Choi YM, Lee SY, Kim BJ. Naturally occurring hepatitis B virus reverse transcriptase mutations related to potential antiviral drug resistance and liver disease progression. World J Gastroenterol 2018; 24(16): 1708-1724 [PMID: 29713126 DOI: 10.3748/wjg.v24.i16.1708]
Corresponding Author of This Article
Bum-Joon Kim, PhD, Professor, Department of Biomedical Sciences, Microbiology and Immunology, and Liver Research Institute, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul 110799, South Korea. kbumjoon@snu.ac.kr
Research Domain of This Article
Gastroenterology & Hepatology
Article-Type of This Article
Review
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
World J Gastroenterol. Apr 28, 2018; 24(16): 1708-1724 Published online Apr 28, 2018. doi: 10.3748/wjg.v24.i16.1708
Naturally occurring hepatitis B virus reverse transcriptase mutations related to potential antiviral drug resistance and liver disease progression
Yu-Min Choi, So-Young Lee, Bum-Joon Kim
Yu-Min Choi, So-Young Lee, Bum-Joon Kim, Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, Seoul National University, College of Medicine, Seoul 110799, South Korea
Author contributions: Kim BJ conceived participated in its design and coordination; Choi YM and Lee SY analyzed and interpreted the data.
Supported by the Korea Health Technology R&D Project through the Korea Health Industry Development Institute and the Ministry of Health and Welfare, South Korea, No. HI14C0955.
Conflict-of-interest statement: There was no conflict of interest.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Correspondence to: Bum-Joon Kim, PhD, Professor, Department of Biomedical Sciences, Microbiology and Immunology, and Liver Research Institute, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul 110799, South Korea. kbumjoon@snu.ac.kr
Telephone: +82-2-7408316 Fax: +82-2-7430881
Received: March 27, 2018 Peer-review started: March 27, 2018 First decision: April 3, 2018 Revised: April 10, 2018 Accepted: April 16, 2018 Article in press: April 16, 2018 Published online: April 28, 2018 Processing time: 30 Days and 19.7 Hours
Core Tip
Core tip: The prevalence of preexisting reverse transcriptase (RT) mutations in treatment-naïve patients largely depends on geographic factors, HBV genotypes, HBeAg serostatus, hepatitis B virus (HBV) viral loads, disease progression, intergenotypic recombination, co-infection with HIV and the method used for detecting the mutation. Genotype-dependent polymorphic amino acid substitutions in RT may affect the emergence of drug resistance, and genotype C exhibits relatively elevated spontaneous RT mutation rates. HBeAg-negative status and low viral loads are significantly associated with a higher frequency and prevalence of HBV preexisting RT mutations. Preexisting mutations are most frequently found in the A-B interdomain of RT, mutations of which can lead to simultaneous viral immune escape.