Published online Nov 21, 2019. doi: 10.3748/wjg.v25.i43.6416
Peer-review started: September 19, 2019
First decision: October 14, 2019
Revised: October 19, 2019
Accepted: November 1, 2019
Article in press: November 1, 2019
Published online: November 21, 2019
Processing time: 62 Days and 14.8 Hours
Fecal metabolites are associated with gut visceral sensitivity, mucosal immune function and intestinal barrier function, all of which have critical roles in the pathogenesis of irritable bowel syndrome (IBS). However, the metabolic profile and pathophysiology of IBS are still unclear. We hypothesized that altered profiles of fecal metabolites might be involved in the pathogenesis of IBS with predominant diarrhea (IBS-D).
To investigate the fecal metabolite composition and the role of metabolites in IBS-D pathophysiology.
Thirty IBS-D patients and 15 age- and sex-matched healthy controls (HCs) underwent clinical and psychological assessments, including the IBS Symptom Severity System (IBS-SSS), an Italian modified version of the Bowel Disease Questionnaire, the Bristol Stool Form Scale (BSFS), the Hospital Anxiety and Depression Scale, and the Visceral Sensitivity Index. Visceral sensitivity to rectal distension was tested using high-resolution manometry system by the same investigator. Fecal metabolites, including amino acids and organic acids, were measured by targeted metabolomics approaches. Correlation analyses between these parameters were performed.
The patients presented with increased stool water content, more psychological symptoms and increased visceral hypersensitivity compared with the controls. In fecal metabolites, His [IBS-D: 0.0642 (0.0388, 0.1484), HC: 0.2636 (0.0780, 0.3966), P = 0.012], Ala [IBS-D: 0.5095 (0.2826, 0.9183), HC: 1.0118 (0.6135, 1.4335), P = 0.041], Tyr [IBS-D: 0.1024 (0.0173, 0.4527), HC: 0.5665 (0.2436, 1.3447), P = 0.018], Phe [IBS-D: 0.1511 (0.0775, 0.3248), HC: 0.3967 (0.1388, 0.7550), P = 0.028], and Trp [IBS-D: 0.0323 (0.0001, 0.0826), HC: 0.0834 (0.0170, 0.1759), P = 0.046] were decreased in IBS-D patients, but isohexanoate [IBS-D: 0.0127 (0.0060, 0.0246), HC: 0.0070 (0.0023, 0.0106), P = 0.028] was significantly increased. Only Tyr was mildly correlated with BSFS scores in all subjects (r = -0.347, P = 0.019). A possible potential biomarker panel was identified to correlate with IBS-SSS score (R2Adjusted = 0.693, P < 0.001). In this regression model, the levels of Tyr, Val, hexanoate, fumarate, and pyruvate were significantly associated with the symptom severity of IBS-D. Furthermore, visceral sensation, including abdominal pain and visceral hypersensitivity, was correlated with isovalerate, valerate and isohexanoate.
Altered profiles of fecal metabolites may be one of the origins or exacerbating factors of symptoms in IBS-D via increasing visceral sensitivity.
Core tip: We comprehensively assessed the clinical and psychological characteristics of irritable bowel syndrome with predominant diarrhea (IBS-D) , visceral sensitivity, and fecal metabolites. As expected, the data confirmed that metabolite compositions were different in subjects with or without IBS-D and the levels of some metabolites were significantly correlated with IBS Symptom Severity System score, visceral sensitivity, and the severity or frequency of abdominal pain. Furthermore, a potential biomarker panel was identified to correlate with the symptom severity of IBS-D. These preliminary findings provide some clues for IBS-D pathogenesis and for the search for biomarkers in symptom severity.