Published online Aug 7, 2005. doi: 10.3748/wjg.v11.i29.4519
Revised: December 3, 2004
Accepted: December 9, 2004
Published online: August 7, 2005
AIM: To explore the mechanisms underlying the apoptosis of human pancreatic cancer BXPC-3 cells induced by indole-3-acetic acid (IAA) in combination with horseradish peroxidase (HRP).
METHODS: BXPC-3 cells derived from human pancreatic cancer were exposed to 40 or 80 µmol/L IAA and 1.2 µg/mL HRP at different times. Then, MTT assay was used to detect the cell proliferation. Flow cytometry was performed to analyze cell cycle. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay was used to detect apoptosis. 2,7-Dichlorofluorescin diacetate uptake was measured by confocal microscopy to determine free radicals. Level of malondialdehyde (MDA) and activity of superoxide dismutase (SOD) were measured by biochemical methods.
RESULTS: IAA/HRP initiated growth inhibition of BXPC-3 cells in a dose- and time-dependent manner. Flow cytometry revealed that the cells treated for 48 h were arrested at G1/G0. After exposure to 80 µmol/L IAA plus 1.2 µg/mL HRP for 72 h, the apoptosis rate increased to 72.5, which was nine times that of control. Content of MDA and activity of SOD increased respectively after treatment compared to control. Meanwhile, IAA/HRP stimulated the formation of free radicals.
CONCLUSION: The combination of IAA and HRP can inhibit the growth of human pancreatic cancer BXPC-3 cells in vitro by inducing apoptosis.