Published online May 28, 2020. doi: 10.3748/wjg.v26.i20.2514
Peer-review started: January 30, 2020
First decision: April 18, 2020
Revised: May 11, 2020
Accepted: May 15, 2020
Article in press: May 15, 2020
Published online: May 28, 2020
Processing time: 118 Days and 19.5 Hours
Despite recent progress in diagnosis and therapy, gastrointestinal (GI) cancers remain one of the most important causes of death with a poor prognosis due to late diagnosis. Serum tumor markers and detection of occult blood in the stool are the current tests used in the clinic of GI cancers; however, these tests are not useful as diagnostic screening since they have low specificity and low sensitivity. Considering that one of the hallmarks of cancer is dysregulated metabolism and metabolomics is an optimal approach to illustrate the metabolic mechanisms that belong to living systems, is now clear that this -omics could open a new way to study cancer. In the last years, nuclear magnetic resonance (NMR) metabolomics has demonstrated to be an optimal approach for diseases' diagnosis nevertheless a few studies focus on the NMR capability to find new biomarkers for early diagnosis of GI cancers. For these reasons in this review, we will give an update on the status of NMR metabolomic studies for the diagnosis and development of GI cancers using biological fluids.
Core tip: Searching for new tumor biomarkers is essential for the early diagnosis of gastrointestinal tumors. Biofluids could give important data, reducing the need for invasive screening and nuclear magnetic resonance-based metabolomics is an optimal approach to understand metabolic dynamics in biofluids.