Published online Dec 7, 2015. doi: 10.3748/wjg.v21.i45.12787
Peer-review started: May 11, 2015
First decision: June 2, 2015
Revised: July 24, 2015
Accepted: October 13, 2015
Article in press: October 13, 2015
Published online: December 7, 2015
Processing time: 213 Days and 0.6 Hours
AIM: To evaluate the inflammasome activation and the effect of peroxisome proliferator-activated receptors (PPAR)-δ agonist treatment in nonalcoholic fatty liver disease (NAFLD) models.
METHODS: Male C57BL/6J mice were classified according to control or high fat diet (HFD) with or without PPAR-δ agonist (GW) over period of 12 wk [control, HFD, HFD + lipopolysaccharide (LPS), HFD + LPS + GW group]. HepG2 cells were exposed to palmitic acid (PA) and/or LPS in the absence or presence of GW.
RESULTS: HFD caused glucose intolerance and hepatic steatosis. In mice fed an HFD with LPS, caspase-1 and interleukin (IL)-1β in the liver were significantly increased. Treatment with GW ameliorated the steatosis and inhibited overexpression of pro-inflammatory cytokines. In HepG2 cells, PA and LPS treatment markedly increased mRNA of several nucleotide-binding and oligomerization domain-like receptor family members (NLRP3, NLRP6, and NLRP10), caspase-1 and IL-1β. PA and LPS also exaggerated reactive oxygen species production. All of the above effects of PA and LPS were reduced by GW. GW also enhanced the phosphorylation of AMPK-α.
CONCLUSION: PPAR-δ agonist reduces fatty acid-induced inflammation and steatosis by suppressing inflammasome activation. Targeting the inflammasome by the PPAR-δ agonist may have therapeutic implication for NAFLD.
Core tip: Until now, the underlying mechanisms of disease progression and therapeutic targets were uncertain in nonalcoholic fatty liver disease (NAFLD). Our study were to evaluate the inflammasome activation and the effect of peroxisome proliferator-activated receptors (PPAR)-δ agonist treatment in NAFLD models. In our NAFLD models, mRNA of several NOD-like receptor family members, caspase-1 and interleukin-1β were markedly increased. All of those effects were reduced by PPAR-δ agonist treatment. It also ameliorated the steatosis and inhibited overexpression of pro-inflammatory cytokines. In conclusion, PPAR-δ agonist reduces fatty acid-induced inflammation and steatosis by suppressing inflammasome activation.