Published online Jun 21, 2015. doi: 10.3748/wjg.v21.i23.7084
Peer-review started: January 29, 2015
First decision: March 26, 2015
Revised: April 9, 2015
Accepted: May 4, 2015
Article in press: May 4, 2015
Published online: June 21, 2015
Processing time: 143 Days and 0.2 Hours
Hepatitis B virus (HBV) infection is a major global health problem. Although current therapies, such as the use of nucleos(t)ide analogs, inhibit HBV replication efficiently, they do not eliminate covalently closed circular DNA (cccDNA), which persists in hepatocyte nuclei. As HBV cccDNA is a viral transcription template, novel therapeutic approaches to directly target HBV cccDNA are necessary to completely eradicate persistent HBV infections. HBV cccDNA levels in HBV-infected human liver cells are extremely low; thus, more reliable and simple measurement methods are needed to correctly monitor their levels during therapeutic treatment. Although reverse transcription-polymerase chain reaction or Southern blot procedures are currently used in research studies, these methods are not completely reliable and are also time-consuming and labor-intensive. Genome editing technologies, such as zinc finger nucleases, transcription activator-like effector nucleases, and the clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9) system, which are designed to target specific DNA sequences, represent highly promising potential therapeutic tools. In particular, the CRISPR/Cas9 system is an easily customizable sequence-specific nuclease with high flexibility and may be the most feasible approach to target HBV cccDNA. Further research to develop easier, safer, and more effective protocols should be pursued.
Core tip: Hepatitis B virus (HBV) infection is a global health problem. Because current therapeutic approaches do not eliminate HBV nuclear covalently closed circular DNA (cccDNA), novel therapeutics to target cccDNA are needed to eradicate HBV infection. Genome editing technologies are expected to be promising therapeutic options against HBV cccDNA. In particular, the clustered regularly interspaced short palindromic repeats/Cas9 system is an easily customizable sequence-specific nuclease with great flexibility and may be the most feasible approach to target HBV cccDNA, as further research studies develop more effective protocols.