Basic Study
Copyright ©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastroenterol. Jun 14, 2023; 29(22): 3440-3468
Published online Jun 14, 2023. doi: 10.3748/wjg.v29.i22.3440
Study of the roles of caspase-3 and nuclear factor kappa B in myenteric neurons in a P2X7 receptor knockout mouse model of ulcerative colitis
Henrique Inhauser Riceti Magalhães, Felipe Alexandre Machado, Roberta Figueiroa Souza, Marcos Antônio Ferreira Caetano, Vanessa Ribeiro Figliuolo, Robson Coutinho-Silva, Patricia Castelucci
Henrique Inhauser Riceti Magalhães, Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-270, Brazil
Felipe Alexandre Machado, Roberta Figueiroa Souza, Marcos Antônio Ferreira Caetano, Patricia Castelucci, Department of Anatomy, University of São Paulo, São Paulo 05508-000, Brazil
Vanessa Ribeiro Figliuolo, Robson Coutinho-Silva, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
Author contributions: Magalhães HIR was responsible for the literature review and analysis and wrote the manuscript; Machado FA, Souza RF, Caetano MAF, Figliuolo VR, and Coutinho-Silva R helped with acquisition, analysis and interpretation of data and made critical suggestions about the writing; Castelucci P designed the study, helped with acquisition, analysis and interpretation of data, performed the critical interpretation and revised the manuscript for intellectual content; and all authors approved the final version of the manuscript.
Supported by the National Council for Scientific and Technological Development, No. 168015/2018-8; and the São Paulo Research Foundation, No. 2014/25927-2 and No. 2018/07862-1.
Institutional review board statement: The study was reviewed and approved by the pela Comissão de Ética no Uso de Animais da Instituto de Ciências Biomédicas Universidade de São Paulo (Approval No. CEUA 2372300921).
Institutional animal care and use committee statement: All procedures involving animals were reviewed and approved by the Ethic Committee on Animal Use of the School of Veterinary Medicine and Animal Science University of São Paulo (Approval No. CEUA 2841270120).
Conflict-of-interest statement: The authors have no conflicts of interest.
Data sharing statement: Technical appendix, statistical code, and dataset available from the corresponding author at pcastel@usp.br. Participants gave informed consent for data sharing.
ARRIVE guidelines statement: The authors have read the ARRIVE Guidelines, and the manuscript was prepared and revised according to the ARRIVE Guidelines.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Patricia Castelucci, MHSc, PhD, Associate Professor, Associate Research Scientist, Lecturer, Department of Anatomy, University of São Paulo, 2415, Av. Dr Lineu Prestes, São Paulo 05508-000, Brazil. pcastel@usp.br
Received: February 27, 2023
Peer-review started: February 27, 2023
First decision: April 3, 2023
Revised: April 25, 2023
Accepted: May 12, 2023
Article in press: May 12, 2023
Published online: June 14, 2023
Processing time: 99 Days and 7.3 Hours
Abstract
BACKGROUND

The literature indicates that the enteric nervous system is affected in inflammatory bowel diseases (IBDs) and that the P2X7 receptor triggers neuronal death. However, the mechanism by which enteric neurons are lost in IBDs is unknown.

AIM

To study the role of the caspase-3 and nuclear factor kappa B (NF-κB) pathways in myenteric neurons in a P2X7 receptor knockout (KO) mouse model of IBDs.

METHODS

Forty male wild-type (WT) C57BL/6 and P2X7 receptor KO mice were euthanized 24 h or 4 d after colitis induction by 2,4,6-trinitrobenzene sulfonic acid (colitis group). Mice in the sham groups were injected with vehicle. The mice were divided into eight groups (n = 5): The WT sham 24 h and 4 d groups, the WT colitis 24 h and 4 d groups, the KO sham 24 h and 4 d groups, and the KO colitis 24 h and 4 d groups. The disease activity index (DAI) was analyzed, the distal colon was collected for immunohistochemistry analyses, and immunofluorescence was performed to identify neurons immunoreactive (ir) for calretinin, P2X7 receptor, cleaved caspase-3, total caspase-3, phospho-NF-κB, and total NF-κB. We analyzed the number of calretinin-ir and P2X7 receptor-ir neurons per ganglion, the neuronal profile area (µm²), and corrected total cell fluorescence (CTCF).

RESULTS

Cells double labeled for calretinin and P2X7 receptor, cleaved caspase-3, total caspase-3, phospho-NF-κB, or total NF-κB were observed in the WT colitis 24 h and 4 d groups. The number of calretinin-ir neurons per ganglion was decreased in the WT colitis 24 h and 4 d groups compared to the WT sham 24 h and 4 d groups, respectively (2.10 ± 0.13 vs 3.33 ± 0.17, P < 0.001; 2.92 ± 0.12 vs 3.70 ± 0.11, P < 0.05), but was not significantly different between the KO groups. The calretinin-ir neuronal profile area was increased in the WT colitis 24 h group compared to the WT sham 24 h group (312.60 ± 7.85 vs 278.41 ± 6.65, P < 0.05), and the nuclear profile area was decreased in the WT colitis 4 d group compared to the WT sham 4 d group (104.63 ± 2.49 vs 117.41 ± 1.14, P < 0.01). The number of P2X7 receptor-ir neurons per ganglion was decreased in the WT colitis 24 h and 4 d groups compared to the WT sham 24 h and 4 d groups, respectively (19.49 ± 0.35 vs 22.21 ± 0.18, P < 0.001; 20.35 ± 0.14 vs 22.75 ± 0.51, P < 0.001), and no P2X7 receptor-ir neurons were observed in the KO groups. Myenteric neurons showed ultrastructural changes in the WT colitis 24 h and 4 d groups and in the KO colitis 24 h group. The cleaved caspase-3 CTCF was increased in the WT colitis 24 h and 4 d groups compared to the WT sham 24 h and 4 d groups, respectively (485949 ± 14140 vs 371371 ± 16426, P < 0.001; 480381 ± 11336 vs 378365 ± 4053, P < 0.001), but was not significantly different between the KO groups. The total caspase-3 CTCF, phospho-NF-κB CTCF, and total NF-κB CTCF were not significantly different among the groups. The DAI was recovered in the KO groups. Furthermore, we demonstrated that the absence of the P2X7 receptor attenuated inflammatory infiltration, tissue damage, collagen deposition, and the decrease in the number of goblet cells in the distal colon.

CONCLUSION

Ulcerative colitis affects myenteric neurons in WT mice but has a weaker effect in P2X7 receptor KO mice, and neuronal death may be associated with P2X7 receptor-mediated caspase-3 activation. The P2X7 receptor can be a therapeutic target for IBDs.

Keywords: Cell death; Enteric nervous system; Gastroenterology; Inflammatory bowel diseases; P2X7 receptor; Purinergic signaling

Core Tip: In the present study, we compared pathological changes resulting from 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis at two different time points after colitis induction. At both 24 h and four days post-inflammatory induction, there was a decrease in the number of myenteric neurons in the wild-type groups but not in the knockout groups. Morphometric and ultrastructural changes were also observed. In addition, our results confirm that neuronal death mediated by caspase-3 activation is related to purinergic signaling via the P2X7 receptor in the myenteric plexus of mice with TNBS-induced colitis.