Published online Apr 28, 2015. doi: 10.3748/wjg.v21.i16.4894
Peer-review started: October 30, 2014
First decision: December 11, 2014
Revised: January 8, 2015
Accepted: February 11, 2015
Article in press: February 11, 2015
Published online: April 28, 2015
Processing time: 183 Days and 12.8 Hours
AIM: To compare ultrasound-based acoustic structure quantification (ASQ) with established non-invasive techniques for grading and staging fatty liver disease.
METHODS: Type 2 diabetic patients at risk of non-alcoholic fatty liver disease (n = 50) and healthy volunteers (n = 20) were evaluated using laboratory analysis and anthropometric measurements, transient elastography (TE), controlled attenuation parameter (CAP), proton magnetic resonance spectroscopy (1H-MRS; only available for the diabetic cohort), and ASQ. ASQ parameters mode, average and focal disturbance (FD) ratio were compared with: (1) the extent of liver fibrosis estimated from TE and non-alcoholic fatty liver disease (NAFLD) fibrosis scores; and (2) the amount of steatosis, which was classified according to CAP values.
RESULTS: Forty-seven diabetic patients (age 67.0 ± 8.6 years; body mass index 29.4 ± 4.5 kg/m²) with reliable CAP measurements and all controls (age 26.5 ± 3.2 years; body mass index 22.0 ± 2.7 kg/m²) were included in the analysis. All ASQ parameters showed differences between healthy controls and diabetic patients (P < 0.001, respectively). The ASQ FD ratio (logarithmic) correlated with the CAP (r = -0.81, P < 0.001) and 1H-MRS (r = -0.43, P = 0.004) results. The FD ratio [CAP < 250 dB/m: 107 (102-109), CAP between 250 and 300 dB/m: 106 (102-114); CAP between 300 and 350 dB/m: 105 (100-112), CAP ≥ 350 dB/m: 102 (99-108)] as well as mode and average parameters, were reduced in cases with advanced steatosis (ANOVA P < 0.05). However, none of the ASQ parameters showed a significant difference in patients with advanced fibrosis, as determined by TE and the NAFLD fibrosis score (P > 0.08, respectively).
CONCLUSION: ASQ parameters correlate with steatosis, but not with fibrosis in fatty liver disease. Steatosis estimation with ASQ should be further evaluated in biopsy-controlled studies.
Core tip: Non-invasive characterization of hepatic steatosis and fibrosis is becoming important for the screening, diagnosis, and monitoring of patients with chronic liver diseases. This work compared acoustic structure quantification (ASQ) and established non-invasive methods to characterize fatty liver disease. ASQ parameters differed between healthy controls and diabetic patients with fatty liver disease independent of the extent of fibrosis. The focal disturbance ratio and further ASQ parameters correlated with the severity of steatosis. Therefore, ASQ could be used to evaluate steatosis and merits further investigation; however, ASQ seems to be impractical to characterize fibrosis in patients with fatty liver disease.