Published online Mar 21, 2024. doi: 10.3748/wjg.v30.i11.1480
Peer-review started: December 29, 2023
First decision: January 19, 2024
Revised: January 30, 2024
Accepted: March 4, 2024
Article in press: March 4, 2024
Published online: March 21, 2024
Processing time: 82 Days and 21.7 Hours
During the outbreak of the coronavirus disease 2019 (COVID-19) pandemic, particular interest rose regarding the interaction between metabolic dysfunction-associated fatty liver disease (MAFLD) and the COVID-19 infection. Several studies highlighted the fact that individuals with MAFLD had higher probability of severe acute respiratory syndrome coronavirus 2 infection and more severe adverse clinical outcomes. One of the proposed mechanisms is the inflammatory response pathway, especially the one involving cytokines, such as interleukin 6, which appeared particularly elevated in those patients and was deemed responsible for additional insult to the already damaged liver. This should increase our vigilance in terms of early detection, close follow up and early treatment for individuals with MAFLD and COVID-19 infection. In the direction of early diagnosis, biomarkers such as cytokeratin-18 and scoring systems such as Fibrosis-4 index score are proposed. COVID-19 is a newly described entity, expec
Core Tip: The intricate intertwining of metabolic dysfunction-associated fatty liver disease (MAFLD) and coronavirus disease 2019 (COVID-19) presents a critical nexus with severe clinical outcomes. The symbiotic impact of MAFLD increasing susceptibility to severe COVID-19, and the reciprocal exacerbation by the viral infection, mandate special attention. Early identification, vigilant monitoring and tailored evidence-based interventions, navigating both conditions, are pivotal in mitigating adverse effects. Investigating the molecular pathways underlying the synergistic effects of MAFLD and COVID-19, and the impact of specific COVID-19 treatment drugs on liver function and their potential exacerbation of MAFLD, stands as a promising research avenue that could unveil novel therapeutic targets.