Published online Feb 14, 2020. doi: 10.3748/wjg.v26.i6.627
Peer-review started: October 10, 2019
First decision: November 27, 2019
Revised: December 3, 2019
Accepted: December 22, 2019
Article in press: December 22, 2019
Published online: February 14, 2020
Processing time: 127 Days and 10.2 Hours
Colorectal cancer (CRC) has a high rate of mortality, and patients with this disease often miss the optimal treatment period due to the lack of clinical symptoms of early CRC, which affects their prognosis. At present, CRC is extremely difficult to prevent and treat.
In this study, we studied the effects of regulating the Forkhead box F2 (FOXF2)-mediated Wnt/β-catenin signaling pathway by miR-19a-3p on the biological functions of CRC cells from the perspective of the mechanism of CRC, so as to explore the changes in biological functions of CRC cells.
This study evaluated the expression of miR-19a-3p and FOXF2 in patients with CRC and the relevant mechanisms.
Elbow venous blood was sampled from CRC patients and healthy individuals, and blood serum was saved for later analysis. MiR-19a-3p-mimics, miR-19a-3p-inhibitor, miR-NC, si-FOXF2, and sh-FOXF2 were transfected into HT29 and HCT116 cells. Then quantitative polymerase chain reaction was applied to determine the expression of miR-19a-3p and FOXF2 in HT29 and HCT116 cells, and Western blotting was conducted to determine the expression of FOXF2, GSK-3β, p-GSK-3β, β-catenin, p-β-catenin, α-catenin, N-cadherin, E-Cadherin, and vimentin. The MTT, Transwell, and wound-healing assays were applied to detect cell proliferation, invasion, and apoptosis, respectively, and the dual luciferase reporter assay was used to determine the relationship between miR-19a-3p and FOXF2.
MiR-19a-3p was highly expressed in the serum of the patients, while FOXF2 was lowly expressed in them. MiR-19a-3p and FOXF2 were related to age, sex, tumor size, tumor, node, metastasis staging, lymph node metastasis, and differentiation of patients with CRC. Silencing of miR-19a-3p and over-expression of FOXF2 suppressed epithelial-mesenchymal transition, proliferation, invasion, and migration of cells, and Western blot assay supported that silencing of miR-19a-3p and over-expression of FOXF2 significantly suppressed epithelial-mesenchymal transition. Dual luciferase reporter assay confirmed that there was a targeted relationship between miR-19a-3p and FOXF2. Therefore, inhibiting the expression of miR-19a-3p can affect the biological functions of CRC cells by promoting the expression of FOXF2.
Inhibiting the expression of miR-19a-3p can affect the biological functions of CRC cells by promoting the expression of FOXF2.
It has been confirmed that inhibiting the expression of miR-19a-3p can up-regulate the FOXF2-mediated Wnt/β-catenin signaling pathway, thus affecting the epithelial-mesenchymal transition, proliferation, invasion, and migration of cells, so miR-19a-3p is expected to be a potential therapeutic target for CRC.