Published online Nov 7, 2009. doi: 10.3748/wjg.15.5129
Revised: September 28, 2009
Accepted: October 9, 2009
Published online: November 7, 2009
Hepatitis C virus (HCV)-specific CD8+ T cells play an important role in the resolution of HCV infection. Nevertheless, during chronic hepatitis C these cells lack their effector functions and fail to control the virus. HCV has developed several mechanisms to escape immune control. One of these strategies is the up-regulation of negative co-stimulatory molecules such us programmed death-1 (PD-1). This molecule is up-regulated on intrahepatic and peripheral HCV-specific cytotoxic T cells during acute and chronic phases of the disease, whereas PD-1 expression is low in resolved infection. PD-1 expressing HCV-specific CD8+ T cells are exhausted with impairment of several effector mechanisms, such as: type-1 cytokine production, expansion ability after antigen encounter and cytotoxic ability. However, PD-1 associated exhaustion can be restored by blocking the interaction between PD-1 and its ligand (PD-L1). After this blockade, HCV-specific CD8+ T cells reacquire their functionality. Nevertheless, functional restoration depends on PD-1 expression level. High PD-1-expressing intrahepatic HCV-specific CD8+ T cells do not restore their effector abilities after PD-1/PD-L1 blockade. The mechanisms by which HCV is able to induce PD-1 up-regulation to escape immune control are unknown. Persistent TCR stimulation by a high level of HCV antigens could favour early PD-1 induction, but the interaction between HCV core protein and gC1q receptor could also participate in this process. The PD-1/PD-L1 pathway modulation could be a therapeutic strategy, in conjunction with the regulation of others co-stimulatory pathways, in order to restore immune response against HCV to succeed in clearing the infection.