Published online Apr 28, 2017. doi: 10.3748/wjg.v23.i16.2854
Peer-review started: October 29, 2016
First decision: November 21, 2016
Revised: February 6, 2017
Accepted: March 30, 2017
Article in press: March 30, 2017
Published online: April 28, 2017
Processing time: 182 Days and 13 Hours
The management of Helicobacter pylori (H. pylori) infection treatment differs from the common treatment protocol for other infectious diseases. Because culture- or molecular-guided approaches face several practical issues, such as the invasive procedures required to obtain gastric biopsy specimens and the lack of availability of routine laboratory testing in some places, H. pylori treatment includes the administration of two or three empirically selected antibiotics combined with a proton pump inhibitor rather than evidence-based eradication treatment. The efficacy of empirical therapy is decreasing, mostly due to increasing multiple resistance. Multiresistance to levofloxacin, clarithromycin, and metronidazole, which are commonly used in empirical treatments, appears to have increased in many countries. Mutations play a primary role in the antimicrobial resistance of H. pylori, but many different mechanisms can be involved in the development of antibiotic resistance. Determining and understanding these possible mechanisms might allow the development of new methods for the detection of H. pylori and the determination of antimicrobial resistance. A treatment based on the detection of antimicrobial resistance is usually more effective than empirical treatment. Nevertheless, such an approach before treatment is still not recommended in the Maastricht guidelines due to the difficulty associated with the routine application of available culture- or molecular-based susceptibility tests, which are usually administered in cases of treatment failure. The management of first and rescue treatments requires further research due to the steadily increase in antimicrobial resistance.
Core tip: Eradication failure is of great importance in Helicobacter pylori (H. pylori) infection. Antibiotic resistance in H. pylori is widespread and increasing. Therefore, understanding antimicrobial resistance mechanisms and detecting H. pylori antimicrobial susceptibility are important for guiding eradication regimens before the initiation of first-line therapy or alternative regimens for patients in whom repeated eradication therapies have failed. This manuscript presents an overview of the mechanisms of antimicrobial resistance and the methods that have been developed for the detection of resistance. It also highlights the contribution of antimicrobial susceptibility testing to the management of H. pylori eradication therapy.