Basic Study
Copyright ©The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastroenterol. Oct 7, 2017; 23(37): 6817-6832
Published online Oct 7, 2017. doi: 10.3748/wjg.v23.i37.6817
Glycosylation-related gene expression in HT29-MTX-E12 cells upon infection by Helicobacter pylori
Michael T Cairns, Ananya Gupta, Julie A Naughton, Marian Kane, Marguerite Clyne, Lokesh Joshi
Michael T Cairns, Marian Kane, Lokesh Joshi, Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland Galway, H91 CF50 Galway, Ireland
Ananya Gupta, School of Natural Sciences, National University of Ireland Galway, H91 CF50 Galway, Ireland
Julie A Naughton, Marguerite Clyne, Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
Author contributions: Cairns MT, Gupta A and Naughton JA performed the majority of the experiments; Cairns MT analysed the data; Clyne M and Joshi L designed and coordinated the research; Cairns MT, Kane M and Clyne M wrote the paper.
Supported by Science Foundation Ireland, SFI AGRC Grant, No. 08/SRC/B1393.
Institutional review board statement: This study did not involve either human or animal subjects.
Institutional animal care and use committee statement: This study did not involve animal subjects.
Conflict-of-interest statement: The authors declare no conflicts-of-interest.
Data sharing statement: All microarray data is available from the Gene Expression Omnibus database as dataset GSE74492. Other data is available from the corresponding author at michael.cairns@nuigalway.ie.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Correspondence to: Michael T Cairns, Senior Research Fellow, Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland Galway, University Rd, H91 CF50 Galway, Ireland. michael.cairns@nuigalway.ie
Telephone: +353-91492094
Received: February 18, 2017
Peer-review started: February 20, 2017
First decision: April 7, 2017
Revised: June 9, 2017
Accepted: July 12, 2017
Article in press: July 12, 2017
Published online: October 7, 2017
Processing time: 222 Days and 4.5 Hours
Core Tip

Core tip: Few studies on Helicobacter pylori (H. pylori) infection focus on glycosylation-related genes in the host cells yet key cell-cell interactions are likely mediated through surface glycoconjugates. We use HT29-MTX-E12 cells, a promising and novel model of the stomach epithelium, to investigate the transcriptomic effects of H. pylori infection. HT29-MTX-E12 cells produce a thick adherent mucus layer and show a level of pluripotency that gastric cells naturally present and which some other model cell lines do not. Furthermore both H. pylori strain 26695 (lacks BabA adhesin) and HT29-MTX-E12 host cells (TLR2-negative) have some features atypical of more common models of H. pylori infection.