Copyright
©2014 Baishideng Publishing Group Inc. All rights reserved.
World J Gastroenterol. May 21, 2014; 20(19): 5849-5858
Published online May 21, 2014. doi: 10.3748/wjg.v20.i19.5849
Published online May 21, 2014. doi: 10.3748/wjg.v20.i19.5849
Changes in intestinal microflora in rats with acute respiratory distress syndrome
Yan Li, Ming-Ming Ma, Zhi-Jiang Qi, Zhi Li, Guo-Hong Cao, Jun Li, Wei-Wei Zhu, Xiao-Zhi Wang, Department of Respiratory Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou 256603, Shandong Province, China
Yan Li, Department of Intensive Care Unit, Zhangqiu People’s Hospital, Jinan 250200, Shandong Province, China
Xiang-Yong Liu, Department of Cell Biology, Binzhou Medical University, Yantai 264003, Shandong Province, China
Xiao-Qiang Zhang, Department of Intensive Care Unit, Dezhou People’s Hospital, Dezhou 253014, Shandong Province, China
Author contributions: Li Y performed the majority of experiments; Liu XY, Ma MM, Qi ZJ, Zhang XQ, Li Z, Cao GH, Li J, Zhu WW and Wang XZ provided the technical support; Li Y wrote the manuscript.
Supported by: Grants from the Science and Technology Development Plan of Shandong Province (2011GSF11830) and Taishan Scholar project of Shandong Province
Correspondence to: Xiao-Zhi Wang, Professor, Department of Respiratory Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou 256603, Shandong Province, China. hxicuwxz@163.com
Telephone: +86-543-3258586 Fax: +86-543-3257792
Received: November 21, 2013
Revised: January 19, 2014
Accepted: February 17, 2014
Published online: May 21, 2014
Processing time: 178 Days and 0.1 Hours
Revised: January 19, 2014
Accepted: February 17, 2014
Published online: May 21, 2014
Processing time: 178 Days and 0.1 Hours
Core Tip
Core tip: This experimental study evaluated the possible association between acute respiratory distress syndrome (ARDS) and intestinal microflora using an animal model and high-throughput sequencing analysis. Differences in species diversity, structure, distribution and composition were found between the control group and early ARDS group. This study contributes to a better understanding of the mechanisms by which changes in the intestinal mucosal barrier and host microflora may be involved in the pathogenesis of ARDS.