Published online Sep 28, 2022. doi: 10.3748/wjg.v28.i36.5280
Peer-review started: June 24, 2022
First decision: August 6, 2022
Revised: August 16, 2022
Accepted: September 6, 2022
Article in press: September 6, 2022
Published online: September 28, 2022
Processing time: 90 Days and 16.7 Hours
Alcohol-associated liver disease (ALD) is a common chronic liver disease and major contributor to liver disease-related deaths worldwide. Despite its pre-valence, there are few effective pharmacological options for the severe stages of this disease. While much pre-clinical research attention is paid to drug development in ALD, many of these experimental therapeutics have limitations such as poor pharmacokinetics, poor efficacy, or off-target side effects due to systemic administration. One means of addressing these limitations is through liver-targeted drug delivery, which can be accomplished with different platforms including liposomes, polymeric nanoparticles, exosomes, bacteria, and adeno-associated viruses, among others. These platforms allow drugs to target the liver passively or actively, thereby reducing systemic circulation and increasing the ‘effective dose’ in the liver. While many studies, some clinical, have applied targeted delivery systems to other liver diseases such as viral hepatitis or hepatocellular carcinoma, only few have investigated their efficacy in ALD. This review provides basic information on these liver-targeting drug delivery platforms, including their benefits and limitations, and summarizes the current research efforts to apply them to the treatment of ALD in rodent models. We also discuss gaps in knowledge in the field, which when addressed, may help to increase the efficacy of novel therapies and better translate them to humans.
Core Tip: Alcohol-associated liver disease (ALD) is a common chronic liver disease and global healthcare burden. While a great deal of pre-clinical research attention is paid to ALD, many experimental therapeutics which are administered systemically suffer from poor pharmacokinetics or poor efficacy. Liver-targeted delivery may address these drawbacks while avoiding extra-hepatic side effects. This article reviews literature applying liver-targeted drug delivery platforms such as liposomes, exosomes, polymeric nanoparticles, viruses, and bioengineered bacteria to the treatment of ALD.