Published online Dec 14, 2010. doi: 10.3748/wjg.v16.i46.5852
Revised: July 13, 2010
Accepted: July 20, 2010
Published online: December 14, 2010
AIM: To assess the effect of nitric oxide (NO) on the large conductance potassium channel (BKCa) in isolated circular (CM) and sling (SM) muscle cells and muscle strips from the cat lower esophageal sphincter (LES) to determine its regulation of resting tone and relaxation.
METHODS: Freshly enzymatically-digested and isolated circular smooth muscle cells were prepared from each LES region. To study outward K+ currents, the perforated patch clamp technique was employed. To assess LES resting tone and relaxation, muscle strips were mounted in perfused organ baths.
RESULTS: (1) Electrophysiological recordings from isolated cells: (a) CM was more depolarized than SM (-39.7 ± 0.8mV vs -48.1 ± 1.6 mV, P < 0.001), and maximal outward current was similar (27.1 ± 1.5 pA/pF vs 25.7 ± 2.0 pA/pF, P > 0.05); (b) The NO donor sodium nitroprusside (SNP) increased outward currents only in CM (25.9 ± 1.9 to 46.7 ± 4.2 pA/pF, P < 0.001) but not SM (23.2 ± 3.1 to 27.0 ± 3.4 pA/pF, P > 0.05); (c) SNP added in the presence of the BKCa antagonist iberiotoxin (IbTX) produced no increase in the outward current in CM (17.0 ± 2.8 vs 13.7 ± 2.2, P > 0.05); and (d) L-NNA caused a small insignificant inhibition of outward K+ currents in both muscles; and (2) Muscle strip studies: (a) Blockade of the nerves with tetrodotoxin (TTX), or BKCa with IbTX had no significant effect on resting tone of either muscle; and (b) SNP reduced tone in both muscles, and was unaffected by the presence of TTX or IbTX.
CONCLUSION: Exogenous NO activates BKCa only in CM of the cat. However, as opposed to other species, exogenous NO-induced relaxation is predominantly by a non-BKCa mechanism, and endogenous NO has minimal effect on resting tone.