| For: | Huang TF, Luo C, Guo LB, Liu HZ, Li JT, Lin QZ, Fan RL, Zhou WP, Li JD, Lin KC, Tang SC, Zeng YY. Preoperative prediction of textbook outcome in intrahepatic cholangiocarcinoma by interpretable machine learning: A multicenter cohort study. World J Gastroenterol 2025; 31(11): 100911 [PMID: 40124276 DOI: 10.3748/wjg.v31.i11.100911] |
|---|---|
| URL: | https://www.wjgnet.com/1007-9327/full/v31/i11/100911.htm |
| Number | Citing Articles |
| 1 |
Arnulfo E Morales-Galicia, Mariana N Rincón-Sánchez, Mariana M Ramírez-Mejía, Nahum Méndez-Sánchez. Outcome prediction for cholangiocarcinoma prognosis: Embracing the machine learning era. World Journal of Gastroenterology 2025; 31(21): 106808 doi: 10.3748/wjg.v31.i21.106808
|
| 2 |
Liang Qiao, Yu-Gang Luo, Qing-Ying Wang, Tian Yuan, Meng Xu, Guang-Bing Xiong, Feng Zhu. Artificial intelligence in the diagnosis and prognosis of intrahepatic cholangiocarcinoma: Applications and challenges. World Journal of Gastrointestinal Oncology 2025; 17(10): 111367 doi: 10.4251/wjgo.v17.i10.111367
|
| 3 |
Shu-Yen Chan, Patrick Twohig. Artificial intelligence in liver cancer surgery: Predicting success before the first incision. World Journal of Gastroenterology 2025; 31(16): 107221 doi: 10.3748/wjg.v31.i16.107221
|
| 4 |
Eyad Gadour, Mohammed S AlQahtani. Illuminating the black box: Machine learning enhances preoperative prediction in intrahepatic cholangiocarcinoma. World Journal of Gastroenterology 2025; 31(17): 106592 doi: 10.3748/wjg.v31.i17.106592
|
| 5 |
Himanshu Agrawal, Nikhil Gupta, Himanshu Tanwar, Natasha Panesar. Artificial intelligence in gastrointestinal surgery: A minireview of predictive models and clinical applications. Artificial Intelligence in Gastroenterology 2025; 6(1): 108198 doi: 10.35712/aig.v6.i1.108198
|
