Published online Dec 15, 2003. doi: 10.3748/wjg.v9.i12.2642
Revised: May 22, 2003
Accepted: June 2, 2003
Published online: December 15, 2003
Since the first detection of aberrant crypt foci (ACF) in carcinogen-treated mice, there have been numerous studies focusing on these microscopically visible lesions both in rodents and in humans. ACF have been generally accepted as precancerous lesions in regard to histopathological characteristics, biochemical and immunohistochemical alterations, and genetic and epigenetic alterations. ACF show variable histological features, ranging from hyperplasia to dysplasia. ACF in human colon are more frequently located in the distal parts than in the proximal parts, which is in accordance with those in colorectal cancer (CRC). The immunohistochemical expressions of carcinoembryonic antigen (CEA), β-catenin, placental cadherin (P-cadherin), epithelial cadherin (E-cadherin), inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), and P16INK4a are found to be altered. Genetic mutations of K-ras, APC and p53, and the epigenetic alterations of CpG island methylation of ACF have also been demonstrated. Genomic instabilities due to the defect of mismatch repair (MMR) system are detectable in ACF. Two hypotheses have been proposed. One is the "dysplasia ACF-adenoma-carcinoma sequence", the other is "heteroplastic ACF-adenoma-carcinoma sequence". The malignant potential of ACF, especially dysplastic ACF, makes it necessary to reveal the nature of these lesions, and to prevent CRC from the earliest possible stage. The technique of magnifying chromoscope makes it possible to detect "in vivo" ACF, which is beneficial to colon cancer research, identifying high-risk populations for CRC, and developing preventive procedures.