Published online Oct 7, 2016. doi: 10.3748/wjg.v22.i37.8283
Peer-review started: May 1, 2016
First decision: June 20, 2016
Revised: July 28, 2016
Accepted: August 10, 2016
Article in press: August 10, 2016
Published online: October 7, 2016
Processing time: 154 Days and 22.2 Hours
The last decade has witnessed remarkable technological advances in mass spectrometry-based proteomics. The development of proteomics techniques has enabled the reliable analysis of complex proteomes, leading to the identification and quantification of thousands of proteins in gastric cancer cells, tissues, and sera. This quantitative information has been used to profile the anomalies in gastric cancer and provide insights into the pathogenic mechanism of the disease. In this review, we mainly focus on the advances in mass spectrometry and quantitative proteomics that were achieved in the last five years and how these up-and-coming technologies are employed to track biochemical changes in gastric cancer cells. We conclude by presenting a perspective on quantitative proteomics and its future applications in the clinic and translational gastric cancer research.
Core tip: Protein identification and quantification by mass spectrometry represent powerful techniques for deciphering the mechanisms underlying the biochemical anomalies that cause human diseases. Due to innovations in mass spectrometry and labeling techniques, cellular protein levels can be monitored routinely with great accuracy. This review provides a brief overview of these technological advances and their applications in gastric cancer biology.