Published online May 28, 2015. doi: 10.3748/wjg.v21.i20.6127
Peer-review started: December 12, 2014
First decision: February 2, 2015
Revised: February 26, 2015
Accepted: April 16, 2015
Article in press: April 17, 2015
Published online: May 28, 2015
Processing time: 169 Days and 8.2 Hours
Patients with pancreatic cancer have a poor prognosis with a median survival of 4-6 mo and a 5-year survival of less than 5%. Despite therapy with gemcitabine, patient survival does not exceed 6 mo, likely due to natural resistance to gemcitabine. Therefore, it is hoped that more favorable results can be obtained by using guided immunotherapy against molecular targets. This review summarizes the new leading targeted therapies in pancreatic cancers, focusing on passive and specific immunotherapies. Passive immunotherapy may have a role for treatment in combination with radiochemotherapy, which otherwise destroys the immune system along with tumor cells. It includes mainly therapies targeting against kinases, including epidermal growth factor receptor, Ras/Raf/mitogen-activated protein kinase cascade, human epidermal growth factor receptor 2, insulin growth factor-1 receptor, phosphoinositide 3-kinase/Akt/mTOR and hepatocyte growth factor receptor. Therapies against DNA repair genes, histone deacetylases, microRNA, and pancreatic tumor tissue stromal elements (stromal extracellular matric and stromal pathways) are also discussed. Specific immunotherapies, such as vaccines (whole cell recombinant, peptide, and dendritic cell vaccines), adoptive cell therapy and immunotherapy targeting tumor stem cells, have the role of activating antitumor immune responses. In the future, treatments will likely include personalized medicine, tailored for numerous molecular therapeutic targets of multiple pathogenetic pathways.
Core tip: Adjuvant therapy in pancreatic cancer has limited efficiency, and low survival rates are related to resistance to gemcitabine. New targeted therapies, such as passive immunotherapy, may have a role in combination with radiochemotherapy by targeting various protein kinases, as well as specific immunotherapies, such as vaccines, adoptive cell therapy and immunotherapy targeting tumor stem cells. In the future, treatments will likely include personalized medicine, tailored for numerous molecular therapeutic targets of multiple pathogenetic pathways.