Lu ZJ, Wu JJ, Jiang WL, Xiao JH, Tao KZ, Ma L, Zheng P, Wan R, Wang XP. MicroRNA-155 promotes the pathogenesis of experimental colitis by repressing SHIP-1 expression. World J Gastroenterol 2017; 23(6): 976-985 [PMID: 28246471 DOI: 10.3748/wjg.v23.i6.976]
Corresponding Author of This Article
Xing-Peng Wang, MD, PhD, Professor, Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No 100, Haining Road, Shanghai 200080, China. richardwxp@163.com
Research Domain of This Article
Gastroenterology & Hepatology
Article-Type of This Article
Basic Study
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Baishideng Publishing Group Inc, 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA
Share the Article
Lu ZJ, Wu JJ, Jiang WL, Xiao JH, Tao KZ, Ma L, Zheng P, Wan R, Wang XP. MicroRNA-155 promotes the pathogenesis of experimental colitis by repressing SHIP-1 expression. World J Gastroenterol 2017; 23(6): 976-985 [PMID: 28246471 DOI: 10.3748/wjg.v23.i6.976]
World J Gastroenterol. Feb 14, 2017; 23(6): 976-985 Published online Feb 14, 2017. doi: 10.3748/wjg.v23.i6.976
MicroRNA-155 promotes the pathogenesis of experimental colitis by repressing SHIP-1 expression
Zhan-Jun Lu, Jian-Jiong Wu, Wei-Liang Jiang, Jun-Hua Xiao, Kai-Zhong Tao, Lei Ma, Ping Zheng, Rong Wan, Xing-Peng Wang
Zhan-Jun Lu, Jian-Jiong Wu, Wei-Liang Jiang, Kai-Zhong Tao, Lei Ma, Rong Wan, Xing-Peng Wang, Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
Jun-Hua Xiao, Ping Zheng, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tong Ji University, Shanghai 200092, China
Author contributions: Lu ZJ and Wu JJ contributed equally to this study; Lu ZJ and Wu JJ performed the majority of experiments; Wang XP designed and supervised this research; Jiang WL and Xiao JH were responsible for part of molecular studies in vitro; while Tao KZ and Ma L conducted the establishment of animal models and treatment; Zheng P and Wan R did the data process and analyzation; Lu ZJ and Wu JJ wrote this paper.
Institutional review board statement: This study (2015KY154) was approved by the Institutional Review Board of Shanghai First People’s Hospital Affiliated to Nanjing Medical University.
Institutional animal care and use committee statement: All protocols concerning laboratory animal usage in this study (2015KY154) were validated by the Animal Care Ethics Committee of Shanghai First People’s Hospital.
Conflict-of-interest statement: The authors declare no conflict of interest.
Data sharing statement: Technical appendix, statistical code, and dataset are available from the corresponding author at richardwxp@163.com.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Correspondence to: Xing-Peng Wang, MD, PhD, Professor, Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No 100, Haining Road, Shanghai 200080, China. richardwxp@163.com
Telephone: +86-21-63240090 Fax: +86-21-63241377
Received: June 29, 2016 Peer-review started: July 1, 2016 First decision: August 19, 2016 Revised: November 27, 2016 Accepted: December 16, 2016 Article in press: December 19, 2016 Published online: February 14, 2017 Processing time: 227 Days and 22.3 Hours
Abstract
AIM
To explore the mechanism by which microRNA-155 (miR-155) regulates the pathogenesis of experimental colitis.
METHODS
A luciferase assay was performed to confirm the binding of miR-155 to the SHIP-1 3’-UTR. MiR-155 mimics, negative controls and SHIP-1 expression/knockdown vectors were established and then utilized in gain- and loss-of-function studies performed in raw264.7 cells and primary bone marrow-derived macrophages (BMDMs). Thereafter, dextran sulfate sodium (DSS)-induced colitis mouse model with or without antagomiR-155 treatment was established, and the levels of miR-155 and SHIP-1, as well as the pro-inflammatory capabilities, were measured by western blot, quantitative polymerase chain reaction, and immunohistochemistry.
RESULTS
MiR-155 directly bound to the 3’-UTR of SHIP-1 mRNA and induced a significant decrease in SHIP-1 expression in both raw264.7 cells and primary BMDMs. MiR-155 markedly promoted cell proliferation and pro-inflammatory secretions including IL-6, TNF-α, IL-1β, and IFN-γ, whereas these effects could be reversed by the restoration of SHIP-1 expression. In vivo studies showed that antagomiR-155 administration could alleviate DSS-induced intestinal inflammation in Balb/c mice. Moreover, significantly increased SHIP-1 expression, as well as decreased Akt activation and inflammatory response, were observed in the antagomiR-155-treated mice.
CONCLUSION
MiR-155 promotes experimental colitis by repressing SHIP-1 expression. Thus, the inhibition of miR-155 might be a promising strategy for therapy.
Core tip: Our present study identifies SHIP-1 as the functional target of microRNA-155 (miR-155) in macrophages. The up-regulation of miR-155 during colitis led to a significant decrease in SHIP-1 expression as well as a marked enhancement in cell proliferation and pro-inflammatory secretions, whereas the restoration of SHIP-1 expression partly reversed these changes. We further confirmed that antagomiR-155 treatment effectively alleviates dextran sulfate sodium-induced intestinal inflammation in mice, correlated with a significant elevation in SHIP-1 expression levels. Our findings indicate a novel mechanism by which miR-155 influences colitis progression.