Published online Dec 7, 2010. doi: 10.3748/wjg.v16.i45.5701
Revised: July 13, 2010
Accepted: July 20, 2010
Published online: December 7, 2010
AIM: To investigate the effects of dextrans of various molecular weights (Mw) during a 12 h cold storage time-course on energetics, histology and mucosal infiltration of fluorescein isothiocyanate (FITC)-dextran.
METHODS: Rodent intestines were isolated and received a standard University of Wisconsin vascular flush followed by intraluminal administration of a nutrient-rich preservation solution containing dextrans of varying Mw: Group D1, 73 kdal; Group D2, 276 kdal; Group D3, 534 kdal; Group D4, 1185 kdal; Group D5, 2400 kdal.
RESULTS: Using FITC-labeled dextrans, fluorescent micrographs demonstrated varying degrees of mucosal infiltration; lower Mw (groups D1-D3: 73-534 kdal) dextrans penetrated the mucosa as early as 2 h, whereas the largest dextran (D5: 2400 kdal) remained captive within the lumen and exhibited no permeability even after 12 h. After 12 h, median injury grades ranged from 6.5 to 7.5 in groups D1-D4 (73-1185 kdal) representing injury of the regenerative cryptal regions and submucosa; this was in contrast to group D5 (2400 kdal) which exhibited villus denudation (with intact crypts) corresponding to a median injury grade of 4 (P < 0.05). Analysis of tissue energetics reflected a strong positive correlation between Mw and adenosine triphosphate (r2 = 0.809), total adenylates (r2 = 0.865) and energy charge (r2 = 0.667).
CONCLUSION: Our data indicate that dextrans of Mw > 2400 kdal act as true impermeant agents during 12 h ischemic storage when incorporated into an intraluminal preservation solution.