Published online Jan 21, 2018. doi: 10.3748/wjg.v24.i3.371
Peer-review started: August 9, 2017
First decision: August 29, 2017
Revised: October 16, 2017
Accepted: November 21, 2017
Article in press: November 21, 2017
Published online: January 21, 2018
Processing time: 163 Days and 7.7 Hours
We have built a 9-gene (GPC3, HGF, ANXA1, FOS, SPAG9, HSPA1B, CXCR4, PFN1 and CALR) expression detection system based on the GeXP system in our previous study. We aimed to analyze the results of gene expression by different multi-parameter analysis methods and build a diagnostic model to classify hepatocellular carcinoma (HCC) patients and healthy people.
Although pathology is used as a golden standard for diagnosis of HCC, it is invasive and tissue sample is not easily obtained. Therefore, a non-invasive, accurate, and fast method for early detection of HCC is pressing.
A non-invasive, accurate, and fast method for early detection of HCC may be provided by our research based on the mRNA in peripheral blood.
We have successfully built an artificial neural network detection system combining detection system and bioinformatics together for differentiating the healthy normal group and HCC group. The sensitivity and specificity were separately 96% and 86%, respectively, which were greater than those of single-gene analysis.
Artificial neural network of the total nine genes had the best diagnostic value, and the AUC, sensitivity, and specificity were 0.943, 98%, and 85%, respectively. At last, 52 HCC patients and 34 healthy normal controls were used for validation. The sensitivity and specificity were 96% and 86%, respectively.
Based on the mRNA in peripheral blood, a multi-parameter analysis method was used to analyze multiple genes, which may increase the diagnostic value compared to the single factor analysis for the early detection of HCC, and it may be a trend of the clinical diagnosis in the future. It may provide a non-invasive, accurate, and fast method for early detection of HCC.
The GeXP system uses a universal priming strategy to decrease the variations in amplification efficiency across multiple genes, and it is an ideal multiple-gene expression detection method as well as a useful validation tool that is more similar to large-scale gene analysis methods. Combination of the peripheral blood, GeXP detection system, and bioinformatics together may be the future strategy to build an assistant detection method for cancer.