Published online May 7, 2017. doi: 10.3748/wjg.v23.i17.3030
Peer-review started: February 6, 2017
First decision: March 3, 2017
Revised: March 10, 2017
Accepted: April 12, 2017
Article in press: April 12, 2017
Published online: May 7, 2017
Processing time: 98 Days and 22.3 Hours
Most medical specialties including the field of gastroenterology are mainly aimed at treating diseases rather than preventing them. Genomic medicine studies the health/disease process based on the interaction of the human genes with the environment. The gastrointestinal (GI) system is an ideal model to analyze the interaction between our genes, emotions and the gut microbiota. Based on the current knowledge, this mini-review aims to provide an integrated synopsis of this interaction to achieve a better understanding of the GI disorders related to bad eating habits and stress-related disease. Since human beings are the result of an evolutionary process, many biological processes such as instincts, emotions and behavior are interconnected to guarantee survival. Nourishment is a physiological need triggered by the instinct of survival to satisfy the body’s energy demands. The brain-gut axis comprises a tightly connected neural-neuroendocrine circuitry between the hunger-satiety center, the dopaminergic reward system involved in the pleasure of eating and the gut microbiota that regulates which food we eat and emotions. However, genetic variations and the consumption of high-sugar and high-fat diets have overridden this energy/pleasure neurocircuitry to the point of addiction of several foodstuffs. Consequently, a gut dysbiosis generates inflammation and a negative emotional state may lead to chronic diseases. Balancing this altered processes to regain health may involve personalized-medicine and genome-based strategies. Thus, an integrated approach based on the understanding of the gene-emotions-gut microbiota interaction is the next frontier that awaits the gastroenterologist to prevent and treat GI disorders associated with obesity and negative emotions.
Core tip: Even though instincts, emotions, and behavior are evolutionary mechanisms for humans to adapt, dysfunctional genes, chronic negative emotions and gut dysbiosis are high risk factors for different diseases. A deep study of the gene-environmental interactions and the gut-bacteria consortium is a key factor that could help to understand how negative emotions are translated into disease. Physicians do not always consider that emotional factors aggravate disease progression and severity. Therefore, personalized-medicine and genomic-based nutrition strategies may aid in the prevention and reduction in the prevalence of gastrointestinal disorders associated with obesity and negative emotions.