Published online Mar 14, 2019. doi: 10.3748/wjg.v25.i10.1278
Peer-review started: January 2, 2019
First decision: January 30, 2019
Revised: February 20, 2019
Accepted: February 22, 2019
Article in press: February 23, 2019
Published online: March 14, 2019
Processing time: 73 Days and 15.1 Hours
The resect-and-discard strategy for the management of diminutive colon polyps is a paradigm shift based on an accurate optical diagnosis (OD). Such a high accuracy has only been achieved by experts, while the performance in community hospitals does not reach thresholds that would allow its universal implementation. The lack of a standardized learning tool for OD of colon lesions may contribute to this problem.
Although several learning tools have been described, most of them are not validated and there is a great variability in their components and designs. We hypothesized that self-learning of OD is feasible and that accuracy thresholds can be achieved with a self-administered program. A detailed description of the learning process can provide valuable information for the design of an OD learning system.
We aimed to assess the accuracy of OD of diminutive lesions in real colonoscopies using the International Colorectal Endoscopic classification system for narrow band imaging after following a non-guided self-administered learning program. We also aimed to describe in detail the learning process by analyzing which parameters may be more suitable for monitoring competency.
An experienced endoscopist followed a self-designed, self-administered learning program in OD of colorectal lesions. Then, OD was applied to lesions detected in colorectal cancer screening colonoscopies. The study period was divided in two halves, with a 6-mo period in between with no performance of OD. Sensitivity, specificity, predictive values and accuracy of the OD compared to the pathological report were calculated for overall results and for the two halves of the study. The accomplishment of the Preservation and Incorporation of Valuable Endoscopic Innovations (PIVI) criteria and the evolution of performance parameters through blocks of 50 lesions were also assessed.
Overall, 152 patients and 522 lesions were included in the analysis. Regarding the accomplishment of the PIVI criteria, the negative predictive value for the OD of adenoma in rectal lesions diagnosed with high confidence was 92.6% (95% confidence interval: 86.4-97.6) and the proportion of agreement on surveillance interval between OD and pathological diagnosis following the different guidelines was over 95%. Overall accuracy for diminutive lesions diagnosed with high confidence was 89.5% (95% confidence interval: 85.7-92.3). Specificity, negative predictive value and accuracy were the parameters most affected by the stopping period between the two halves. Analyzing trends on blocks of 50 lesions showed an improvement in sensitivity (P = 0.02) only in the first half of the study and an improvement on accuracy (P = 0.01) only in the second half.
This study shows that a self-administered learning program based on still pictures plus an in vivo phase with auto-feedback is feasible to reach quality standards on OD of colorectal lesions. It also shows that a non-practice period deteriorates performance, and in that case a refresher course seems advisable. These results have practical implications in the design of OD learning tools and in the development of a quality monitoring system.
These data have become the base for the design and validation of a self-administered learning tool that are currently in process. The efficacy of this kind of tool should be tested with endoscopists having different levels of experience and being from different backgrounds.