Published online Apr 21, 2024. doi: 10.3748/wjg.v30.i15.2175
Peer-review started: February 2, 2024
First decision: February 29, 2024
Revised: March 7, 2024
Accepted: April 2, 2024
Article in press: April 2, 2024
Published online: April 21, 2024
Processing time: 76 Days and 17.6 Hours
With the rapid development of science and technology, cell-free DNA (cfDNA) is rapidly becoming an important biomarker for tumor diagnosis, monitoring and prognosis, and this cfDNA-based liquid biopsy technology has great potential to become an important part of precision medicine. cfDNA is the total amount of free DNA in the systemic circulation, including DNA fragments derived from tumor cells and all other somatic cells. Tumor cells release fragments of DNA into the bloodstream, and this source of cfDNA is called circulating tumor DNA (ctDNA). cfDNA detection has become a major focus in the field of tumor research in recent years, which provides a new opportunity for non-invasive diagnosis and prognosis of cancer. In this paper, we discuss the limitations of the study on the origin and dynamics analysis of ctDNA, and how to solve these problems in the future. Although the future faces major challenges, it also con
Core Tip: Tumor liquid biopsy based on cell-free DNA detection has become a major hotspot in the field of tumor research in recent years. Circulating tumor DNA (ctDNA) is a DNA fragment that breaks down from cells in primary tumors or even new tumors formed by metastasis, and enters the peripheral circulation. ctDNA analysis provides a non-invasive method for cancer detection and monitoring, which is important for the management of clinical patients.