For: | Ma H, Liu ZX, Zhang JJ, Wu FT, Xu CF, Shen Z, Yu CH, Li YM. Construction of a convolutional neural network classifier developed by computed tomography images for pancreatic cancer diagnosis. World J Gastroenterol 2020; 26(34): 5156-5168 [PMID: 32982116 DOI: 10.3748/wjg.v26.i34.5156] |
---|---|
URL: | https://www.wjgnet.com/1007-9327/full/v26/i34/5156.htm |
Number | Citing Articles |
1 |
H Shafeeq AHMED. BEYOND TRADITIONAL TOOLS: EXPLORING CONVOLUTIONAL NEURAL NETWORKS AS INNOVATIVE PROGNOSTIC MODELS IN PANCREATIC DUCTAL ADENOCARCINOMA. Arquivos de Gastroenterologia 2024; 61 doi: 10.1590/s0004-2803.24612023-117
|
2 |
Gintautas Dzemyda, Olga Kurasova, Viktor Medvedev, Aušra Šubonienė, Aistė Gulla, Artūras Samuilis, Džiugas Jagminas, Kęstutis Strupas. Deep learning‐based aggregate analysis to identify cut‐off points for decision‐making in pancreatic cancer detection. Expert Systems 2024; doi: 10.1111/exsy.13614
|
3 |
Mark Ramaekers, Christiaan G. A. Viviers, Boris V. Janssen, Terese A. E. Hellström, Lotte Ewals, Kasper van der Wulp, Joost Nederend, Igor Jacobs, Jon R. Pluyter, Dimitrios Mavroeidis, Fons van der Sommen, Marc G. Besselink, Misha D. P. Luyer. Computer-Aided Detection for Pancreatic Cancer Diagnosis: Radiological Challenges and Future Directions. Journal of Clinical Medicine 2023; 12(13): 4209 doi: 10.3390/jcm12134209
|
4 |
Chunzhi Meng, Hongyi Li, Chen Chen, Wei Wu, Jing Gao, Yining Lai, Mila Ka, Min Zhu, Xiaoyi Lv, Fangfang Chen, Cheng Chen. Serum Raman spectroscopy combined with Gaussian—convolutional neural network models to quickly detect liver cancer patients. Spectroscopy Letters 2022; 55(2): 79 doi: 10.1080/00387010.2022.2027988
|
5 |
Guohua Zhao, Xi Chen, Mengying Zhu, Yang Liu, Yue Wang. Exploring the application and future outlook of Artificial intelligence in pancreatic cancer. Frontiers in Oncology 2024; 14 doi: 10.3389/fonc.2024.1345810
|
6 |
Maxime Barat, Guillaume Chassagnon, Anthony Dohan, Sébastien Gaujoux, Romain Coriat, Christine Hoeffel, Christophe Cassinotto, Philippe Soyer. Artificial intelligence: a critical review of current applications in pancreatic imaging. Japanese Journal of Radiology 2021; 39(6): 514 doi: 10.1007/s11604-021-01098-5
|
7 |
Jiaqi Qu, Xiang Xiao, Xunbin Wei, Xiaohua Qian. A causality-inspired generalized model for automated pancreatic cancer diagnosis. Medical Image Analysis 2024; 94: 103154 doi: 10.1016/j.media.2024.103154
|
8 |
Minjae Kim, Sunghoi Hong. Integrating Artificial Intelligence to Biomedical Science: New Applications for Innovative Stem Cell Research and Drug Development. Technologies 2024; 12(7): 95 doi: 10.3390/technologies12070095
|
9 |
Natália Alves, Megan Schuurmans, Geke Litjens, Joeran S. Bosma, John Hermans, Henkjan Huisman. Fully Automatic Deep Learning Framework for Pancreatic Ductal Adenocarcinoma Detection on Computed Tomography. Cancers 2022; 14(2): 376 doi: 10.3390/cancers14020376
|
10 |
Kenneth Weicong Lin, Tiing Leong Ang, James Weiquan Li. Role of artificial intelligence in early detection and screening for pancreatic adenocarcinoma. Artificial Intelligence in Medical Imaging 2022; 3(2): 21-32 doi: 10.35711/aimi.v3.i2.21
Abstract(549) |
Core Tip(608) |
Full Article(HTML)(1767)
|
Full Article (PDF)-1077K(216)
|
Full Article (Word)-592K(96)
|
Audio-283K(4)
|
Peer-Review Report-358K(88)
|
Answering Reviewers-396K(91)
|
Times Cited (0)
|
Total Visits (6874)
|
Open
|
11 |
Hoang Quang Huy, Ngo Tien Dat, Dinh Nghia Hiep, Nguyen Ngoc Tram, Tran Anh Vu, Pham Thi Viet Huong. Intelligent Systems and Networks. Lecture Notes in Networks and Systems 2023; 752: 66 doi: 10.1007/978-981-99-4725-6_10
|
12 |
Jasmine Chhikara, Nidhi Goel, Neeru Rathee. Integrating expert guidance with gradual moment approximation (GMAp)-enhanced transfer learning for improved pancreatic cancer classification. Neural Computing and Applications 2024; doi: 10.1007/s00521-024-10521-7
|
13 |
Deepak Painuli, Suyash Bhardwaj, Utku Köse. Advances and Applications of Artificial Intelligence & Machine Learning. Lecture Notes in Electrical Engineering 2023; 1078: 685 doi: 10.1007/978-981-99-5974-7_55
|
14 |
Florbela Tavares, Gilberto Rosa, Inês Henriques, Nelson Pacheco Rocha. Good Practices and New Perspectives in Information Systems and Technologies. Lecture Notes in Networks and Systems 2024; 986: 129 doi: 10.1007/978-3-031-60218-4_13
|
15 |
Kaiwen Chen, Chunyu Zhang, Chengjian Qiu, Yuqing Song, Anthony Miller, Lu Liu, Imran Ul Haq, Zhe Liu. Neural Information Processing. Lecture Notes in Computer Science 2024; 14449: 564 doi: 10.1007/978-981-99-8067-3_42
|
16 |
José S Enriquez, Yan Chu, Shivanand Pudakalakatti, Kang Lin Hsieh, Duncan Salmon, Prasanta Dutta, Niki Zacharias Millward, Eugene Lurie, Steven Millward, Florencia McAllister, Anirban Maitra, Subrata Sen, Ann Killary, Jian Zhang, Xiaoqian Jiang, Pratip K Bhattacharya, Shayan Shams. Hyperpolarized Magnetic Resonance and Artificial Intelligence: Frontiers of Imaging in Pancreatic Cancer. JMIR Medical Informatics 2021; 9(6): e26601 doi: 10.2196/26601
|
17 |
Maxime Barat, Ugo Marchese, Anna Pellat, Anthony Dohan, Romain Coriat, Christine Hoeffel, Elliot K. Fishman, Christophe Cassinotto, Linda Chu, Philippe Soyer. Imaging of Pancreatic Ductal Adenocarcinoma: An Update on Recent Advances. Canadian Association of Radiologists Journal 2023; 74(2): 351 doi: 10.1177/08465371221124927
|
18 |
Passisd Laoveeravat, Priya R Abhyankar, Aaron R Brenner, Moamen M Gabr, Fadlallah G Habr, Amporn Atsawarungruangkit. Artificial intelligence for pancreatic cancer detection: Recent development and future direction . Artificial Intelligence in Gastroenterology 2021; 2(2): 56-68 doi: 10.35712/aig.v2.i2.56
|
19 |
Megan Schuurmans, Natália Alves, Pierpaolo Vendittelli, Henkjan Huisman, John Hermans. Setting the Research Agenda for Clinical Artificial Intelligence in Pancreatic Adenocarcinoma Imaging. Cancers 2022; 14(14): 3498 doi: 10.3390/cancers14143498
|
20 |
Jiaqi Qu, Xunbin Wei, Xiaohua Qian. Generalized pancreatic cancer diagnosis via multiple instance learning and anatomically-guided shape normalization. Medical Image Analysis 2023; 86: 102774 doi: 10.1016/j.media.2023.102774
|
21 |
Jasmine Chhikara, Nidhi Goel, Neeru Rathee. Deep Learning Techniques for Pancreatic Cancer Analysis: A Systematic Review and Implantation Prerequisites. Procedia Computer Science 2024; 235: 3118 doi: 10.1016/j.procs.2024.04.295
|
22 |
Juan Li, Yanru Li, Shuai Chen, Weili Duan, Xue Kong, Yunshan Wang, Lianqun Zhou, Peilong Li, Chengpeng Zhang, Lutao Du, Chuanxin Wang. Highly Sensitive Exosome Detection for Early Diagnosis of Pancreatic Cancer Using Immunoassay Based on Hierarchical Surface‐Enhanced Raman Scattering Substrate. Small Methods 2022; 6(6) doi: 10.1002/smtd.202200154
|
23 |
Jasmine Chhikara, Nidhi Goel, Neeru Rathee. Pancreatic Carcinoma Detection with Publicly available Radiological Images: A Systematic Analysis. 2022 10th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO) 2022; : 1 doi: 10.1109/ICRITO56286.2022.9964991
|
24 |
Cristian Anghel, Mugur Cristian Grasu, Denisa Andreea Anghel, Gina-Ionela Rusu-Munteanu, Radu Lucian Dumitru, Ioana Gabriela Lupescu. Pancreatic Adenocarcinoma: Imaging Modalities and the Role of Artificial Intelligence in Analyzing CT and MRI Images. Diagnostics 2024; 14(4): 438 doi: 10.3390/diagnostics14040438
|
25 |
Kiersten Preuss, Nate Thach, Xiaoying Liang, Michael Baine, Justin Chen, Chi Zhang, Huijing Du, Hongfeng Yu, Chi Lin, Michael A. Hollingsworth, Dandan Zheng. Using Quantitative Imaging for Personalized Medicine in Pancreatic Cancer: A Review of Radiomics and Deep Learning Applications. Cancers 2022; 14(7): 1654 doi: 10.3390/cancers14071654
|
26 |
Rasha Abu-Khudir, Noor Hafsa, Badr E. Badr. Identifying Effective Biomarkers for Accurate Pancreatic Cancer Prognosis Using Statistical Machine Learning. Diagnostics 2023; 13(19): 3091 doi: 10.3390/diagnostics13193091
|
27 |
Ajanthaa Lakkshmanan, C. Anbu Ananth, S. Tiroumalmouroughane. Multi-objective Metaheuristics with Intelligent Deep Learning Model for Pancreatic Tumor Diagnosis. Journal of Intelligent & Fuzzy Systems 2022; 43(5): 6793 doi: 10.3233/JIFS-221171
|
28 |
Yan-Jie Shi, Hai-Tao Zhu, Xiao-Ting Li, Xiao-Yan Zhang, Yu-Liang Liu, Yi-Yuan Wei, Ying-Shi Sun. Histogram array and convolutional neural network of DWI for differentiating pancreatic ductal adenocarcinomas from solid pseudopapillary neoplasms and neuroendocrine neoplasms. Clinical Imaging 2023; 96: 15 doi: 10.1016/j.clinimag.2023.01.008
|
29 |
Krzysztof Szymoński, Katarzyna Skirlińska-Nosek, Ewelina Lipiec, Kamila Sofińska, Michał Czaja, Natalia Wilkosz, Matylda Krupa, Filip Wanat, Magdalena Ulatowska-Białas, Dariusz Adamek. Combined analytical approach empowers precise spectroscopic interpretation of subcellular components of pancreatic cancer cells. Analytical and Bioanalytical Chemistry 2023; 415(29-30): 7281 doi: 10.1007/s00216-023-04997-w
|
30 |
Ajanthaa Lakkshmanan, C. Anbu Ananth, S. Tiroumalmouroughane S. Tiroumalmouroughane. An automated deep learning based pancreatic tumor diagnosis and classification model using computed tomography images. International Journal of Intelligent Computing and Cybernetics 2022; 15(3): 454 doi: 10.1108/IJICC-09-2021-0212
|
31 |
Maha M. Althobaiti, Ahmed Almulihi, Amal Adnan Ashour, Romany F. Mansour, Deepak Gupta, Deepak Kumar Jain. Design of Optimal Deep Learning-Based Pancreatic Tumor and Nontumor Classification Model Using Computed Tomography Scans. Journal of Healthcare Engineering 2022; 2022: 1 doi: 10.1155/2022/2872461
|
32 |
Thanaporn Viriyasaranon, Sang Myung Woo, Jang-Hwan Choi. Unsupervised Visual Representation Learning Based on Segmentation of Geometric Pseudo-Shapes for Transformer-Based Medical Tasks. IEEE Journal of Biomedical and Health Informatics 2023; 27(4): 2003 doi: 10.1109/JBHI.2023.3237596
|
33 |
Chaithanyadas Kanady Vishnudas, G. R. Gnana King. Computer-aided diagnosis for early detection and staging of human pancreatic tumors using an optimized 3D CNN on computed tomography. Multimedia Systems 2023; 29(5): 2689 doi: 10.1007/s00530-023-01146-2
|
34 |
Rares Ilie Orzan, Delia Santa, Noemi Lorenzovici, Thomas Andrei Zareczky, Cristina Pojoga, Renata Agoston, Eva-Henrietta Dulf, Andrada Seicean. Deep Learning in Endoscopic Ultrasound: A Breakthrough in Detecting Distal Cholangiocarcinoma. Cancers 2024; 16(22): 3792 doi: 10.3390/cancers16223792
|
35 |
Khurram Hussain, Yuanqing Xia, Ghulam Abbas, Ameer Onaizah. Optimized pancreatic tumor imaging diagnosis using deep neural network. Alexandria Engineering Journal 2024; 108: 387 doi: 10.1016/j.aej.2024.07.124
|
36 |
Christiaan Viviers, Mark Ramaekers, Amaan Valiuddin, Terese Hellström, Nick Tasios, John van der Ven, Igor Jacobs, Lotte Ewals, Joost Nederend, Peter de With, Misha Luyer, Fons van der Sommen. Segmentation-based Assessment of Tumor-Vessel Involvement for Surgical Resectability Prediction of Pancreatic Ductal Adenocarcinoma. 2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW) 2023; : 2413 doi: 10.1109/ICCVW60793.2023.00256
|
37 |
M. G. Dinesh, Nebojsa Bacanin, S. S. Askar, Mohamed Abouhawwash. Diagnostic ability of deep learning in detection of pancreatic tumour. Scientific Reports 2023; 13(1) doi: 10.1038/s41598-023-36886-8
|
38 |
Cai Wang, Pengyi Yu, Haicheng Zhang, Xiao Han, Zheying Song, Guibin Zheng, Guangkuo Wang, Haitao Zheng, Ning Mao, Xicheng Song. Artificial intelligence–based prediction of cervical lymph node metastasis in papillary thyroid cancer with CT. European Radiology 2023; 33(10): 6828 doi: 10.1007/s00330-023-09700-2
|
39 |
Hiromitsu Hayashi, Norio Uemura, Kazuki Matsumura, Liu Zhao, Hiroki Sato, Yuta Shiraishi, Yo-ichi Yamashita, Hideo Baba. Recent advances in artificial intelligence for pancreatic ductal adenocarcinoma. World Journal of Gastroenterology 2021; 27(43): 7480-7496 doi: 10.3748/wjg.v27.i43.7480
|
40 |
Julia Arribas Anta, Iván Martínez-Ballestero, Daniel Eiroa, Javier García, Júlia Rodríguez-Comas. Artificial intelligence for the detection of pancreatic lesions. International Journal of Computer Assisted Radiology and Surgery 2022; 17(10): 1855 doi: 10.1007/s11548-022-02706-z
|
41 |
Koteswaramma Dodda, G. Muneeswari. IANFIS: a machine learning–based optimized technique for the classification and segmentation of pancreatic cancer. Research on Biomedical Engineering 2024; 40(2): 373 doi: 10.1007/s42600-024-00352-9
|
42 |
Heng Wang, Zhongyi Wu, Fei Wang, Wenting Wei, Kezhen Wei, Zhaobang Liu. MAFF: Multi-scale and self-adaptive attention feature fusion network for pancreatic lesion detection in PET / CT images. Proceedings of the 2022 6th International Conference on Electronic Information Technology and Computer Engineering 2022; : 1412 doi: 10.1145/3573428.3573678
|
43 |
K. V. Chaithanyadas, G. R. Gnana King. Computational Vision and Bio-Inspired Computing. Advances in Intelligent Systems and Computing 2023; 1439: 289 doi: 10.1007/978-981-19-9819-5_22
|
44 |
Thavavel Vaiyapuri, Ashit Kumar Dutta, I. S. Hephzi Punithavathi, P. Duraipandy, Saud S. Alotaibi, Hadeel Alsolai, Abdullah Mohamed, Hany Mahgoub. Intelligent Deep-Learning-Enabled Decision-Making Medical System for Pancreatic Tumor Classification on CT Images. Healthcare 2022; 10(4): 677 doi: 10.3390/healthcare10040677
|
45 |
|
46 |
Hari Mohan Rai, Joon Yoo, Abdul Razaque. Comparative analysis of machine learning and deep learning models for improved cancer detection: A comprehensive review of recent advancements in diagnostic techniques. Expert Systems with Applications 2024; 255: 124838 doi: 10.1016/j.eswa.2024.124838
|
47 |
Bahrudeen Shahul Hameed, Uma Maheswari Krishnan. Artificial Intelligence-Driven Diagnosis of Pancreatic Cancer. Cancers 2022; 14(21): 5382 doi: 10.3390/cancers14215382
|
48 |
Shyamapada Mandal, Keerthiveena Balraj, Hariprasad Kodamana, Chetan Arora, Julie M. Clark, David S. Kwon, Anurag S. Rathore. Weakly supervised large-scale pancreatic cancer detection using multi-instance learning. Frontiers in Oncology 2024; 14 doi: 10.3389/fonc.2024.1362850
|