Published online Nov 14, 2016. doi: 10.3748/wjg.v22.i42.9288
Peer-review started: June 30, 2016
First decision: August 8, 2016
Revised: August 23, 2016
Accepted: September 14, 2016
Article in press: September 14, 2016
Published online: November 14, 2016
Processing time: 136 Days and 11.4 Hours
Aberrations in protein glycosylation and polysaccharides play a pivotal role in pancreatic tumorigenesis, influencing cancer progression, metastasis, immuno-response and chemoresistance. Abnormal expression in sugar moieties can impact the function of various glycoproteins, including mucins, surface receptors, adhesive proteins, proteoglycans, as well as their effectors and binding ligands, resulting in an increase in pancreatic cancer invasiveness and a cancer-favored microenvironment. Recent advance in glycoproteomics, glycomics and other chemical biology techniques have been employed to better understand the complex mechanism of glycosylation events and how they orchestrate molecular activities in genomics, proteomics and metabolomics implicated in pancreatic adenocarcinoma. A variety of strategies have been demonstrated targeting protein glycosylation and polysaccharides for diagnostic and therapeutic development.
Core tip: Protein glycosylation plays an important role in pancreatic tumorigenesis. Malignance induced changes in protein glycosylation can profoundly impact the function of a protein in multiple ways. One approach for developing better diagnostic and therapeutic strategies in pancreatic cancer involves targeting cancer-associated aberrant glycosylation. This review discusses the recent discoveries in glycoproteomics study of pancreatic cancer.