Published online Nov 14, 2015. doi: 10.3748/wjg.v21.i42.11984
Peer-review started: May 7, 2015
First decision: June 2, 2015
Revised: July 19, 2015
Accepted: September 14, 2015
Article in press: September 14, 2015
Published online: November 14, 2015
Processing time: 196 Days and 23.2 Hours
The hepatitis C virus (HCV), first described in 1989, is now a leading cause of liver cirrhosis and hepatocellular carcinoma. With more than 170 million people infected globally, this virus is a major public health issue. The current standard therapy is based on interferon in combination with ribavirin. This costly therapy often fails to completely clear the infection and is associated with adverse side effects. Recent anti-HCV therapies are interferon-free direct-acting antiviral (DAA) regimens for HCV, including simeprevir, sofosbuvir, and ledipasvir, which have effects on non-structural proteins. DAA regimens have several advantages, such as specifically targeting HCV viral replication, accompanied by very high sustained virological response rates and lower side effects like flu-like syndrome. These facts plus the fact that most HCV cases progress to chronic infection suggest the potential need for an efficient HCV vaccine. Different innovative methods, including methods based on peptide, recombinant protein, DNA, vector-based, and virus-like particles, have been introduced for the development of HCV vaccines. An extensive number of studies have been published on these vaccines, and some vaccines were even tested in clinical trials. In the current review, progress in the development of preventive and therapeutic vaccines against the HCV is reviewed in the context of peptide vaccines, recombinant protein vaccines, HCV-like particle, DNA vaccines and viral vectors expressing HCV genes.
Core tip: Chronic hepatitis C virus (HCV) infection occurs in about 75%-90% of acutely infected individuals. It may progress to liver cirrhosis or hepatocellular carcinoma. Despite satisfactory progress in the management and treatment of chronic hepatitis C, it remains one of the most prominent viral infections worldwide. Although no reliable vaccine for it has yet been developed, researchers are trying to design and develop different types of vaccines to prevent HCV infection or to cure the chronic form of the disease. The current article provides an overview of the latest progress in the development of preventive and therapeutic vaccines against HCV infection in the context of peptide vaccines, recombinant protein vaccines, HCV-like particle, DNA vaccines, and viral vectors expressing HCV genes.