Winters C, Subramanian V, Valdastri P. Robotic, self-propelled, self-steerable, and disposable colonoscopes: Reality or pipe dream? A state of the art review. World J Gastroenterol 2022; 28(35): 5093-5110 [PMID: 36188716 DOI: 10.3748/wjg.v28.i35.5093]
Corresponding Author of This Article
Conchubhair Winters, MBChB, Doctor, Research Fellow, Leeds Institute of Medical Research, University of Leeds, St. James’s University Hospital, Beckett Street, Leeds LS9 7TF, United Kingdom. c.r.winters@leeds.ac.uk
Research Domain of This Article
Gastroenterology & Hepatology
Article-Type of This Article
Review
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
World J Gastroenterol. Sep 21, 2022; 28(35): 5093-5110 Published online Sep 21, 2022. doi: 10.3748/wjg.v28.i35.5093
Robotic, self-propelled, self-steerable, and disposable colonoscopes: Reality or pipe dream? A state of the art review
Conchubhair Winters, Venkataraman Subramanian, Pietro Valdastri
Conchubhair Winters, Venkataraman Subramanian, Leeds Institute of Medical Research, University of Leeds, St. James’s University Hospital, Leeds LS9 7TF, United Kingdom
Pietro Valdastri, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
Author contributions: Winters C wrote the article; Valdastri P and Subramanian V made substantial contributions to the content, offered critical revisions and approved the final version of the article.
Supported byCancer Research UK (CRUK) Early Detection and Diagnosis Research Committee, No. 27744.
Conflict-of-interest statement: Winters C, Subramanian V and Valdastri P report a grant from Cancer Research UK, during the conduct of the article. Any opinions, findings and conclusions, or recommendations expressed in this article are those of the authors and do not necessarily reflect the views of CRUK.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Conchubhair Winters, MBChB, Doctor, Research Fellow, Leeds Institute of Medical Research, University of Leeds, St. James’s University Hospital, Beckett Street, Leeds LS9 7TF, United Kingdom. c.r.winters@leeds.ac.uk
Received: May 6, 2022 Peer-review started: May 6, 2022 First decision: June 8, 2022 Revised: June 21, 2022 Accepted: September 1, 2022 Article in press: September 1, 2022 Published online: September 21, 2022 Processing time: 132 Days and 3.4 Hours
Abstract
Robotic colonoscopes could potentially provide a comfortable, less painful and safer alternative to standard colonoscopy. Recent exciting developments in this field are pushing the boundaries to what is possible in the future. This article provides a comprehensive review of the current work in robotic colonoscopes including self-propelled, steerable and disposable endoscopes that could be alternatives to standard colonoscopy. We discuss the advantages and disadvantages of these systems currently in development and highlight the technical readiness of each system to help the reader understand where and when such systems may be available for routine clinical use and get an idea of where and in which situation they can best be deployed.
Core Tip: Colorectal cancer is a common cause of cancer related mortality. Detection and removal of precancerous polyps reduces the risk of colorectal cancer. Colonoscopy is the gold standard investigation for colorectal polyps and cancer but can be uncomfortable due to the mechanics of the procedure. Robotics has the potential to reduce the discomfort and improve the procedure for patients, while improving key performance indicators. Robotics can offer a more intuitive endoscopic appearance, using various methods to negotiate the colon to reduce discomfort. Robotics could lead to a more effective, better tolerated, safer, autonomous colonoscopy with minimal operator interaction.