Basic Research
Copyright ©The Author(s) 2003. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastroenterol. Jan 15, 2003; 9(1): 155-159
Published online Jan 15, 2003. doi: 10.3748/wjg.v9.i1.155
Effects of tetrandrine and QYT on ICAM-1 and SOD gene expression in pancreas and liver of rats with acute pancreatitis
Yong-Yu Li, Xue-Li Li, Cui-Xiang Yang, Hong Zhong, Hong Yao, Ling Zhu
Yong-Yu Li, Hong Zhong, Hong Yao, Ling Zhu, Department of Pathophysiology, Medical College of Tongji University, Shanghai 200331, China
Xue-Li Li, Cui-Xiang Yang, Department of Biochemistry, Medical College of Tongji University, Shanghai 200331, China
Author contributions: All authors contributed equally to the work.
Supported by the National Natural Scientific Foundation of China, No. 30060031
Correspondence to: Yong-Yu Li, MD, Professor of Pathophysiology, Department of Pathophysiology, Medical College of Tongji University, Shanghai 200331, China. liyyu@163.net
Telephone: +86-21-51030563
Received: September 13, 2002
Revised: October 14, 2002
Accepted: October 21, 2002
Published online: January 15, 2003
Abstract

AIM: Available experimental evidence from both clinical and animal models shows that both Chinese medicines tetrandine (Tet) and Qing Yi Tong (QYT) have positive treatment effects on acute pancreatitis (AP). This investigation was conducted to explore the treatment mechanisms of Tet and QYT on AP at the molecular level and thereby explain their therapeutic affects. It included an investigation of the effects of these drugs on gene expression of both intercellular adhesion molecule 1 (ICAM-1) and superoxide dismutase (Mn-SOD and Cu, Zn-SOD) in a rat model with AP.

METHODS: AP in the test rats was induced by subjecting them to laparotomy followed by a retrograde injection of 4% sodium taurocholate into the bilio-pancreatic duct. The test rats with AP were divided into three groups. One was treated with Tet, one with QYT, and one with normal saline solution. The sham-operated control group (SO) rats were only subjected to laparotomy. They were given no further treatment. For the Tet group, Tet was injected intraperitoneally, and for the QYT group, QYT was given with a nose-gastric catheter. These procedures were done at both 10 min and 5 h after AP induction. The levels of ICAM-1 mRNA expression and of SOD (Mn-SOD and Cu, Zn-SOD) mRNA expression in the pancreas and liver tissues were measured by RT-PCR at 1, 5, and 10 h after AP induction.

RESULTS: When compared with the SO group during the observation time, rats with AP showed a higher expression of ICAM and a lower expression of Mn-SOD in both pancreas and liver tissues, and a lower expression of Cu, Zn-SOD in the pancreas. Tet treatment attenuated changes in the expression of both ICAM-1, and SOD (Mn-SOD and Cu, Zn-SOD) to a significant degree. A similar effect on the expression of SOD (Mn-SOD and Cu, Zn-SOD) was also found in the QYT group, but no obvious suppressive effect on ICAM-1 expression was observed.

CONCLUSION: The results of this study suggest that one of the main mechanisms of Tet and QYT in treating AP is to enhance anti-oxidation of the body. The results also suggest that the anti-inflammatory effect of Tet is involved in the reduction of ICAM-1 expression. This explains why Tet and QYT are beneficial in treating AP.

Keywords: $[Keywords]