Published online Jan 28, 2008. doi: 10.3748/wjg.14.498
Revised: October 30, 2007
Published online: January 28, 2008
As the increase in lifespan brings to light diseases that were previously not clinically detectable, osteoporosis has become an issue of worldwide significance. The disease is marked by a loss of bone mass; the bones become less dense, fragile and more prone to fracturing. Because it is regulated by endocrine and environmental factors, osteoporosis presents a multifactorial etiopathogenesis, with the genetic component accounting for 70% of an individual variation in bone mass density (BMD), the principal determinant, with age, of fracture risk. Pathological conditions such as celiac disease (CD) exacerbate the process of bone loss, so that the occurrence of osteoporosis in celiac subjects is of particular note: indeed, the screening of osteoporosis patients for this disease is advisable, since it may be the only sign of undiagnosed CD. An increase in interleukin IL-1β, of the IL-1 system, in the relatives of celiac patients confirms the genetic predisposition to osteoporosis and its presence is evidence of an association between the two conditions. The direct effect on the bones of CD is secondary to poor absorption of calcium and vitamin D. In women osteoporosis is indirectly associated with early menopause and amenorrhea, and it may follow prolonged breast-feeding and frequent pregnancies, while in men it is associated with hypogonadism and GH deficit. These endocrine and non-endocrine factors exert their effects on bones by modulating the RANK/RANK-L/OPG system. An appropriate lifestyle from adolescence onwards, together with early diagnosis of and treatment for CD and primary and secondary endocrine pathologies are important for the prevention of damage to the bones.