Liver Cancer
Copyright ©The Author(s) 2002. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastroenterol. Jun 15, 2002; 8(3): 476-479
Published online Jun 15, 2002. doi: 10.3748/wjg.v8.i3.476
Influence of hepatic arterial blockage on blood perfusion and VEGF, MMP-1 expression of implanted liver cancer in rats
Wei-Jian Guo, Jie Li, Wan-Long Ling, Yong-Rui Bai, Wen-Zhu Zhang, Yu-Fan Cheng, Wen-Hua Gu, Jun-Yan Zhuang
Wei-Jian Guo, Jie Li, Wan-Long Ling, Wen-Hua Gu, Jun-Yan Zhuang, Department of Oncology, Xinhua Hospital of Shanghai Second Medical University, Shanghai 200092, China
Yong-Rui Bai, Department of Radiotherapy, Xinhua Hospital of Shanghai Second Medical University, Shanghai 200092, China
Wen-Zhu Zhang, Yu-Fan Cheng, Department of Pathology, Xinhua Hospital of Shanghai Second Medical University, Shanghai 200092, China
Author contributions: All authors contributed equally to the work.
Supported by Science and Technology Development Fund of Shanghai Municipality, No. 004119086
Correspondence to: Wei-Jian Guo, Department of Oncology, Xinhua Hospital of Shanghai Second Medical University, 1665 Kongjiang Road, Shanghai 200092, China. guoweijian1@sohu.com
Received: August 9, 2001
Revised: August 23, 2001
Accepted: October 22, 2001
Published online: June 15, 2002
Abstract

AIM: To investigate the influence of hepatic arterial blockage on blood perfusion of transplanted cancer in rat liver and the expression of vascular endothelial growth factor (VEGF) and matrix metalloproteinase-1 (MMP-1), and to explore the mechanisms involved in transarterial embolization (TAE)-induced metastasis of liver cancer preliminarily.

METHODS: Walker 256 carcinosarcoma was transplanted into rat liver to establish the liver cancer model. Hepatic arterial ligation (HAL) was used to block the hepatic arterial blood supply and simulate TAE. Blood perfusion of tumor in control, laparotomy control, and HAL group was analyzed by Hoechst 33342 labeling assay, the serum VEGF level was assayed by ELISA, the expression of VEGF and MMP-1 mRNA was detected by in situ hybridization.

RESULTS: Two days after HAL, the number of Hoechst 33342 labeled cells which represent the blood perfusion of tumor directly and hypoxia of tumor indirectly in HAL group decreased significantly compared with that in control group (329 ± 29 vs 384 ± 19, P < 0.01). The serum VEGF level in the HAL group increased significantly as against that of the control group (93 ng·L-1± 44 ng·L-1vs 55 ng·L-1± 19 ng·L-1, P < 0.05). The expression of VEGF and MMP-1 mRNA in the tumor tissue of the HAL group increased significantly compared with that of the control and the laparotomy control groups (P < 0.05). The blood perfusion data of the tumor, represented by the number of Hoechst 33342 labeled cells, showed a good linear inverse correlation with the serum VEGF level (r = -0.606, P < 0.05) and the expression of VEGF mRNA in the tumor tissue (r = -0.338, P < 0.01).

CONCLUSION: Blockage of hepatic arterial blood supply results in decreased blood perfusion and increased expression of metastasis-associated genes VEGF and MMP-1 of transplanted liver cancer in rats. Decreased blood perfusion and hypoxia may be the major cause of up-regulated expression of VEGF.

Keywords: $[Keywords]