease severity[87].

COVID-19 AND GI TRACT

The molecular pathogenesis of COVID-19 begins when the SARS-CoV-2 spike protein binds ACE2 receptors on host cell surfaces, showing a particular tropism for ACE2-rich pulmonary alveoli and intestinal epithelium[16]. Clinical evidence indicates GI involvement in 2%-79.1% of cases, with manifestations such as diarrhea, nausea or vomiting, and hepatic injury[88]. Preexisting GI disorders, such as inflammatory bowel disease, may increase the risk of severe COVID-19 outcomes. This is partly due to frequent use of glucocorticoids and widespread administration of proton pump inhibitors. The GI tract’s mucosal immune system acts as a critical initial defense, serving both as a physical and immunological barrier, and may also serve as an entry site for SARS-CoV-2. Patients with GI involvement often experience poorer clinical outcomes, potentially due to disruption of the gut-associated immune response[89]. Notably, an immune response activated in one mucosal region can propagate across the entire mucosal system[90]. Viral kinetic studies by Zheng et al[91] show a progressive increase in SARS-CoV-2 fecal shedding, with viral loads peaking between weeks 3 and 4 post-infection. Stool samples retain detectable virus significantly longer than respiratory secretions or blood, with important implications for transmission risk and testing strategies[92].

Clinical meta-analyses reveal distinct patterns of GI involvement. A study evaluated 4805 subjects and found diarrhea in 7.4% of cases, nausea/vomiting in 4.6%, and hepatic dysfunction evidenced by abnormal aspartate aminotransferase (20%) and ALT (14.6%) levels. Emerging evidence also suggests that GI symptoms can precede or occur independently of respiratory manifestations[93]. Patients presenting with GI involvement tend to have higher diagnostic confirmation rates and prolonged symptomatic periods compared to those without digestive complaints[94]. Additionally, GI ischemia has been linked to COVID-19 infection[95].

COVID-19 AND THE MUCOSAL IMMUNE SYSTEM

The GI tract serves as a significant entry point and reservoir for SARS-CoV-2 infection; however, the precise immunological cross-talk between the virus and the mucosal immune system remains to be fully elucidated, particularly at initial infection sites such as the nasopharynx and bronchus-associated lymphoid tissue[96]. Following viral exposure, the gut mucosa mounts a multifaceted response characterized by: (1) Recruitment of diverse immune cells, including neutrophils, dendritic cells, macrophages, and T lymphocyte subsets; (2) Disruption of epithelial barrier integrity, resulting in increased intestinal permeability (“leaky gut”); and (3) Concurrent activation of both inflammatory and protective immune pathways. This leaky gut phenomenon may exacerbate disease severity through systemic bacterial translocation[97,98].

Coordinated activation of CD4+ and CD8+ T cells, plasma cells, and the innate immune system is vital for clearing SARS-CoV-2. Secretory immunoglobulin A provides protection by neutralizing the virus, preventing adhesion, and promoting agglutination without triggering pro-inflammatory complement pathways[99,100]. Although validated data on the degree of mucosal immune responses and COVID-19 severity are limited, protective and tolerance-inducing mechanisms suggest that mucosal immunity is essential for infection resolution[101]. SARS-CoV-2 infection, associated medications, and GI symptoms also influence gut microbiota composition[102]. Xu et al[103] observed declines in beneficial genera such as Lactobacillus and Bifidobacterium in certain COVID-19 patients. Whether dysbiosis is a consequence of infection or contributes to disease remains debated; in this context, therapies that reduce GI permeability may provide clinical benefits[104].

GUT MICROBIOTA AND COVID-19

The gut-lung axis is a critical bidirectional communication network, where gut microbiota composition influences pulmonary immune responses during SARS-CoV-2 infection and vice versa[105]. This microbiota-gut-lung triad operates through three key mechanisms: (1) ACE2-mediated regulation of viral entry and intestinal homeostasis; (2) Microbial metabolite-driven immunomodulation; and (3) Translocation of pathogen-associated molecular patterns. ACE2 serves as both the SARS-CoV-2 receptor and a modulator of GI inflammation, regulating intestinal amino acid transport and antimicrobial peptide production[106,107].

Dysbiosis during COVID-19 is well-documented. Beneficial genera such as Lactobacillus and Bifidobacterium are reduced, and microbiota composition correlates with inflammatory cytokine levels, potentially predicting severe outcomes[108-112]. Fecal microbiota analysis reveals enrichment of pathogenic species, decrease in commensals, and reduced microbial diversity, correlating with disease severity[113-116]. Specific reductions in Faecalibacterium prausnitzii, Eubacterium ventriosum, Roseburia, and Ruminococcaceae are associated with higher disease severity, whereas opportunistic pathogens including Actinomyces viscosus, Clostridium hathewayi, Bacteroides nordii, Streptococcus, Rothia, and Veillonella are enriched, distinguishing COVID-19 patients from influenza A cases and healthy controls[115,116].

SARS-CoV-2 infection depletes commensals, reduces bacterial diversity, and allows overgrowth of opportunistic pathogens. Bacteroides species can downregulate ACE2 in the murine gut, inversely correlating with fecal viral load. Dysbiosis may persist after viral clearance, and hospitalized patients can experience blooms of antimicrobial-resistant pathogens, with bacterial translocation contributing to secondary bloodstream infections[116-118]. Gut dysbiosis associated with post-acute COVID-19 syndrome can persist up to one year post-clearance, indicating long-term microbiome alterations[118].

Current evidence on the microbiota-COVID-19 axis is primarily derived from cross-sectional studies, summarized in Table 4[119-126]. Despite differences in patient cohorts, disease severity, sampling time points, and sequencing approaches, studies investigating COVID-19 consistently reveal a shared microbial signature characterized by depletion of butyrate-producing commensals (Faecalibacterium, Roseburia, Eubacterium rectale, Bifidobacterium) and enrichment of opportunistic pathogens (Enterococcus, Klebsiella, Streptococcus). Variations among reports largely stem from treatment heterogeneity, antibiotic exposure, and regional dietary differences, yet the underlying mechanisms converge on mucosal immune dysregulation, epithelial barrier disruption, and altered microbial metabolism - particularly tryptophan and SCFA pathways. These findings collectively support a model in which SARS-CoV-2-induced dysbiosis amplifies systemic inflammation and contributes to prolonged post-acute sequelae through persistent gut-lung-brain axis dysfunction.

Table 4 Studies investigating microbiota and coronavirus disease 2019.
Ref.
COVID-related cases (n)
Methodology
Increased taxa
Decreased taxa
Limitations
Conclusion
de Nies et al[119], 2023118 subjects COVID-19: 61 (asymptomatic-moderate). Control: 57Metagenomics, metatranscriptomics, MAG reconstruction, VF/ARG prediction, virome analysisPrevotella stercorea, Prevotella spp. CAG 520, Roseburia spp. CAG 471, Firmicutes (AM10); Betaherpesvirus; Rotavirus C; VFs & AMR genes (Acidaminococcaceae, Erysipelatoclostridiaceae)Turicibacter sanguinis, Roseburia faecis, Firmicutes (CAG 145)Limited to asymptomatic-moderate cases; single-region cohort (Luxembourg); unclear mechanisms linking SARS-CoV-2 to VF/ARG expressionCOVID-19 increases the virulence and AMR potential of commensals despite minimal taxonomic shifts, suggesting enhanced pathogenic potential of the gut microbiota
Li et al[120], 2025121 participants total, NC: 53 (no COVID-19), C3M: 27 (3 months post-recovery), C6M: 41 (6 months post-recovery)Metagenomic shotgun sequencing; ITS sequencing for fungiBlautia massiliensis, Kluyveromyces spp., Bacteroides xylanisolvens, Phocaeicola vulgatus, Weissella confusa, Streptococcus thermophilus, Asterotremella spp., Gibberella spp.Blautia wexlerae, Bifidobacterium pseudocatenulatum, Bifidobacterium longum, Eubacterium rectale, Anaerobutyricum hallii, Pyrenochaeta spp.Cross-sectional design; excluded long COVID; smaller 3-month group; not generalizable to severe or unvaccinated casesMild COVID-19 induces long-term gut bacterial and fungal alterations lasting ≥ 6 months, with partial recovery and persistence of some pathogens
Zhang et al[121], 2023187 recovered patients (84 symptomatic)16S rRNA sequencing; clinical surveys (SF-36, SAS, SDS); lab tests; pulmonary function; chest CTVeillonellaSCFA-producers: Eubacterium hallii group, Subdoligranulum, Ruminococcus, Dorea, Coprococcus, Eubacterium ventriosum group, AgathobacterSingle-center, cross-sectional; no longitudinal monitoring; diet/Lifestyle not fully controlled; mechanisms not clarifiedLong COVID (approximately 45% at 1 year) is linked to persistent dysbiosis marked by depletion of SCFA-producing commensals, correlating with impaired quality of life, anxiety/depression, and immune dysregulation, supporting gut-lung and gut-brain axis involvement
Ishizaka et al[122], 202456 total, PLWH-CoV: 12 (mild: 7; moderate/severe: 5), PLWH controls: 25, HCs: 1916S rRNA sequencingAcute: Enterococcus faecium. Recovery (1-3 months): Roseburia, Lachnospiraceae_unclassified, Faecalibacterium prausnitzii, Eubacterium rectale. Recovered vs long COVID: Prevotella spp.Acute vs HC: Roseburia, Lachnospiraceae_unclassified. Long COVID vs recovered: Prevotella spp.Small sample size (n = 12 PLWH-CoV, only 2 PASC); no pre-infection baseline; diet, ART regimens, and variant effects not analyzedSARS-CoV-2 in PLWH causes persistent dysbiosis, marked by loss of SCFA-producers and enrichment of pathogens, with severity-linked delays in microbiome recovery and risk of PASC
Brīvība et al[123], 2024146 COVID-19 patients (92 hospitalized, 54 ambulatory) vs 110 HCsShotgun metagenomicsEnterococcus faecium, Bacteroides spp., Alistipes, EnterobacteriaceaeRoseburia, Faecalibacterium prausnitzii, Lachnospiraceae, Eubacterium rectale, Prevotella spp.High antibiotic use; heterogeneous sampling timing; phenotypic heterogeneity across patient groupsAcute COVID-19 shows reduced diversity with loss of butyrate producers; recovery involves their restoration, while Prevotella may protect against long COVID
Sorokina et al[124], 202339 post-COVID-19 patients before and after 14-day rehabilitation vs 48 healthy volunteersClinical questionnaires, CT; CBC, coagulation, biochemistry; serum IL-6, NSE (ECL); metabolites (GC-MS); microbiota (RT-PCR, colonoflor-16 kit)Bacteroides spp., Escherichia coli, Enterobacter spp., Staphylococcus aureus, IL-6, succinic acid, fumaric acid, 4-hydroxybenzoic acidLactobacillus spp., Bifidobacterium spp., Faecalibacterium prausnitzii, Phenylpropionic acidSmall cohort; no untreated controls; RT-PCR instead of sequencing; limited GI symptom assessment; diet confounded resultsPost-COVID-19 is marked by persistent dysbiosis (loss of SCFA-producers, enrichment of pathobionts) and sustained inflammatory/metabolic disturbances not resolved by standard rehabilitation, highlighting the need for personalized microbiome-targeted interventions
Tkacheva et al[125], 2023178 post-COVID-19 patients: Asymptomatic (A, n = 48), non-infected contacts (N, n = 46), severe (S, n = 86)16S rRNA sequencingRF39 (order), Clostridia UCG-014, Oscillospirales UCG-010, Akkermansia, Prevotellaceae (family), Lactobacillus, Romboutsia, Ruminococcus gnavus, ErysipelatoclostridiumParasutterella, Flavonifractor, Ruminococcus gnavus, Subdoligranulum, Methanobrevibacter, Lachnospiraceae UCG-010, Lachnospiraceae NK4A136, Barnesiella, Eubacterium xylanophilum, Eubacterium siraeumCross-sectional (3 months only); no acute phase data; diet/medications not controlled; 16S lacks functional resolutionNo major post-COVID microbiome differences by infection/severity at 3 months, but taxa correlated with immune, cardiovascular, and metabolic parameters, highlighting systemic associations beyond direct viral effects
Bredon et al[126], 2025200 COVID-19 patients vs 102 HCs (Morocco & France cohorts)Shotgun metagenomic sequencing, machine learning, metabolomics (tryptophan)Ruminococcus gnavus, Klebsiella pneumoniae, K. variicola, Bacteroides ovatus, Enterococcus; ↑ L-tryptophan biosynthesisFaecalibacterium prausnitzii, Roseburia spp., Bifidobacterium longum, Dysosmobacter welbionis, Coprococcus comes (SCFA-producers)Treatment heterogeneity (antibiotics) in the French cohort; ML model not transferable; causality not establishedCOVID-19 induces gut dysbiosis with depletion of SCFA-producers and enrichment of pathobionts, alongside altered tryptophan metabolism. Dysbiosis correlates with disease severity; the ML model predicted severity in the Moroccan cohort
DYSBIOSIS RELATED TO COVID-19 TREATMENT

During the early phases of the pandemic, patients frequently received antibiotics due to uncertainty regarding COVID-19 treatment, with broad-spectrum antibiotics commonly administered in cases of pneumonia[127]. Antibiotics are well-known modifiers of gut microbiota, and even short-term use can reduce microbial diversity, promoting intestinal dysbiosis that may persist even after viral clearance[128,129].

The effects of antibiotics vary with type, dosage, and duration, and may include impaired absorption of macronutrients and micronutrients, as well as increased levels of opportunistic intestinal bacteria such as Streptococcus, detectable up to 2 months post-treatment[130,131]. Studies prior to the pandemic showed that azithromycin reduced microbiota composition by 23% and Shannon diversity by 13%, mainly affecting Bacteroidetes and Firmicutes, though these changes were generally short-term[132]. Recent investigations have explored long-term effects of SARS-CoV-2 on GI dysbiosis via the microbiota-gut-lung axis, which may increase the risk of new colorectal cancer diagnoses or worsen existing conditions. Probiotics may stabilize microbial ecology and protect the integrity of the respiratory and GI tracts, although immune-modulatory responses can influence their effectiveness[133].

The connection between SARS-CoV-2 and the gut microbiome, including states of eubiosis and dysbiosis and related factors, is illustrated in Figure 3. Antibiotics, diet, lifestyle, medications, probiotics, and SARS-CoV-2 infection can all affect gut microbiota, potentially leading to dysbiosis. This imbalance may compromise immune responses, resulting in hyperinflammation, cytokine storms, multiorgan failure, and even death[127-133].

Figure 3
Figure 3 Severe acute respiratory syndrome coronavirus 2 interacts with the gut microbiota, influencing host outcomes. A preserved balanced microbiota supports effective immune responses, infection resolution, and mild or asymptomatic disease (eubiosis). In contrast, disruption of the microbiota (dysbiosis) contributes to failed immune responses, hyperinflammation, cytokine storm, multiorgan failure, and severe disease or death. SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2; FMT: Fecal microbiota transplantation.
MICROBIOTA-TARGETED INTERVENTIONS

Accumulating evidence indicates that gut dysbiosis compromises host immunity, exacerbating viral pathogenicity. Microbiota-targeted interventions, including probiotics, prebiotics, and fecal microbiota transplantation (FMT), aim to restore microbial balance and demonstrate efficacy in reducing the severity of viral infections[134]. In HIV, probiotic administration elevates CD4+ T-cell counts and alleviates gut-related clinical symptoms (e.g., diarrhea, nausea)[135]. For respiratory viruses, clinical trials in adults have revealed that specific probiotics reduce the incidence of influenza (H1N1/H3N2) and symptom severity, while elevating key immune markers, including serum interferon-gamma and secretory immunoglobulin A in the gut and salivary compartments. Preclinical evidence further supports the antiviral effects; supplementation with Lactobacillus plantarum, Enterococcus faecium, and Lactobacillus salivarius inhibits transmissible gastroenteritis coronavirus in swine models[136,137]. Strategies for modulating the gut microbiota to combat viral infections are comprehensively summarized in Table 5[138-150].

Table 5 Therapeutic effects of probiotic supplementation on infectious disease outcomes.
Probiotic/strain
Virus
Model
Individuality
Mechanism against viral infection
Ref.
Lactobacillus casei 393HIV-1 (pseudovirus)In vitro (TZM-bl cells)HIV-infected adultsExpresses CD4; binds HIV-1 pseudovirus; ↓ infection approximately 60%-70%[138]
Lactobacillus rhamnosus GR-1 and L. reuteri RC-14HIVClinical (24 adult women)HIV-infected womenResolved diarrhea; ↑/stable CD4 in 11/12 vs 3/12 control[139]
Lactobacillus acidophilus ATCC 4356 engineered with human CD4 (in yogurt)HIV-1In vitro & humanized BLT miceHIV-infected women (Nigeria)Surface CD4 binds HIV gp120; blocks viral entry[140]
Lactobacillus casei Shirota (in fermented milk)HIVClinical (children, n = 60)HIV-infected Vietnamese children↑ CD4+, Th2, Th17; ↓ Tregs, CD8+ activation; ↓ viral load[141]
Lactobacillus casei ShirotaEBV, CMV (herpesviruses)Clinical (athletes)Healthy athletes↓ Plasma EBV and CMV IgG titres in seropositive individuals suggest improved immune control of viral reactivation[142]
Lactobacillus rhamnosus GGRotavirus, CryptosporidiumClinical (children)Children with gastroenteritisImproved intestinal barrier function (↓ L:M ratio); ↑ serum IgG (rotavirus); ↓ reinfection rates in rotavirus-positive children[143]
Lactobacillus casei ShirotaNorovirusClinical (elderly)Older adults in a care facilityShortened fever duration; modulated gut microbiota (↑ Lactobacillus, Bifidobacterium; ↓ Enterobacteriaceae); ↑ acetic acid[144]
Lactobacillus rhamnosus GGRhinovirusClinical (infants)Preterm infants (32-36 weeks)↓ RTI incidence, ↓ rhinovirus infections; no effect on severity or shedding[145]
Enterococcus faecium NCIMB 10415Swine influenza A (H1N1, H3N2)In vitro (cell culture)Porcine macrophage and epithelial cells↓ Virus titers (up to 4-log); ↑ cell viability; ↑ NO release; ↓ TNF-α, IL-6, TLR3; ↑ IL-10, IFN-α; direct virus trapping by bacteria[146]
Bifidobacterium longum BB536InfluenzaClinical (elderly)Elderly (mean age 86.7 years)↓ Influenza and fever incidence, ↑ NK cell activity and neutrophil bactericidal activity; maintained innate immunity[147]
Bifidobacterium adolescentis SPM0212HBVIn vitro (HepG2.2.15 cells)Human hepatocyte-derived cell line↓ HBsAg and extracellular HBV DNA; ↑ MxA, STAT1 expression via IFN pathway; active antiviral components < 30 kDa[148]
Bifidobacterium lactis DSM 32246, Bifidobacterium lactis DSM 32247, Lactobacillus acidophilus DSM 32241, Lactobacillus brevis DSM 27961, Lactobacillus helveticus DSM 322426SARS-CoV-2Clinical (hospitalized)Hospitalized COVID-19 patients (Italy, n = 70)↓ Progression to respiratory failure; ↑ symptom resolution (fever, diarrhea, dyspnea); ↓ ICU admission and mortality; modulation of gut-lung axis; potential ↑ Nrf2/HO-1 antiviral pathways[149]
Lactobacillus gasseri SBT2055RSVIn vivo and in vitroBALB/c mice and HEp-2 cells↓ RSV titer; ↓ IL-6, TNF-α, IL-1β, CCL2; ↑ IFN-β, IFN-γ, OAS1a, ISG15; ↓ SRCAP expression linked to RSV replication[150]

Prebiotics are non-digestible dietary fibers that selectively stimulate the growth and activity of beneficial bacteria in the colon, conferring health benefits to the host. These compounds function through three primary mechanisms: (1) Modulation of gut microbial composition; (2) Enhancement of intestinal barrier function; and (3) Production of microbial metabolites with systemic effects[151]. The most clinically studied prebiotics include: Inulin-type fructans, fructo-oligosaccharides, galacto-oligosaccharides, trans-galactooligosaccharides, and xylo-oligosaccharides[152]. Natural dietary sources rich in these compounds include Jerusalem artichokes, asparagus, garlic, and unripe bananas. Following intestinal fermentation, prebiotics yield two key classes of bioactive metabolites: SCFAs, including acetate, propionate, and butyrate, and gaseous byproducts, such as hydrogen, carbon dioxide, and methane. These metabolites exert pleiotropic effects by upregulating tight junction proteins (occludin, zonula occludens-1) and regulatory T-cell populations, while suppressing pathobiont colonization and enhancing gut hormone secretion (glucagon-like peptide-1, peptide YY)[153].

FMT is the therapeutic transfer of processed donor stool containing intact microbial communities (e.g., Bacteroides, Faecalibacterium, Prevotella, Ruminococcus), bioactive metabolites [bile acids, SCFAs, anti-inflammatory mediators, gamma-aminobutyric acid, serotonin precursors (5-hydroxytryptophan)], and functional components (e.g., antimicrobial peptides), which can modulate host antiviral immunity to the recipient via the gut-immune axis[154] (Figure 4).

Figure 4
Figure 4 Fecal microbiota transplantation for Clostridioides difficile infection. The process and effect of fecal microbiota transplantation in patients with Clostridioides difficile infection are presented. In step 1, stool containing a healthy microbial community is harvested from a healthy donor. The donor microbiota includes Bacteroidia, Clostridia (Lachnospiraceae, Ruminococcaceae), butyrate producers (Faecalibacterium, Roseburia), and Microviridae, along with low levels of potential pathogens such as Escherichia coli, Klebsiella, and Enterococcus. In step 2, the donor fecal sample is transplanted into the intestine of a patient with disrupted gut microbiota resulting from a Clostridioides difficile infection. The infected microbiome is characterized by elevated levels of Gammaproteobacteria (Escherichia coli, Klebsiella), Clostridium XI/XVIII, Enterococcus, Veillonella, and Caudovirales. In step 3, following transplantation, the patient’s gut microbiome is restored to a composition resembling that of a healthy donor, with the re-establishment of beneficial bacteria and a reduction in pathogenic species, thereby promoting recovery and preventing the recurrence of Clostridioides difficile infection. Created in BioRender (Supplementary material). E. coli: Escherichia coli; C. difficile: Clostridioides difficile.

Clinical evidence demonstrates the multifaceted benefits of FMT: In individuals with HIV, it reduces gut permeability biomarkers and enhances microbial diversity; murine studies show that it attenuates influenza-induced lung pathology via TLR7-dependent pathways following antibiotic-induced dysbiosis; and poultry models confirm its role in conferring protection against avian influenza by shaping mucosal immunity[155]. FMT drives microbiome restoration by replenishing diversity (e.g., increased Bacteroidetes/Firmicutes ratio), enhances the intestinal barrier by upregulating tight junction proteins (occludin, zonula occludens-1), reduces intestinal permeability, modulates immunity by attenuating pro-inflammatory cytokines (TNF-α, IL-6) while promoting regulatory T-cell responses, and restores functional pathways including SCFA production and bile acid metabolism[156].

Emerging applications highlight its broader potential: FMT has been proven safe in COVID-19 patients with concurrent Clostridioides difficile infection, supporting cautious use in viral comorbidities[157]. Preclinically, FMT ameliorates virus-induced fatty liver disease by reprogramming microbiomes (reducing Proteobacteria, restoring Ruminococcaceae), improving metabolic markers (normalizing ALT/aspartate aminotransferase and hepatic triglycerides), and suppressing inflammation via downregulation of TLR4/nuclear factor kappa B signaling[158].

FUTURE DIRECTIONS

Unravelling the bidirectional interactions between viral infections and gut microbiota dysbiosis remains a frontier with profound implications for precision medicine. Longitudinal and mechanistic studies are needed to establish causality and temporal dynamics of microbiota changes during infections such as SARS-CoV-2, influenza, and HIV. Most current data are cross-sectional, limiting insight into whether dysbiosis drives or results from disease progression. A deeper understanding of interindividual variability in microbiome composition, shaped by genetics, diet, environment, and comorbidities, will be essential for developing personalized microbiota-targeted therapies. High-resolution multi-omics combined with machine learning could reveal microbial signatures and functional pathways relevant for precision medicine[159-162]. Beyond bacteria, the virome and mycobiome require systematic investigation, as these underexplored microbial communities likely influence host-pathogen interactions and immune responses. Microbiota-based interventions such as probiotics, prebiotics, and FMT demand rigorous evaluation for safety, strain selection, dosing, and timing, particularly in immunocompromised patients with HIV or severe COVID-19. Integration of microbiome research with knowledge of the gut-lung and gut-brain axes will be crucial to understanding systemic consequences of dysbiosis and designing holistic approaches to acute infections and post-viral syndromes such as long COVID. Well-designed randomized controlled trials incorporating microbiome endpoints are needed to translate research into effective therapeutics and clinical guidelines. Bridging mechanistic insights with translational studies will be pivotal to unlock the therapeutic potential of the gut microbiota in viral disease management[163-165].

CONCLUSION

Viral infections profoundly alter the gut microbiota, leading to dysbiosis that can intensify disease severity, impair innate and adaptive immune defenses, and promote secondary infections. Evidence from influenza, HIV/SIV, hepatitis viruses, and SARS-CoV-2 consistently shows that microbial imbalance is closely linked to systemic inflammation, disrupted mucosal immunity, altered cytokine signaling, and unfavorable clinical outcomes. Restoring microbial homeostasis through probiotics, prebiotics, dietary modulation, or FMT shows promising potential to enhance antiviral immunity, modulate SCFA production, alleviate GI symptoms, and reduce disease severity. However, translating these microbiota-targeted strategies into clinical practice requires careful consideration. Intervention efficacy is influenced by patient heterogeneity, timing relative to infection, concurrent antibiotic exposure, and biosafety concerns surrounding microbial transfer. Standardization of microbial formulations, dosing regimens, and delivery routes, alongside rigorous long-term safety monitoring, remains essential. Future studies integrating multi-omics analyses, mechanistic immunology, and controlled clinical trials are crucial to optimize microbiota-based therapies for viral infections and their systemic sequelae.

Footnotes

Provenance and peer review: Invited article; Externally peer reviewed.

Peer-review model: Single blind

Specialty type: Gastroenterology and hepatology

Country of origin: Bulgaria

Peer-review report’s classification

Scientific Quality: Grade B, Grade B, Grade B, Grade C, Grade D

Novelty: Grade B, Grade B, Grade C, Grade C, Grade C

Creativity or Innovation: Grade B, Grade B, Grade C, Grade C, Grade C

Scientific Significance: Grade B, Grade B, Grade B, Grade C, Grade D

P-Reviewer: Caballero-Linares CF, MD, Spain; Dubey V, Researcher, India; Hammad DBM, PhD, Assistant Professor, Senior Researcher, Iraq S-Editor: Wang JJ L-Editor: Filipodia P-Editor: Xu ZH

References
1.  Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474:1823-1836.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 1710]  [Cited by in RCA: 2191]  [Article Influence: 243.4]  [Reference Citation Analysis (8)]
2.  Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Doré J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J; MetaHIT Consortium, Bork P, Ehrlich SD, Wang J. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59-65.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 9101]  [Cited by in RCA: 8051]  [Article Influence: 503.2]  [Reference Citation Analysis (4)]
3.  Durack J, Lynch SV. The gut microbiome: Relationships with disease and opportunities for therapy. J Exp Med. 2019;216:20-40.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 614]  [Cited by in RCA: 633]  [Article Influence: 90.4]  [Reference Citation Analysis (0)]
4.  Passos MDCF, Moraes-Filho JP. Intestinal microbiota in digestive diseases. Arq Gastroenterol. 2017;54:255-262.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 27]  [Cited by in RCA: 46]  [Article Influence: 5.1]  [Reference Citation Analysis (0)]
5.  Maciel-Fiuza MF, Muller GC, Campos DMS, do Socorro Silva Costa P, Peruzzo J, Bonamigo RR, Veit T, Vianna FSL. Role of gut microbiota in infectious and inflammatory diseases. Front Microbiol. 2023;14:1098386.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 110]  [Cited by in RCA: 117]  [Article Influence: 39.0]  [Reference Citation Analysis (0)]
6.  Bron PA, Kleerebezem M, Brummer RJ, Cani PD, Mercenier A, MacDonald TT, Garcia-Ródenas CL, Wells JM. Can probiotics modulate human disease by impacting intestinal barrier function? Br J Nutr. 2017;117:93-107.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 314]  [Cited by in RCA: 327]  [Article Influence: 36.3]  [Reference Citation Analysis (0)]
7.  Almand EA, Moore MD, Jaykus LA. Virus-Bacteria Interactions: An Emerging Topic in Human Infection. Viruses. 2017;9:58.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 53]  [Cited by in RCA: 82]  [Article Influence: 9.1]  [Reference Citation Analysis (0)]
8.  Jones MK, Watanabe M, Zhu S, Graves CL, Keyes LR, Grau KR, Gonzalez-Hernandez MB, Iovine NM, Wobus CE, Vinjé J, Tibbetts SA, Wallet SM, Karst SM. Enteric bacteria promote human and mouse norovirus infection of B cells. Science. 2014;346:755-759.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 665]  [Cited by in RCA: 645]  [Article Influence: 53.8]  [Reference Citation Analysis (0)]
9.  Baldridge MT, Nice TJ, McCune BT, Yokoyama CC, Kambal A, Wheadon M, Diamond MS, Ivanova Y, Artyomov M, Virgin HW. Commensal microbes and interferon-λ determine persistence of enteric murine norovirus infection. Science. 2015;347:266-269.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 315]  [Cited by in RCA: 352]  [Article Influence: 29.3]  [Reference Citation Analysis (0)]
10.  Tashiro M, Ciborowski P, Reinacher M, Pulverer G, Klenk HD, Rott R. Synergistic role of staphylococcal proteases in the induction of influenza virus pathogenicity. Virology. 1987;157:421-430.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 116]  [Cited by in RCA: 109]  [Article Influence: 2.8]  [Reference Citation Analysis (0)]
11.  Uchiyama R, Chassaing B, Zhang B, Gewirtz AT. Antibiotic treatment suppresses rotavirus infection and enhances specific humoral immunity. J Infect Dis. 2014;210:171-182.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 156]  [Cited by in RCA: 168]  [Article Influence: 14.0]  [Reference Citation Analysis (0)]
12.  Kuss SK, Best GT, Etheredge CA, Pruijssers AJ, Frierson JM, Hooper LV, Dermody TS, Pfeiffer JK. Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science. 2011;334:249-252.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 496]  [Cited by in RCA: 486]  [Article Influence: 32.4]  [Reference Citation Analysis (0)]
13.  Goletti D, Weissman D, Jackson RW, Graham NM, Vlahov D, Klein RS, Munsiff SS, Ortona L, Cauda R, Fauci AS. Effect of Mycobacterium tuberculosis on HIV replication. Role of immune activation. J Immunol. 1996;157:1271-1278.  [PubMed]  [DOI]
14.  Håkansson A, Kidd A, Wadell G, Sabharwal H, Svanborg C. Adenovirus infection enhances in vitro adherence of Streptococcus pneumoniae. Infect Immun. 1994;62:2707-2714.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 90]  [Cited by in RCA: 88]  [Article Influence: 2.8]  [Reference Citation Analysis (0)]
15.  Wang JH, Kwon HJ, Jang YJ. Rhinovirus enhances various bacterial adhesions to nasal epithelial cells simultaneously. Laryngoscope. 2009;119:1406-1411.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 91]  [Cited by in RCA: 98]  [Article Influence: 5.8]  [Reference Citation Analysis (0)]
16.  Hahm B, Arbour N, Oldstone MB. Measles virus interacts with human SLAM receptor on dendritic cells to cause immunosuppression. Virology. 2004;323:292-302.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 59]  [Cited by in RCA: 60]  [Article Influence: 2.7]  [Reference Citation Analysis (0)]
17.  Servet-Delprat C, Vidalain PO, Bausinger H, Manié S, Le Deist F, Azocar O, Hanau D, Fischer A, Rabourdin-Combe C. Measles virus induces abnormal differentiation of CD40 ligand-activated human dendritic cells. J Immunol. 2000;164:1753-1760.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 128]  [Cited by in RCA: 125]  [Article Influence: 4.8]  [Reference Citation Analysis (0)]
18.  Kamma JJ, Contreras A, Slots J. Herpes viruses and periodontopathic bacteria in early-onset periodontitis. J Clin Periodontol. 2001;28:879-885.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 87]  [Cited by in RCA: 88]  [Article Influence: 3.5]  [Reference Citation Analysis (0)]
19.  Korppi M, Leinonen M, Mäkelä PH, Launiala K. Bacterial involvement in parainfluenza virus infection in children. Scand J Infect Dis. 1990;22:307-312.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 32]  [Cited by in RCA: 32]  [Article Influence: 0.9]  [Reference Citation Analysis (0)]
20.  Ruohola A, Pettigrew MM, Lindholm L, Jalava J, Räisänen KS, Vainionpää R, Waris M, Tähtinen PA, Laine MK, Lahti E, Ruuskanen O, Huovinen P. Bacterial and viral interactions within the nasopharynx contribute to the risk of acute otitis media. J Infect. 2013;66:247-254.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 70]  [Cited by in RCA: 71]  [Article Influence: 5.1]  [Reference Citation Analysis (0)]
21.  Sadiq FA. Is it time for microbiome-based therapies in viral infections? Virus Res. 2021;291:198203.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 10]  [Cited by in RCA: 9]  [Article Influence: 1.8]  [Reference Citation Analysis (0)]
22.  Luo C, Yang Y, Jiang C, Lv A, Zuo W, Ye Y, Ke J. Influenza and the gut microbiota: A hidden therapeutic link. Heliyon. 2024;10:e37661.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in RCA: 5]  [Reference Citation Analysis (0)]
23.  Clayville LR. Influenza update: a review of currently available vaccines. P T. 2011;36:659-684.  [PubMed]  [DOI]
24.  Druszczynska M, Sadowska B, Kulesza J, Gąsienica-Gliwa N, Kulesza E, Fol M. The Intriguing Connection Between the Gut and Lung Microbiomes. Pathogens. 2024;13:1005.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 3]  [Cited by in RCA: 20]  [Article Influence: 10.0]  [Reference Citation Analysis (0)]
25.  Sencio V, Barthelemy A, Tavares LP, Machado MG, Soulard D, Cuinat C, Queiroz-Junior CM, Noordine ML, Salomé-Desnoulez S, Deryuter L, Foligné B, Wahl C, Frisch B, Vieira AT, Paget C, Milligan G, Ulven T, Wolowczuk I, Faveeuw C, Le Goffic R, Thomas M, Ferreira S, Teixeira MM, Trottein F. Gut Dysbiosis during Influenza Contributes to Pulmonary Pneumococcal Superinfection through Altered Short-Chain Fatty Acid Production. Cell Rep. 2020;30:2934-2947.e6.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 133]  [Cited by in RCA: 264]  [Article Influence: 52.8]  [Reference Citation Analysis (0)]
26.  Sencio V, Gallerand A, Gomes Machado M, Deruyter L, Heumel S, Soulard D, Barthelemy J, Cuinat C, Vieira AT, Barthelemy A, Tavares LP, Guinamard R, Ivanov S, Grangette C, Teixeira MM, Foligné B, Wolowczuk I, Le Goffic R, Thomas M, Trottein F. Influenza Virus Infection Impairs the Gut's Barrier Properties and Favors Secondary Enteric Bacterial Infection through Reduced Production of Short-Chain Fatty Acids. Infect Immun. 2021;89:e0073420.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 15]  [Cited by in RCA: 71]  [Article Influence: 14.2]  [Reference Citation Analysis (0)]
27.  Minton K. Mucosal immunology: sick of the flu. Nat Rev Immunol. 2014;14:781.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 1]  [Reference Citation Analysis (0)]
28.  Ghosh SS, Wang J, Yannie PJ, Ghosh S. Intestinal Barrier Dysfunction, LPS Translocation, and Disease Development. J Endocr Soc. 2020;4:bvz039.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 143]  [Cited by in RCA: 470]  [Article Influence: 78.3]  [Reference Citation Analysis (0)]
29.  Alqazlan N, Alizadeh M, Boodhoo N, Taha-Abdelaziz K, Nagy E, Bridle B, Sharif S. Probiotic Lactobacilli Limit Avian Influenza Virus Subtype H9N2 Replication in Chicken Cecal Tonsil Mononuclear Cells. Vaccines (Basel). 2020;8:605.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 4]  [Cited by in RCA: 8]  [Article Influence: 1.3]  [Reference Citation Analysis (0)]
30.  Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei D, Goldfarb KC, Santee CA, Lynch SV, Tanoue T, Imaoka A, Itoh K, Takeda K, Umesaki Y, Honda K, Littman DR. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139:485-498.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 3529]  [Cited by in RCA: 3604]  [Article Influence: 212.0]  [Reference Citation Analysis (0)]
31.  Wang J, Li F, Wei H, Lian ZX, Sun R, Tian Z. Respiratory influenza virus infection induces intestinal immune injury via microbiota-mediated Th17 cell-dependent inflammation. J Exp Med. 2014;211:2397-2410.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 256]  [Cited by in RCA: 380]  [Article Influence: 31.7]  [Reference Citation Analysis (0)]
32.  Groves HT, Cuthbertson L, James P, Moffatt MF, Cox MJ, Tregoning JS. Respiratory Disease following Viral Lung Infection Alters the Murine Gut Microbiota. Front Immunol. 2018;9:182.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 131]  [Cited by in RCA: 201]  [Article Influence: 25.1]  [Reference Citation Analysis (0)]
33.  Hanada S, Pirzadeh M, Carver KY, Deng JC. Respiratory Viral Infection-Induced Microbiome Alterations and Secondary Bacterial Pneumonia. Front Immunol. 2018;9:2640.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 237]  [Cited by in RCA: 356]  [Article Influence: 44.5]  [Reference Citation Analysis (0)]
34.  Sharp PM, Hahn BH. Origins of HIV and the AIDS pandemic. Cold Spring Harb Perspect Med. 2011;1:a006841.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 648]  [Cited by in RCA: 771]  [Article Influence: 59.3]  [Reference Citation Analysis (0)]
35.  Costiniuk CT, Angel JB. Human immunodeficiency virus and the gastrointestinal immune system: does highly active antiretroviral therapy restore gut immunity? Mucosal Immunol. 2012;5:596-604.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 61]  [Cited by in RCA: 61]  [Article Influence: 4.4]  [Reference Citation Analysis (0)]
36.  Brenchley JM, Douek DC. HIV infection and the gastrointestinal immune system. Mucosal Immunol. 2008;1:23-30.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 403]  [Cited by in RCA: 390]  [Article Influence: 21.7]  [Reference Citation Analysis (0)]
37.  Dillon SM, Manuzak JA, Leone AK, Lee EJ, Rogers LM, McCarter MD, Wilson CC. HIV-1 infection of human intestinal lamina propria CD4+ T cells in vitro is enhanced by exposure to commensal Escherichia coli. J Immunol. 2012;189:885-896.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 50]  [Cited by in RCA: 53]  [Article Influence: 3.8]  [Reference Citation Analysis (0)]
38.  Wiche Salinas TR, Gosselin A, Raymond Marchand L, Moreira Gabriel E, Tastet O, Goulet JP, Zhang Y, Vlad D, Touil H, Routy JP, Bego MG, El-Far M, Chomont N, Landay AL, Cohen ÉA, Tremblay C, Ancuta P. IL-17A reprograms intestinal epithelial cells to facilitate HIV-1 replication and outgrowth in CD4+ T cells. iScience. 2021;24:103225.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in RCA: 9]  [Reference Citation Analysis (0)]
39.  Vujkovic-Cvijin I, Dunham RM, Iwai S, Maher MC, Albright RG, Broadhurst MJ, Hernandez RD, Lederman MM, Huang Y, Somsouk M, Deeks SG, Hunt PW, Lynch SV, McCune JM. Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism. Sci Transl Med. 2013;5:193ra91.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 446]  [Cited by in RCA: 557]  [Article Influence: 46.4]  [Reference Citation Analysis (0)]
40.  Chachage M. The gut-microbiome contribution to HIV-associated cardiovascular disease and metabolic disorders. Curr Opin Endocr Metab Res. 2021;21:100287.  [PubMed]  [DOI]  [Full Text]
41.  Armstrong AJS, Shaffer M, Nusbacher NM, Griesmer C, Fiorillo S, Schneider JM, Preston Neff C, Li SX, Fontenot AP, Campbell T, Palmer BE, Lozupone CA. An exploration of Prevotella-rich microbiomes in HIV and men who have sex with men. Microbiome. 2018;6:198.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 81]  [Cited by in RCA: 133]  [Article Influence: 16.6]  [Reference Citation Analysis (0)]
42.  Littlefield KM, Schneider JM, Neff CP, Soesanto V, Siebert JC, Nusbacher NM, Moreno-Huizar N, Cartwright IM, Armstrong AJS, Colgen SP, Lozupone CA, Palmer BE. Elevated inflammatory fecal immune factors in men who have sex with men with HIV associate with microbiome composition and gut barrier function. Front Immunol. 2022;13:1072720.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 8]  [Cited by in RCA: 14]  [Article Influence: 3.5]  [Reference Citation Analysis (0)]
43.  Onabajo OO, Mattapallil JJ. Gut Microbiome Homeostasis and the CD4 T- Follicular Helper Cell IgA Axis in Human Immunodeficiency Virus Infection. Front Immunol. 2021;12:657679.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 4]  [Cited by in RCA: 14]  [Article Influence: 2.8]  [Reference Citation Analysis (0)]
44.  Rhoades N, Mendoza N, Jankeel A, Sureshchandra S, Alvarez AD, Doratt B, Heidari O, Hagan R, Brown B, Scheibel S, Marbley T, Taylor J, Messaoudi I. Altered Immunity and Microbial Dysbiosis in Aged Individuals With Long-Term Controlled HIV Infection. Front Immunol. 2019;10:463.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 16]  [Cited by in RCA: 26]  [Article Influence: 3.7]  [Reference Citation Analysis (0)]
45.  Lu W, Feng Y, Jing F, Han Y, Lyu N, Liu F, Li J, Song X, Xie J, Qiu Z, Zhu T, Routy B, Routy JP, Li T, Zhu B. Association Between Gut Microbiota and CD4 Recovery in HIV-1 Infected Patients. Front Microbiol. 2018;9:1451.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 63]  [Cited by in RCA: 106]  [Article Influence: 13.3]  [Reference Citation Analysis (0)]
46.  Cook RR, Fulcher JA, Tobin NH, Li F, Lee D, Javanbakht M, Brookmeyer R, Shoptaw S, Bolan R, Aldrovandi GM, Gorbach PM. Effects of HIV viremia on the gastrointestinal microbiome of young MSM. AIDS. 2019;33:793-804.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 22]  [Cited by in RCA: 35]  [Article Influence: 5.0]  [Reference Citation Analysis (0)]
47.  Villar-García J, Güerri-Fernández R, Moya A, González A, Hernández JJ, Lerma E, Guelar A, Sorli L, Horcajada JP, Artacho A, D Auria G, Knobel H. Impact of probiotic Saccharomyces boulardii on the gut microbiome composition in HIV-treated patients: A double-blind, randomised, placebo-controlled trial. PLoS One. 2017;12:e0173802.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 45]  [Cited by in RCA: 42]  [Article Influence: 4.7]  [Reference Citation Analysis (0)]
48.  Dillon SM, Kibbie J, Lee EJ, Guo K, Santiago ML, Austin GL, Gianella S, Landay AL, Donovan AM, Frank DN, McCARTER MD, Wilson CC. Low abundance of colonic butyrate-producing bacteria in HIV infection is associated with microbial translocation and immune activation. AIDS. 2017;31:511-521.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 82]  [Cited by in RCA: 130]  [Article Influence: 14.4]  [Reference Citation Analysis (0)]
49.  Dinh DM, Volpe GE, Duffalo C, Bhalchandra S, Tai AK, Kane AV, Wanke CA, Ward HD. Intestinal microbiota, microbial translocation, and systemic inflammation in chronic HIV infection. J Infect Dis. 2015;211:19-27.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 282]  [Cited by in RCA: 391]  [Article Influence: 32.6]  [Reference Citation Analysis (0)]
50.  Lee SC, Chua LL, Yap SH, Khang TF, Leng CY, Raja Azwa RI, Lewin SR, Kamarulzaman A, Woo YL, Lim YAL, Loke P, Rajasuriar R. Enrichment of gut-derived Fusobacterium is associated with suboptimal immune recovery in HIV-infected individuals. Sci Rep. 2018;8:14277.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 39]  [Cited by in RCA: 68]  [Article Influence: 8.5]  [Reference Citation Analysis (0)]
51.  Machiavelli A, Duarte RTD, Pires MMS, Zárate-Bladés CR, Pinto AR. The impact of in utero HIV exposure on gut microbiota, inflammation, and microbial translocation. Gut Microbes. 2019;10:599-614.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 26]  [Cited by in RCA: 34]  [Article Influence: 4.9]  [Reference Citation Analysis (0)]
52.  Ling Z, Jin C, Xie T, Cheng Y, Li L, Wu N. Alterations in the Fecal Microbiota of Patients with HIV-1 Infection: An Observational Study in A Chinese Population. Sci Rep. 2016;6:30673.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 144]  [Cited by in RCA: 136]  [Article Influence: 13.6]  [Reference Citation Analysis (0)]
53.  Liu J, Johnson R, Dillon S, Kroehl M, Frank DN, Tuncil YE, Zhang X, Ir D, Robertson CE, Seifert S, Higgins J, Hamaker B, Wilson CC, Erlandson KM. Among older adults, age-related changes in the stool microbiome differ by HIV-1 serostatus. EBioMedicine. 2019;40:583-594.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 15]  [Cited by in RCA: 29]  [Article Influence: 4.1]  [Reference Citation Analysis (0)]
54.  Yang L, Poles MA, Fisch GS, Ma Y, Nossa C, Phelan JA, Pei Z. HIV-induced immunosuppression is associated with colonization of the proximal gut by environmental bacteria. AIDS. 2016;30:19-29.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 49]  [Cited by in RCA: 61]  [Article Influence: 6.1]  [Reference Citation Analysis (0)]
55.  Tanes C, Walker EM, Slisarenko N, Gerrets GL, Grasperge BF, Qin X, Jazwinski SM, Bushman FD, Bittinger K, Rout N. Gut Microbiome Changes Associated with Epithelial Barrier Damage and Systemic Inflammation during Antiretroviral Therapy of Chronic SIV Infection. Viruses. 2021;13:1567.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 7]  [Cited by in RCA: 21]  [Article Influence: 4.2]  [Reference Citation Analysis (0)]
56.  Tripathi A, Debelius J, Brenner DA, Karin M, Loomba R, Schnabl B, Knight R. The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol. 2018;15:397-411.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 872]  [Cited by in RCA: 1039]  [Article Influence: 129.9]  [Reference Citation Analysis (1)]
57.  Yu LX, Schwabe RF. The gut microbiome and liver cancer: mechanisms and clinical translation. Nat Rev Gastroenterol Hepatol. 2017;14:527-539.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 334]  [Cited by in RCA: 437]  [Article Influence: 48.6]  [Reference Citation Analysis (0)]
58.  Mizutani T, Ishizaka A, Koga M, Tsutsumi T, Yotsuyanagi H. Role of Microbiota in Viral Infections and Pathological Progression. Viruses. 2022;14:950.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 10]  [Cited by in RCA: 36]  [Article Influence: 9.0]  [Reference Citation Analysis (0)]
59.  Ishizaka A, Koga M, Mizutani T, Lim LA, Adachi E, Ikeuchi K, Ueda R, Aoyagi H, Tanaka S, Kiyono H, Matano T, Aizaki H, Yoshio S, Mita E, Muramatsu M, Kanto T, Tsutsumi T, Yotsuyanagi H. Prolonged Gut Dysbiosis and Fecal Excretion of Hepatitis A Virus in Patients Infected with Human Immunodeficiency Virus. Viruses. 2021;13:2101.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 2]  [Cited by in RCA: 12]  [Article Influence: 2.4]  [Reference Citation Analysis (0)]
60.  Wang X, Chen L, Wang H, Cai W, Xie Q. Modulation of bile acid profile by gut microbiota in chronic hepatitis B. J Cell Mol Med. 2020;24:2573-2581.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 37]  [Cited by in RCA: 41]  [Article Influence: 6.8]  [Reference Citation Analysis (0)]
61.  Joo EJ, Cheong HS, Kwon MJ, Sohn W, Kim HN, Cho YK. Relationship between gut microbiome diversity and hepatitis B viral load in patients with chronic hepatitis B. Gut Pathog. 2021;13:65.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 4]  [Cited by in RCA: 24]  [Article Influence: 4.8]  [Reference Citation Analysis (0)]
62.  Elsherbiny NM, Kamal El-Din OM, Hassan EA, Hetta HF, Alatawy R, Sayed Ali MA, Alanazi FE, Abdel-Maksoud MS, Aljohani HM, Badary MS, Mahran ZG, Kresha MA, Bakr KA, Abdelwahab H, Ramadan M. Direct-acting antiviral treatment significantly shaped the gut microbiota in chronic hepatitis C patients: a pilot study. Front Microbiol. 2025;16:1664447.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 1]  [Cited by in RCA: 4]  [Article Influence: 4.0]  [Reference Citation Analysis (0)]
63.  Huang PY, Chen CH, Tsai MJ, Yao CC, Wang HM, Kuo YH, Chang KC, Hung CH, Chuah SK, Tsai MC. Effects of direct anti-viral agents on the gut microbiota in patients with chronic hepatitis C. J Formos Med Assoc. 2023;122:157-163.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 2]  [Cited by in RCA: 9]  [Article Influence: 3.0]  [Reference Citation Analysis (0)]
64.  Honda T, Ishigami M, Ishizu Y, Imai N, Ito T, Yamamoto K, Yokoyama S, Muto H, Inukai Y, Kato A, Murayama A, Yoshio S, Ishikawa T, Fujishiro M, Kawashima H, Kato T. Gut microbes associated with functional cure of chronic hepatitis B. Hepatol Int. 2025;19:519-528.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 6]  [Reference Citation Analysis (0)]
65.  Inoue T, Nakayama J, Mori H, Tanaka M, Nakagawa D, Ohnishi M, Funatsu Y, Moriya K, Kawaratani H, Watanabe H, Suda G, Kondo Y, Ide T, Kakizaki S, Miuma S, Suetsugu A, Kawata K, Watanabe T, Iio E, Momoda R, Suzuki Y, Sakamaki A, Watanabe T, Watanabe T, Nagaoka K, Hiasa Y, Terai S, Yoshiji H, Toyoda A, Kurokawa K, Tanaka Y. Restoration of the gut-microbiota-liver axis after hepatitis C virus eradication. JHEP Rep. 2025;7:101494.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in RCA: 2]  [Reference Citation Analysis (0)]
66.  Li M, Shi M, Ji C, Wang L, Xiang Z, Wang Y, Wang H, Gu M, Ji R, Wu J. The Gut Microbiota in Elderly Patients with Acute Hepatitis E Infection. J Clin Transl Hepatol. 2025;13:578-587.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in RCA: 1]  [Reference Citation Analysis (0)]
67.  Li Y, Zhang D, Tian T, Xie J, Wang X, Deng W, Hao N, Li C. Relationship between gut microbiota dysbiosis and bile acid in patients with hepatitis B-induced cirrhosis. BMC Gastroenterol. 2025;25:552.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in RCA: 3]  [Reference Citation Analysis (0)]
68.  Shi K, Sun L, Feng Y, Wang X. Distinct gut microbiota and metabolomic profiles in HBV-related liver cirrhosis: insights into disease progression. Front Cell Infect Microbiol. 2025;15:1560564.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 1]  [Cited by in RCA: 3]  [Article Influence: 3.0]  [Reference Citation Analysis (0)]
69.  Honda T, Ishigami M, Yamamoto K, Takeyama T, Ito T, Ishizu Y, Kuzuya T, Nakamura M, Kawashima H, Miyahara R, Ishikawa T, Hirooka Y, Fujishiro M. Changes in the gut microbiota after hepatitis C virus eradication. Sci Rep. 2021;11:23568.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 11]  [Cited by in RCA: 13]  [Article Influence: 2.6]  [Reference Citation Analysis (0)]
70.  Liu B, Yang H, Liao Q, Wang M, Huang J, Xu R, Shan Z, Zhong H, Li T, Li C, Fu Y, Rong X. Altered gut microbiota is associated with the formation of occult hepatitis B virus infection. Microbiol Spectr. 2024;12:e0023924.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 3]  [Reference Citation Analysis (0)]
71.  Yan F, Zhang Q, Shi K, Zhang Y, Zhu B, Bi Y, Wang X. Gut microbiota dysbiosis with hepatitis B virus liver disease and association with immune response. Front Cell Infect Microbiol. 2023;13:1152987.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in RCA: 45]  [Reference Citation Analysis (0)]
72.  Hsu YC, Chen CC, Lee WH, Chang CY, Lee FJ, Tseng CH, Chen TH, Ho HJ, Lin JT, Wu CY. Compositions of gut microbiota before and shortly after hepatitis C viral eradication by direct antiviral agents. Sci Rep. 2022;12:5481.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in RCA: 13]  [Reference Citation Analysis (0)]
73.  Wang F, Wu Y, Ni J, Xie Q, Shen J, Chen H, Ma C, Yao Y, Wang J, Xu L, Xiang Q, Zhao Y, Chen Y, Li L. Gut microbiota links to histological damage in chronic HBV infection patients and aggravates fibrosis via fecal microbiota transplantation in mice. Microbiol Spectr. 2025;13:e0076425.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in RCA: 3]  [Reference Citation Analysis (0)]
74.  Yang X, Mai H, Zhou J, Li Z, Wang Q, Lan L, Lu F, Yang X, Guo B, Ye L, Cui P, Liang H, Huang J. Alterations of the gut microbiota associated with the occurrence and progression of viral hepatitis. Front Cell Infect Microbiol. 2023;13:1119875.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in RCA: 12]  [Reference Citation Analysis (0)]
75.  Lamers MM, Beumer J, van der Vaart J, Knoops K, Puschhof J, Breugem TI, Ravelli RBG, Paul van Schayck J, Mykytyn AZ, Duimel HQ, van Donselaar E, Riesebosch S, Kuijpers HJH, Schipper D, van de Wetering WJ, de Graaf M, Koopmans M, Cuppen E, Peters PJ, Haagmans BL, Clevers H. SARS-CoV-2 productively infects human gut enterocytes. Science. 2020;369:50-54.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 1245]  [Cited by in RCA: 1337]  [Article Influence: 222.8]  [Reference Citation Analysis (0)]
76.  Suryana KD, Simadibrata M, Renaldi K. Impact of COVID-19 on the Gut: A Review of the Manifestations, Pathology, Management, and Challenges. Acta Med Indones. 2021;53:96-104.  [PubMed]  [DOI]
77.  Amin R, Sohrabi MR, Zali AR, Hannani K. Five consecutive epidemiological waves of COVID-19: a population-based cross-sectional study on characteristics, policies, and health outcome. BMC Infect Dis. 2022;22:906.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 27]  [Reference Citation Analysis (0)]
78.  Chan JF, Kok KH, Zhu Z, Chu H, To KK, Yuan S, Yuen KY. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect. 2020;9:221-236.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 1813]  [Cited by in RCA: 1968]  [Article Influence: 328.0]  [Reference Citation Analysis (0)]
79.  Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020;26:450-452.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 3581]  [Cited by in RCA: 2888]  [Article Influence: 481.3]  [Reference Citation Analysis (0)]
80.  Chervenkov L, Raycheva R, Rangelova V, Doykova K. Chest CT diagnostic potential as a tool for early detection of suspected COVID-19 cases in pandemic peaks. Folia Med (Plovdiv). 2023;65:99-110.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 1]  [Cited by in RCA: 2]  [Article Influence: 0.7]  [Reference Citation Analysis (0)]
81.  Kanmaniraja D, Kurian J, Holder J, Gunther MS, Chernyak V, Hsu K, Lee J, Mcclelland A, Slasky SE, Le J, Ricci ZJ. Review of COVID-19, part 1: Abdominal manifestations in adults and multisystem inflammatory syndrome in children. Clin Imaging. 2021;80:88-110.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 4]  [Cited by in RCA: 7]  [Article Influence: 1.4]  [Reference Citation Analysis (0)]
82.  Beyerstedt S, Casaro EB, Rangel ÉB. COVID-19: angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur J Clin Microbiol Infect Dis. 2021;40:905-919.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 601]  [Cited by in RCA: 524]  [Article Influence: 104.8]  [Reference Citation Analysis (0)]
83.  Ghazanfar H, Kandhi S, Shin D, Muthumanickam A, Gurjar H, Qureshi ZA, Shaban M, Farag M, Haider A, Budhathoki P, Bhatt T, Ghazanfar A, Jyala A, Patel H. Impact of COVID-19 on the Gastrointestinal Tract: A Clinical Review. Cureus. 2022;14:e23333.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 2]  [Cited by in RCA: 19]  [Article Influence: 4.8]  [Reference Citation Analysis (0)]
84.  Mu C, Zhu W. Antibiotic effects on gut microbiota, metabolism, and beyond. Appl Microbiol Biotechnol. 2019;103:9277-9285.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 30]  [Cited by in RCA: 61]  [Article Influence: 8.7]  [Reference Citation Analysis (0)]
85.  Sharma A, Ahmad Farouk I, Lal SK. COVID-19: A Review on the Novel Coronavirus Disease Evolution, Transmission, Detection, Control and Prevention. Viruses. 2021;13:202.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 245]  [Cited by in RCA: 342]  [Article Influence: 68.4]  [Reference Citation Analysis (0)]
86.  Brogna C, Costanzo V, Brogna B, Bisaccia DR, Brogna G, Giuliano M, Montano L, Viduto V, Cristoni S, Fabrowski M, Piscopo M. Analysis of Bacteriophage Behavior of a Human RNA Virus, SARS-CoV-2, through the Integrated Approach of Immunofluorescence Microscopy, Proteomics and D-Amino Acid Quantification. Int J Mol Sci. 2023;24:3929.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 4]  [Cited by in RCA: 20]  [Article Influence: 6.7]  [Reference Citation Analysis (0)]
87.  Troisi J, Venutolo G, Pujolassos Tanyà M, Delli Carri M, Landolfi A, Fasano A. COVID-19 and the gastrointestinal tract: Source of infection or merely a target of the inflammatory process following SARS-CoV-2 infection? World J Gastroenterol. 2021;27:1406-1418.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in CrossRef: 40]  [Cited by in RCA: 34]  [Article Influence: 6.8]  [Reference Citation Analysis (0)]
88.  Hunt RH, East JE, Lanas A, Malfertheiner P, Satsangi J, Scarpignato C, Webb GJ. COVID-19 and Gastrointestinal Disease: Implications for the Gastroenterologist. Dig Dis. 2021;39:119-139.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 85]  [Cited by in RCA: 72]  [Article Influence: 12.0]  [Reference Citation Analysis (2)]
89.  Noh HE, Rha MS. Mucosal Immunity against SARS-CoV-2 in the Respiratory Tract. Pathogens. 2024;13:113.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 7]  [Reference Citation Analysis (0)]
90.  Mucino-Bermejo MJ. COVID-19 and the Gastrointestinal Tract. Gastroenterol Insights. 2021;12:394-404.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 4]  [Cited by in RCA: 6]  [Article Influence: 1.2]  [Reference Citation Analysis (0)]
91.  Zheng S, Fan J, Yu F, Feng B, Lou B, Zou Q, Xie G, Lin S, Wang R, Yang X, Chen W, Wang Q, Zhang D, Liu Y, Gong R, Ma Z, Lu S, Xiao Y, Gu Y, Zhang J, Yao H, Xu K, Lu X, Wei G, Zhou J, Fang Q, Cai H, Qiu Y, Sheng J, Chen Y, Liang T. Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January-March 2020: retrospective cohort study. BMJ. 2020;369:m1443.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 1052]  [Cited by in RCA: 1028]  [Article Influence: 171.3]  [Reference Citation Analysis (0)]
92.  Heneghan CJ, Spencer EA, Brassey J, Plüddemann A, Onakpoya IJ, Evans DH, Conly JM, Jefferson T. SARS-CoV-2 and the role of orofecal transmission: a systematic review. F1000Res. 2021;10:231.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 23]  [Cited by in RCA: 32]  [Article Influence: 6.4]  [Reference Citation Analysis (0)]
93.  Parasa S, Desai M, Thoguluva Chandrasekar V, Patel HK, Kennedy KF, Roesch T, Spadaccini M, Colombo M, Gabbiadini R, Artifon ELA, Repici A, Sharma P. Prevalence of Gastrointestinal Symptoms and Fecal Viral Shedding in Patients With Coronavirus Disease 2019: A Systematic Review and Meta-analysis. JAMA Netw Open. 2020;3:e2011335.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 301]  [Cited by in RCA: 308]  [Article Influence: 51.3]  [Reference Citation Analysis (0)]
94.  Peshevska-Sekulovska M, Boeva I, Sekulovski M, Zashev M, Peruhova M. Gastrointestinal Ischemia—Stumbling Stone in COVID-19 Patients. Gastroenterol Insights. 2022;13:206-217.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Reference Citation Analysis (0)]
95.  Russell MW, Moldoveanu Z, Ogra PL, Mestecky J. Mucosal Immunity in COVID-19: A Neglected but Critical Aspect of SARS-CoV-2 Infection. Front Immunol. 2020;11:611337.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 156]  [Cited by in RCA: 287]  [Article Influence: 47.8]  [Reference Citation Analysis (1)]
96.  Zhou X, Wu Y, Zhu Z, Lu C, Zhang C, Zeng L, Xie F, Zhang L, Zhou F. Mucosal immune response in biology, disease prevention and treatment. Signal Transduct Target Ther. 2025;10:7.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 45]  [Reference Citation Analysis (0)]
97.  Tsounis EP, Triantos C, Konstantakis C, Marangos M, Assimakopoulos SF. Intestinal barrier dysfunction as a key driver of severe COVID-19. World J Virol. 2023;12:68-90.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in CrossRef: 1]  [Cited by in RCA: 26]  [Article Influence: 8.7]  [Reference Citation Analysis (0)]
98.  Fröberg J, Diavatopoulos DA. Mucosal immunity to severe acute respiratory syndrome coronavirus 2 infection. Curr Opin Infect Dis. 2021;34:181-186.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 17]  [Cited by in RCA: 36]  [Article Influence: 7.2]  [Reference Citation Analysis (0)]
99.  Kar M, Johnson KEE, Vanderheiden A, Elrod EJ, Floyd K, Geerling E, Stone ET, Salinas E, Banakis S, Wang W, Sathish S, Shrihari S, Davis-Gardner ME, Kohlmeier J, Pinto A, Klein R, Grakoui A, Ghedin E, Suthar MS. CD4(+) and CD8(+) T cells are required to prevent SARS-CoV-2 persistence in the nasal compartment. Sci Adv. 2024;10:eadp2636.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 11]  [Reference Citation Analysis (0)]
100.  Ning J, Ren Y, Zhang Z, Zeng X, Wang Q, Xie J, Xu Y, Fan Y, Li H, Zhai A, Li B, Wu C, Chen Y. Predicting SARS-CoV-2-specific CD4(+) and CD8(+) T-cell responses elicited by inactivated vaccines in healthy adults using machine learning models. Clin Exp Med. 2025;25:236.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in RCA: 1]  [Reference Citation Analysis (0)]
101.  Russell MW, Mestecky J. Mucosal immunity: The missing link in comprehending SARS-CoV-2 infection and transmission. Front Immunol. 2022;13:957107.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 26]  [Cited by in RCA: 77]  [Article Influence: 19.3]  [Reference Citation Analysis (0)]
102.  Kaźmierczak-Siedlecka K, Vitale E, Makarewicz W. COVID-19 - gastrointestinal and gut microbiota-related aspects. Eur Rev Med Pharmacol Sci. 2020;24:10853-10859.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 19]  [Reference Citation Analysis (0)]
103.  Xu K, Cai H, Shen Y, Ni Q, Chen Y, Hu S, Li J, Wang H, Yu L, Huang H, Qiu Y, Wei G, Fang Q, Zhou J, Sheng J, Liang T, Li L. [Management of COVID-19: the Zhejiang experience]. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2020;49:147-157.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 185]  [Reference Citation Analysis (0)]
104.  Vernia F, Ashktorab H, Cesaro N, Monaco S, Faenza S, Sgamma E, Viscido A, Latella G. COVID-19 and Gastrointestinal Tract: From Pathophysiology to Clinical Manifestations. Medicina (Kaunas). 2023;59:1709.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 13]  [Reference Citation Analysis (0)]
105.  Enaud R, Prevel R, Ciarlo E, Beaufils F, Wieërs G, Guery B, Delhaes L. The Gut-Lung Axis in Health and Respiratory Diseases: A Place for Inter-Organ and Inter-Kingdom Crosstalks. Front Cell Infect Microbiol. 2020;10:9.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 372]  [Cited by in RCA: 517]  [Article Influence: 86.2]  [Reference Citation Analysis (0)]
106.  Zuo T, Zhang F, Lui GCY, Yeoh YK, Li AYL, Zhan H, Wan Y, Chung ACK, Cheung CP, Chen N, Lai CKC, Chen Z, Tso EYK, Fung KSC, Chan V, Ling L, Joynt G, Hui DSC, Chan FKL, Chan PKS, Ng SC. Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology. 2020;159:944-955.e8.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 739]  [Cited by in RCA: 1096]  [Article Influence: 182.7]  [Reference Citation Analysis (0)]
107.  Viana SD, Nunes S, Reis F. ACE2 imbalance as a key player for the poor outcomes in COVID-19 patients with age-related comorbidities - Role of gut microbiota dysbiosis. Ageing Res Rev. 2020;62:101123.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 77]  [Cited by in RCA: 126]  [Article Influence: 21.0]  [Reference Citation Analysis (0)]
108.  Zhang F, Lau RI, Liu Q, Su Q, Chan FKL, Ng SC. Gut microbiota in COVID-19: key microbial changes, potential mechanisms and clinical applications. Nat Rev Gastroenterol Hepatol. 2023;20:323-337.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 32]  [Cited by in RCA: 160]  [Article Influence: 53.3]  [Reference Citation Analysis (0)]
109.  Gou W, Fu Y, Yue L, Chen G, Cai X, Shuai M, Xu F, Yi X, Chen H, Zhu Y, Xiao M, Jiang Z, Miao Z, Xiao C, Shen B, Wu X, Zhao H, Ling W, Wang J, Chen Y, Guo T, Zheng J.   Gut microbiota may underlie the predisposition of healthy individuals to COVID-19. 2020 Preprint. Available from: medRxiv:2020.04.22.20076091.  [PubMed]  [DOI]  [Full Text]
110.  Scalzo PL, Marshall A, Soriano S, Curry K, Dulay M, Hodics T, Quigley EM, Treangen TJ, Piskorz MM, Villapol S. Gut microbiome dysbiosis and immune activation correlate with somatic and neuropsychiatric symptoms in COVID-19 patients: Microbiome dysbiosis linked to COVID-19 symptoms. medRxiv. 2024;2024.11.18.24317428.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in RCA: 1]  [Reference Citation Analysis (0)]
111.  Neag MA, Vulturar DM, Gherman D, Burlacu CC, Todea DA, Buzoianu AD. Gastrointestinal microbiota: A predictor of COVID-19 severity? World J Gastroenterol. 2022;28:6328-6344.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in CrossRef: 8]  [Cited by in RCA: 16]  [Article Influence: 4.0]  [Reference Citation Analysis (1)]
112.  Emadi A, Chua JV, Talwani R, Bentzen SM, Baddley J. Safety and Efficacy of Imatinib for Hospitalized Adults with COVID-19: A structured summary of a study protocol for a randomised controlled trial. Trials. 2020;21:897.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 15]  [Cited by in RCA: 26]  [Article Influence: 4.3]  [Reference Citation Analysis (0)]
113.  Nakov R, Segal JP, Settanni CR, Bibbò S, Gasbarrini A, Cammarota G, Ianiro G. Microbiome: what intensivists should know. Minerva Anestesiol. 2020;86:777-785.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 9]  [Cited by in RCA: 14]  [Article Influence: 2.3]  [Reference Citation Analysis (0)]
114.  Lane S, Hilliam Y, Bomberger JM. Microbial and Immune Regulation of the Gut-Lung Axis during Viral-Bacterial Coinfection. J Bacteriol. 2023;205:e0029522.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 4]  [Cited by in RCA: 9]  [Article Influence: 3.0]  [Reference Citation Analysis (0)]
115.  Gu S, Chen Y, Wu Z, Chen Y, Gao H, Lv L, Guo F, Zhang X, Luo R, Huang C, Lu H, Zheng B, Zhang J, Yan R, Zhang H, Jiang H, Xu Q, Guo J, Gong Y, Tang L, Li L. Alterations of the Gut Microbiota in Patients With Coronavirus Disease 2019 or H1N1 Influenza. Clin Infect Dis. 2020;71:2669-2678.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 324]  [Cited by in RCA: 583]  [Article Influence: 116.6]  [Reference Citation Analysis (0)]
116.  Venzon M, Bernard-Raichon L, Klein J, Axelrad JE, Hussey GA, Sullivan AP, Casanovas-Massana A, Noval MG, Valero-Jimenez AM, Gago J, Wilder E; Yale IMPACT Research Team, Thorpe LE, Littman DR, Dittmann M, Stapleford KA, Shopsin B, Torres VJ, Ko AI, Iwasaki A, Cadwell K, Schluter J. Gut microbiome dysbiosis during COVID-19 is associated with increased risk for bacteremia and microbial translocation. Res Sq. 2021;rs.3.rs-r726620.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 28]  [Cited by in RCA: 22]  [Article Influence: 4.4]  [Reference Citation Analysis (0)]
117.  Righi E, Dalla Vecchia I, Auerbach N, Morra M, Górska A, Sciammarella C, Lambertenghi L, Gentilotti E, Mirandola M, Tacconelli E, Sartor A. Gut Microbiome Disruption Following SARS-CoV-2: A Review. Microorganisms. 2024;12:131.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 2]  [Cited by in RCA: 9]  [Article Influence: 4.5]  [Reference Citation Analysis (0)]
118.  Su Q, Lau RI, Liu Q, Chan FKL, Ng SC. Post-acute COVID-19 syndrome and gut dysbiosis linger beyond 1 year after SARS-CoV-2 clearance. Gut. 2023;72:1230-1232.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 3]  [Cited by in RCA: 43]  [Article Influence: 10.8]  [Reference Citation Analysis (0)]
119.  de Nies L, Galata V, Martin-Gallausiaux C, Despotovic M, Busi SB, Snoeck CJ, Delacour L, Budagavi DP, Laczny CC, Habier J, Lupu PC, Halder R, Fritz JV, Marques T, Sandt E, O'Sullivan MP, Ghosh S, Satagopam V; CON-VINCE Consortium, Krüger R, Fagherazzi G, Ollert M, Hefeng FQ, May P, Wilmes P. Altered infective competence of the human gut microbiome in COVID-19. Microbiome. 2023;11:46.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 1]  [Cited by in RCA: 17]  [Article Influence: 5.7]  [Reference Citation Analysis (0)]
120.  Li D, Zhang DY, Chen SJ, Lv YT, Huang SM, Chen C, Zeng F, Chen RX, Zhang XD, Xiong JX, Chen FD, Jiang YH, Chen Z, Mo CY, Chen JJ, Zhu XL, Zhang LJ, Bai FH. Long-term alterations in gut microbiota following mild COVID-19 recovery: bacterial and fungal community shifts. Front Cell Infect Microbiol. 2025;15:1565887.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in RCA: 2]  [Reference Citation Analysis (0)]
121.  Zhang D, Zhou Y, Ma Y, Chen P, Tang J, Yang B, Li H, Liang M, Xue Y, Liu Y, Zhang J, Wang X. Gut Microbiota Dysbiosis Correlates With Long COVID-19 at One-Year After Discharge. J Korean Med Sci. 2023;38:e120.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in RCA: 61]  [Reference Citation Analysis (0)]
122.  Ishizaka A, Koga M, Mizutani T, Yamayoshi S, Iwatsuki-Horimoto K, Adachi E, Suzuki Y, Kawaoka Y, Yotsuyanagi H. Association of gut microbiota with the pathogenesis of SARS-CoV-2 Infection in people living with HIV. BMC Microbiol. 2024;24:6.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 10]  [Cited by in RCA: 8]  [Article Influence: 4.0]  [Reference Citation Analysis (0)]
123.  Brīvība M, Silamiķele L, Birzniece L, Ansone L, Megnis K, Silamiķelis I, Pelcmane L, Borisova D, Rozenberga M, Jagare L, Elbere I, Kloviņš J. Gut Microbiome Composition and Dynamics in Hospitalized COVID-19 Patients and Patients with Post-Acute COVID-19 Syndrome. Int J Mol Sci. 2024;25:567.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 9]  [Reference Citation Analysis (0)]
124.  Sorokina E, Pautova A, Fatuev O, Zakharchenko V, Onufrievich A, Grechko A, Beloborodova N, Chernevskaya E. Promising Markers of Inflammatory and Gut Dysbiosis in Patients with Post-COVID-19 Syndrome. J Pers Med. 2023;13:971.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 14]  [Reference Citation Analysis (0)]
125.  Tkacheva ON, Klimenko NS, Kashtanova DA, Tyakht AV, Maytesyan LV, Akopyan AA, Koshechkin SI, Strazhesko ID. Gut Microbiome in Post-COVID-19 Patients Is Linked to Immune and Cardiovascular Health Status but Not COVID-19 Severity. Microorganisms. 2023;11:1036.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 3]  [Reference Citation Analysis (0)]
126.  Bredon M, Hausfater P, Khalki L, Tijani Y, Cheikh A, Brot L, Creusot L, Rolhion N, Trottein F, Lambeau G, Georgin-Lavialle S, Bleibtreu A, Baudel JL, Lefèvre A, Emond P, Tubach F, Simon-Tillaux N, Simon T, Gorochov G, Zaid Y, Sokol H. Gut microbiota alterations are linked to COVID-19 severity in North African and European populations. NPJ Biofilms Microbiomes. 2025;11:106.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in RCA: 3]  [Reference Citation Analysis (0)]
127.  Xiao Y, Xu H, Guo W, Zhao Y, Luo Y, Wang M, He Z, Ding Z, Liu J, Deng L, Sha F, Ma X. Update on treatment and preventive interventions against COVID-19: an overview of potential pharmacological agents and vaccines. Mol Biomed. 2020;1:16.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 2]  [Cited by in RCA: 3]  [Article Influence: 0.5]  [Reference Citation Analysis (0)]
128.  Kesavelu D, Jog P. Current understanding of antibiotic-associated dysbiosis and approaches for its management. Ther Adv Infect Dis. 2023;10:20499361231154443.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in RCA: 47]  [Reference Citation Analysis (0)]
129.  Basting CM, Langat R, Broedlow CA, Guerrero CR, Bold TD, Bailey M, Velez A, Schroeder T, Short-Miller J, Cromarty R, Mayer ZJ, Southern PJ, Schacker TW, Safo SE, Bramante CT, Tignanelli CJ, Schifanella L, Klatt NR. SARS-CoV-2 infection is associated with intestinal permeability, systemic inflammation, and microbial dysbiosis in hospitalized patients. Microbiol Spectr. 2024;12:e0068024.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 9]  [Reference Citation Analysis (0)]
130.  Yang L, Bajinka O, Jarju PO, Tan Y, Taal AM, Ozdemir G. The varying effects of antibiotics on gut microbiota. AMB Express. 2021;11:116.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 7]  [Cited by in RCA: 72]  [Article Influence: 14.4]  [Reference Citation Analysis (0)]
131.  Nikolaou E, Kamilari E, Savkov D, Sergeev A, Zakharova I, Vogazianos P, Tomazou M, Antoniades A, Shammas C. Intestinal microbiome analysis demonstrates azithromycin post-treatment effects improve when combined with lactulose. World J Pediatr. 2020;16:168-176.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 11]  [Cited by in RCA: 12]  [Article Influence: 2.0]  [Reference Citation Analysis (0)]
132.  Wei S, Mortensen MS, Stokholm J, Brejnrod AD, Thorsen J, Rasmussen MA, Trivedi U, Bisgaard H, Sørensen SJ. Short- and long-term impacts of azithromycin treatment on the gut microbiota in children: A double-blind, randomized, placebo-controlled trial. EBioMedicine. 2018;38:265-272.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 76]  [Cited by in RCA: 73]  [Article Influence: 9.1]  [Reference Citation Analysis (0)]
133.  Odun-Ayo F, Reddy L. Gastrointestinal Microbiota Dysbiosis Associated with SARS-CoV-2 Infection in Colorectal Cancer: The Implication of Probiotics. Gastroenterol Insights. 2022;13:35-59.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 6]  [Cited by in RCA: 13]  [Article Influence: 3.3]  [Reference Citation Analysis (0)]
134.  Shi HY, Zhu X, Li WL, Mak JWY, Wong SH, Zhu ST, Guo SL, Chan FKL, Zhang ST, Ng SC. Modulation of gut microbiota protects against viral respiratory tract infections: a systematic review of animal and clinical studies. Eur J Nutr. 2021;60:4151-4174.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 25]  [Cited by in RCA: 34]  [Article Influence: 6.8]  [Reference Citation Analysis (0)]
135.  Miller H, Ferris R, Phelps BR. The effect of probiotics on CD4 counts among people living with HIV: a systematic review. Benef Microbes. 2016;7:345-351.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 22]  [Cited by in RCA: 19]  [Article Influence: 1.9]  [Reference Citation Analysis (0)]
136.  Kumar R, Seo BJ, Mun MR, Kim CJ, Lee I, Kim H, Park YH. Putative probiotic Lactobacillus spp. from porcine gastrointestinal tract inhibit transmissible gastroenteritis coronavirus and enteric bacterial pathogens. Trop Anim Health Prod. 2010;42:1855-1860.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 45]  [Cited by in RCA: 45]  [Article Influence: 2.8]  [Reference Citation Analysis (0)]
137.  Fujii T, Fujitomo T, Tsuji R, Kubo R, Kato Y, Kanauchi O. Effects of Heat-Killed Lactococcus lactis Strain Plasma on Skin Homeostasis-Related Genes and the Skin Microbiome among Healthy Adults: A Randomized Controlled Double-Blind Study. Microorganisms. 2021;9:2029.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in RCA: 1]  [Reference Citation Analysis (0)]
138.  Anukam KC, Osazuwa EO, Osadolor HB, Bruce AW, Reid G. Yogurt containing probiotic Lactobacillus rhamnosus GR-1 and L. reuteri RC-14 helps resolve moderate diarrhea and increases CD4 count in HIV/AIDS patients. J Clin Gastroenterol. 2008;42:239-243.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 112]  [Cited by in RCA: 106]  [Article Influence: 5.9]  [Reference Citation Analysis (0)]
139.  Su Y, Zhang B, Su L. CD4 detected from Lactobacillus helps understand the interaction between Lactobacillus and HIV. Microbiol Res. 2013;168:273-277.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 13]  [Cited by in RCA: 16]  [Article Influence: 1.2]  [Reference Citation Analysis (0)]
140.  Wei W, Wiggins J, Hu D, Vrbanac V, Bowder D, Mellon M, Tager A, Sodroski J, Xiang SH. Blocking HIV-1 Infection by Chromosomal Integrative Expression of Human CD4 on the Surface of Lactobacillus acidophilus ATCC 4356. J Virol. 2019;93:e01830-e01818.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 7]  [Cited by in RCA: 14]  [Article Influence: 2.0]  [Reference Citation Analysis (0)]
141.  Ishizaki A, Bi X, Nguyen LV, Matsuda K, Pham HV, Phan CTT, Khu DTK, Ichimura H. Effects of Short-Term Probiotic Ingestion on Immune Profiles and Microbial Translocation among HIV-1-Infected Vietnamese Children. Int J Mol Sci. 2017;18:2185.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 17]  [Cited by in RCA: 27]  [Article Influence: 3.0]  [Reference Citation Analysis (0)]
142.  Gleeson M, Bishop NC, Struszczak L. Effects of Lactobacillus casei Shirota ingestion on common cold infection and herpes virus antibodies in endurance athletes: a placebo-controlled, randomized trial. Eur J Appl Physiol. 2016;116:1555-1563.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 39]  [Cited by in RCA: 54]  [Article Influence: 5.4]  [Reference Citation Analysis (0)]
143.  Sindhu KN, Sowmyanarayanan TV, Paul A, Babji S, Ajjampur SS, Priyadarshini S, Sarkar R, Balasubramanian KA, Wanke CA, Ward HD, Kang G. Immune response and intestinal permeability in children with acute gastroenteritis treated with Lactobacillus rhamnosus GG: a randomized, double-blind, placebo-controlled trial. Clin Infect Dis. 2014;58:1107-1115.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 95]  [Cited by in RCA: 121]  [Article Influence: 10.1]  [Reference Citation Analysis (0)]
144.  Nagata S, Asahara T, Ohta T, Yamada T, Kondo S, Bian L, Wang C, Yamashiro Y, Nomoto K. Effect of the continuous intake of probiotic-fermented milk containing Lactobacillus casei strain Shirota on fever in a mass outbreak of norovirus gastroenteritis and the faecal microflora in a health service facility for the aged. Br J Nutr. 2011;106:549-556.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 84]  [Cited by in RCA: 90]  [Article Influence: 6.0]  [Reference Citation Analysis (0)]
145.  Luoto R, Ruuskanen O, Waris M, Kalliomäki M, Salminen S, Isolauri E. Prebiotic and probiotic supplementation prevents rhinovirus infections in preterm infants: a randomized, placebo-controlled trial. J Allergy Clin Immunol. 2014;133:405-413.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 175]  [Cited by in RCA: 199]  [Article Influence: 15.3]  [Reference Citation Analysis (2)]
146.  Wang Z, Chai W, Burwinkel M, Twardziok S, Wrede P, Palissa C, Esch B, Schmidt MF. Inhibitory influence of Enterococcus faecium on the propagation of swine influenza A virus in vitro. PLoS One. 2013;8:e53043.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 37]  [Cited by in RCA: 49]  [Article Influence: 3.8]  [Reference Citation Analysis (0)]
147.  Namba K, Hatano M, Yaeshima T, Takase M, Suzuki K. Effects of Bifidobacterium longum BB536 administration on influenza infection, influenza vaccine antibody titer, and cell-mediated immunity in the elderly. Biosci Biotechnol Biochem. 2010;74:939-945.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 76]  [Cited by in RCA: 84]  [Article Influence: 5.3]  [Reference Citation Analysis (0)]
148.  Lee DK, Kang JY, Shin HS, Park IH, Ha NJ. Antiviral activity of Bifidobacterium adolescentis SPM0212 against Hepatitis B virus. Arch Pharm Res. 2013;36:1525-1532.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 36]  [Cited by in RCA: 40]  [Article Influence: 3.1]  [Reference Citation Analysis (0)]
149.  d'Ettorre G, Ceccarelli G, Marazzato M, Campagna G, Pinacchio C, Alessandri F, Ruberto F, Rossi G, Celani L, Scagnolari C, Mastropietro C, Trinchieri V, Recchia GE, Mauro V, Antonelli G, Pugliese F, Mastroianni CM. Challenges in the Management of SARS-CoV2 Infection: The Role of Oral Bacteriotherapy as Complementary Therapeutic Strategy to Avoid the Progression of COVID-19. Front Med (Lausanne). 2020;7:389.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 104]  [Cited by in RCA: 157]  [Article Influence: 26.2]  [Reference Citation Analysis (0)]
150.  Eguchi K, Fujitani N, Nakagawa H, Miyazaki T. Prevention of respiratory syncytial virus infection with probiotic lactic acid bacterium Lactobacillus gasseri SBT2055. Sci Rep. 2019;9:4812.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 77]  [Cited by in RCA: 100]  [Article Influence: 14.3]  [Reference Citation Analysis (0)]
151.  Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol. 2019;16:605-616.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 570]  [Cited by in RCA: 1158]  [Article Influence: 165.4]  [Reference Citation Analysis (0)]
152.  Arnold JW, Roach J, Fabela S, Moorfield E, Ding S, Blue E, Dagher S, Magness S, Tamayo R, Bruno-Barcena JM, Azcarate-Peril MA. The pleiotropic effects of prebiotic galacto-oligosaccharides on the aging gut. Microbiome. 2021;9:31.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 79]  [Cited by in RCA: 76]  [Article Influence: 15.2]  [Reference Citation Analysis (0)]
153.  Britannica  Human microbiome. [cited 10 August 2025]. Available from: https://www.britannica.com/science/human-microbiome.  [PubMed]  [DOI]
154.  Gupta S, Allen-Vercoe E, Petrof EO. Fecal microbiota transplantation: in perspective. Therap Adv Gastroenterol. 2016;9:229-239.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 221]  [Cited by in RCA: 323]  [Article Influence: 32.3]  [Reference Citation Analysis (0)]
155.  Utay NS, Monczor AN, Somasunderam A, Lupo S, Jiang ZD, Alexander AS, Finkelman M, Vigil KJ, Lake JE, Hanson B, DuPont HL, Arduino RC. Evaluation of Six Weekly Oral Fecal Microbiota Transplants in People with HIV. Pathog Immun. 2020;5:364-381.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 3]  [Cited by in RCA: 18]  [Article Influence: 3.0]  [Reference Citation Analysis (0)]
156.  Fakharian F, Thirugnanam S, Welsh DA, Kim WK, Rappaport J, Bittinger K, Rout N. The Role of Gut Dysbiosis in the Loss of Intestinal Immune Cell Functions and Viral Pathogenesis. Microorganisms. 2023;11:1849.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 17]  [Cited by in RCA: 46]  [Article Influence: 15.3]  [Reference Citation Analysis (0)]
157.  Biliński J, Winter K, Jasiński M, Szczęś A, Bilinska N, Mullish BH, Małecka-Panas E, Basak GW. Rapid resolution of COVID-19 after faecal microbiota transplantation. Gut. 2022;71:230-232.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 25]  [Cited by in RCA: 45]  [Article Influence: 11.3]  [Reference Citation Analysis (0)]
158.  Xue L, Deng Z, Luo W, He X, Chen Y. Effect of Fecal Microbiota Transplantation on Non-Alcoholic Fatty Liver Disease: A Randomized Clinical Trial. Front Cell Infect Microbiol. 2022;12:759306.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 159]  [Cited by in RCA: 164]  [Article Influence: 41.0]  [Reference Citation Analysis (0)]
159.  El-Khoury G, Hajjar C, Geitani R, Karam Sarkis D, Butel MJ, Barbut F, Abifadel M, Kapel N. Gut microbiota and viral respiratory infections: microbial alterations, immune modulation, and impact on disease severity: a narrative review. Front Microbiol. 2025;16:1605143.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in RCA: 6]  [Reference Citation Analysis (0)]
160.  Chen L, Zhernakova DV, Kurilshikov A, Andreu-Sánchez S, Wang D, Augustijn HE, Vich Vila A; Lifelines Cohort Study, Weersma RK, Medema MH, Netea MG, Kuipers F, Wijmenga C, Zhernakova A, Fu J. Influence of the microbiome, diet and genetics on inter-individual variation in the human plasma metabolome. Nat Med. 2022;28:2333-2343.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 127]  [Cited by in RCA: 194]  [Article Influence: 48.5]  [Reference Citation Analysis (0)]
161.  Jayakrishnan TT, Sangwan N, Barot SV, Farha N, Mariam A, Xiang S, Aucejo F, Conces M, Nair KG, Krishnamurthi SS, Schmit SL, Liska D, Rotroff DM, Khorana AA, Kamath SD. Multi-omics machine learning to study host-microbiome interactions in early-onset colorectal cancer. NPJ Precis Oncol. 2024;8:146.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in RCA: 23]  [Reference Citation Analysis (0)]
162.  Rozera T, Pasolli E, Segata N, Ianiro G. Machine Learning and Artificial Intelligence in the Multi-Omics Approach to Gut Microbiota. Gastroenterology. 2025;169:487-501.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 4]  [Cited by in RCA: 23]  [Article Influence: 23.0]  [Reference Citation Analysis (0)]
163.  Xu J, Lu Y. The microbiota-gut-brain axis and central nervous system diseases: from mechanisms of pathogenesis to therapeutic strategies. Front Microbiol. 2025;16:1583562.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 1]  [Cited by in RCA: 8]  [Article Influence: 8.0]  [Reference Citation Analysis (0)]
164.  Seo H, Kim S, Beck S, Song HY. Perspectives on Microbiome Therapeutics in Infectious Diseases: A Comprehensive Approach Beyond Immunology and Microbiology. Cells. 2024;13:2003.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 2]  [Reference Citation Analysis (0)]
165.  Ebrahimi R, Masouri MM, Salehi Amniyeh Khozani AA, Ramadhan Hussein D, Nejadghaderi SA. Safety and efficacy of fecal microbiota transplantation for viral diseases: A systematic review of clinical trials. PLoS One. 2024;19:e0311731.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 6]  [Reference Citation Analysis (0)]