Published online Jul 28, 2016. doi: 10.3748/wjg.v22.i28.6434
Peer-review started: April 5, 2016
First decision: May 12, 2016
Revised: May 25, 2016
Accepted: June 13, 2016
Article in press: June 13, 2016
Published online: July 28, 2016
Processing time: 108 Days and 18.2 Hours
Guanylate-binding proteins (GBPs) are interferon-stimulated factors involved in the defense against cellular pathogens and inflammation. These proteins, particularly GBP-1, the most prominent member of the family, have been established as reliable markers of interferon-γ-activated cells in various diseases, including colorectal carcinoma (CRC) and inflammatory bowel diseases (IBDs). In CRC, GBP-1 expression is associated with a Th1-dominated angiostatic micromilieu and is correlated with a better outcome. Inhibition of tumor growth by GBP-1 is the result of its strong anti-angiogenic activity as well as its direct anti-tumorigenic effect on tumor cells. In IBD, GBP-1 mediates the anti-proliferative effects of interferon-γ on intestinal epithelial cells. In addition, it plays a protective role on the mucosa by preventing cell apoptosis, by inhibiting angiogenesis and by regulating the T-cell receptor signaling. These functions rely to a large extent on the ability of GBP-1 to interact with and remodel the actin cytoskeleton.
Core tip: Guanylate-binding proteins (GBPs) are interferon-stimulated factors involved in the defense against cellular pathogens and inflammation. In addition, guanylate-binding proteins have been established as reliable markers of interferon-γ-activated cells in various diseases including colorectal carcinoma and inflammatory bowel diseases. The GBP-1 is the best characterized member of the family. For instance, the expression of GBP-1 has been associated with a better outcome in colorectal carcinoma. The inhibition of tumor growth by GBP-1 is due to its strong anti-angiogenic activity as well as its direct anti-tumorigenic effect on tumor cells. In inflammatory bowel diseases, on the one hand GBP-1 mediates the anti-proliferative effects of interferon-γ on intestinal epithelial cells, and on the other hand, it protects the mucosa by preventing cell apoptosis, by inhibiting angiogenesis and by regulating the T-cell receptor signaling. These functions rely to a large extent on the ability of GBP-1 to interact with and remodel the actin cytoskeleton.