For: |
Huang GM, Sun Y, Ge X, Wan X, Li CB. Gambogic acid induces apoptosis and inhibits colorectal tumor growth |
---|---|
URL: | https://www.wjgnet.com/1007-9327/full/v21/i20/6194.htm |
Number | Citing Articles |
1 |
Yonghui Wang, Yana Sui, Yinggang Tao. Gambogic acid increases the sensitivity to paclitaxel in drug‑resistant triple‑negative breast cancer via the SHH signaling pathway. Molecular Medicine Reports 2019; doi: 10.3892/mmr.2019.10697
|
2 |
Meng Li, Fali Su, Mingtao Zhu, Huan Zhang, Yuxin Wei, Yang Zhao, Jianmin Li, Shaowa Lv. Research Progress in the Field of Gambogic Acid and Its Derivatives as Antineoplastic Drugs. Molecules 2022; 27(9): 2937 doi: 10.3390/molecules27092937
|
3 |
Meng-Qi Su, Yi-Ran Zhou, Cheng-Qin Li, Zhou Wang, Yue-Liang Wang, Bai-Yong Shen, Jie Dou. Zedoary Turmeric Oil Induces Senescence and Apoptosis in Human Colon Cancer HCT116 Cells. Natural Product Communications 2018; 13(7) doi: 10.1177/1934578X1801300731
|
4 |
Qianyu Zhang, Ying Zhang, Chen Wang, Huan Tang, Ang Ma, Peng Gao, Qiaoli Shi, Guohua Wang, Shengnan Shen, Junzhe Zhang, Fei Xia, Yinhua Zhu, Jigang Wang. Gambogic acid exhibits promising anticancer activity by inhibiting the pentose phosphate pathway in lung cancer mouse model. Phytomedicine 2024; 129: 155657 doi: 10.1016/j.phymed.2024.155657
|
5 |
Anne Nguyen, Hidenori Ando, Roland Böttger, K. K. DurgaRao Viswanadham, Elham Rouhollahi, Tatsuhiro Ishida, Shyh-Dar Li. Utilization of click chemistry to study the effect of poly(ethylene)glycol molecular weight on the self-assembly of PEGylated gambogic acid nanoparticles for the treatment of rheumatoid arthritis. Biomaterials Science 2020; 8(16): 4626 doi: 10.1039/D0BM00711K
|
6 |
Meizhu Shen, Yong Zhang, Fang Wu, Meizhen Shen, Sen Zhang, Yun Guo, Jialiang Gan, Rensheng Wang. Knockdown of hCINAP sensitizes colorectal cancer cells to ionizing radiation. Cell Cycle 2024; 23(3): 233 doi: 10.1080/15384101.2024.2309015
|
7 |
Elham Hatami, Meena Jaggi, Subhash C. Chauhan, Murali M. Yallapu. Gambogic acid: A shining natural compound to nanomedicine for cancer therapeutics. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2020; 1874(1): 188381 doi: 10.1016/j.bbcan.2020.188381
|
8 |
Shih-Chi Su, Yi-Tzu Chen, Yi-Hsien Hsieh, Wei-En Yang, Chun-Wen Su, Wen-Yu Chiu, Shun-Fa Yang, Chiao-Wen Lin. Gambogic Acid Induces HO-1 Expression and Cell Apoptosis through p38 Signaling in Oral Squamous Cell Carcinoma. The American Journal of Chinese Medicine 2022; 50(06): 1663 doi: 10.1142/S0192415X22500707
|
9 |
Daniela Jornada, Guilherme Dos Santos Fernandes, Diego Chiba, Thais De Melo, Jean Dos Santos, Man Chung. The Prodrug Approach: A Successful Tool for Improving Drug Solubility. Molecules 2015; 21(1): 42 doi: 10.3390/molecules21010042
|
10 |
Yee Lin Phang, Changwu Zheng, Hongxi Xu. Structural diversity and biological activities of caged Garcinia xanthones: recent updates. Acta Materia Medica 2022; 1(1) doi: 10.15212/AMM-2022-0001
|
11 |
Hangjun Ke, Joanne M. Morrisey, Shiwei Qu, Oraphin Chantarasriwong, Michael W. Mather, Emmanuel A. Theodorakis, Akhil B. Vaidya. Caged Garcinia Xanthones, a Novel Chemical Scaffold with Potent Antimalarial Activity. Antimicrobial Agents and Chemotherapy 2017; 61(1) doi: 10.1128/AAC.01220-16
|
12 |
Bhanuz Dechayont, Chayaporn Limpichai, Kornrawee Kornwisitwathin, Nitra Nuengchamnong, Arunporn Itharat. In vitro cytotoxic and antioxidant activities of Pikut Trichinthalamaga remedy. Oriental Pharmacy and Experimental Medicine 2017; 17(3): 233 doi: 10.1007/s13596-017-0278-6
|
13 |
Kishore Banik, Choudhary Harsha, Devivasha Bordoloi, Bethsebie Lalduhsaki Sailo, Gautam Sethi, Hin Chong Leong, Frank Arfuso, Srishti Mishra, Lingzhi Wang, Alan P. Kumar, Ajaikumar B. Kunnumakkara. Therapeutic potential of gambogic acid, a caged xanthone, to target cancer. Cancer Letters 2018; 416: 75 doi: 10.1016/j.canlet.2017.12.014
|
14 |
Sherif Ashraf Fahmy, Rawan Elghanam, Gowhar Rashid, Rana A. Youness, Nada K. Sedky. Emerging tendencies for the nano-delivery of gambogic acid: a promising approach in oncotherapy. RSC Advances 2024; 14(7): 4666 doi: 10.1039/D3RA08042K
|
15 |
Ahmet ÇETİN, Aykut ÖZGÜR, Mehmet KUZUCU, Murat ÇANKAYA. Investigation of The Synergistic Effects of Trastuzumab And Gambogic Acid in Her-2 Positive Breast Cancer Cell Line. Hacettepe Journal of Biology and Chemistry 2020; 48(3): 291 doi: 10.15671/hjbc.672695
|
16 |
Vijay P. Kale, Patrick J. Gilhooley, Sangita Phadtare, Ali Nabavizadeh, Manoj K. Pandey. Role of Nutraceuticals in Chemoresistance to Cancer. 2018; : 151 doi: 10.1016/B978-0-12-812373-7.00008-5
|
17 |
Yuling Liu, Yingchong Chen, Longfei Lin, Hui Li. Gambogic Acid as a Candidate for Cancer Therapy: A Review. International Journal of Nanomedicine 2020; : 10385 doi: 10.2147/IJN.S277645
|
18 |
Lavínia de C. Brito, Ana Luiza Rangel Berenger, Maria Raquel Figueiredo. An overview of anticancer activity of Garcinia and Hypericum. Food and Chemical Toxicology 2017; 109: 847 doi: 10.1016/j.fct.2017.03.053
|
19 |
Guangyi Gao, Yinzhu Bian, Hanqing Qian, Mi Yang, Jing Hu, Li Li, Lixia Yu, Baorui Liu, Xiaoping Qian. Gambogic acid regulates the migration and invasion of colorectal cancer via microRNA‑21‑mediated activation of phosphatase and tensin homolog. Experimental and Therapeutic Medicine 2018; doi: 10.3892/etm.2018.6421
|
20 |
Qun Zhao, Jing Zhong, Yun Bi, Yongqiang Liu, Yingxiang Liu, Jian Guo, Longrui Pan, Yan Tan, Xianjun Yu. Gambogenic acid induces Noxa-mediated apoptosis in colorectal cancer through ROS-dependent activation of IRE1α/JNK. Phytomedicine 2020; 78: 153306 doi: 10.1016/j.phymed.2020.153306
|
21 |
Kendrick H. Yim, Thomas L. Prince, Shiwei Qu, Fang Bai, Patricia A. Jennings, José N. Onuchic, Emmanuel A. Theodorakis, Leonard Neckers. Gambogic acid identifies an isoform-specific druggable pocket in the middle domain of Hsp90β. Proceedings of the National Academy of Sciences 2016; 113(33) doi: 10.1073/pnas.1606655113
|
22 |
Wei Fang, Ya Ji Dai, Ting Wang, Hai Tao Gao, Peng Huang, Juan Yu, He Ping Huang, Dian Lei Wang, Wei Lu Zong. Aminated β-cyclodextrin-grafted Fe3O4-loaded gambogic acid magnetic nanoparticles: preparation, characterization, and biological evaluation. RSC Advances 2019; 9(47): 27136 doi: 10.1039/C9RA04955J
|
23 |
Ying Jiang, Xiaoqin Wang, Daode Hu. Furanodienone induces G0/G1 arrest and causes apoptosis via the ROS/MAPKs-mediated caspase-dependent pathway in human colorectal cancer cells: a study in vitro and in vivo. Cell Death & Disease 2017; 8(5): e2815 doi: 10.1038/cddis.2017.220
|
24 |
Min Ji Seo, Dong Min Lee, In Young Kim, Dongjoo Lee, Min-Koo Choi, Joo-Youn Lee, Seok Soon Park, Seong-Yun Jeong, Eun Kyung Choi, Kyeong Sook Choi. Gambogic acid triggers vacuolization-associated cell death in cancer cells via disruption of thiol proteostasis. Cell Death & Disease 2019; 10(3) doi: 10.1038/s41419-019-1360-4
|
25 |
Zhenlong Yu, Yanan Jv, Lu Cai, Xiangge Tian, Xiaokui Huo, Chao Wang, Baojing Zhang, ChengPeng Sun, Jing Ning, Lei Feng, Houli Zhang, Xiaochi Ma. Gambogic acid attenuates liver fibrosis by inhibiting the PI3K/AKT and MAPK signaling pathways via inhibiting HSP90. Toxicology and Applied Pharmacology 2019; 371: 63 doi: 10.1016/j.taap.2019.03.028
|
26 |
Xianting Ding, Vincent H. S. Chang, Yulong Li, Xin Li, Hongquan Xu, Chih‐Ming Ho, Dean Ho, Yun Yen. Harnessing an Artificial Intelligence Platform to Dynamically Individualize Combination Therapy for Treating Colorectal Carcinoma in a Rat Model. Advanced Therapeutics 2020; 3(4) doi: 10.1002/adtp.201900127
|
27 |
Dharambir Kashyap, Rajkumar Mondal, Hardeep Singh Tuli, Gaurav Kumar, Anil K. Sharma. Molecular targets of gambogic acid in cancer: recent trends and advancements. Tumor Biology 2016; 37(10): 12915 doi: 10.1007/s13277-016-5194-8
|
28 |
Manoj K. Pandey, Deepkamal Karelia, Shantu G. Amin. Anti-inflammatory Nutraceuticals and Chronic Diseases. Advances in Experimental Medicine and Biology 2016; 928: 375 doi: 10.1007/978-3-319-41334-1_15
|
29 |
Anne Nguyen, Elham Rouhollahi, Roland Böttger, Chun Yat Ong, Po-Han Chao, Jiamin Wu, Yao Chen, Shyh-Dar Li. Interplay between the linker and polymer molecular weight of a self-assembling prodrug on the pharmacokinetics and therapeutic efficacy. Biomaterials Science 2022; 10(12): 3122 doi: 10.1039/D1BM01947C
|
30 |
Hossam R. Elgiushy, Sameh H. Mohamed, Heba Taha, Hussein Sawaf, Zeinab Hassan, Nageh A. Abou-Taleb, Eman M. El-labbad, Ashraf S. Hassan, Khaled A.M. Abouzid, Sherif F. Hammad. Identification of a promising hit from a new series of pyrazolo[1,5-a]pyrimidine based compounds as a potential anticancer agent with potent CDK1 inhibitory and pro-apoptotic properties through a multistep in vitro assessment. Bioorganic Chemistry 2022; 120: 105646 doi: 10.1016/j.bioorg.2022.105646
|
31 |
Sameh H. Mohamed, Hossam R. Elgiushy, Heba Taha, Sherif F. Hammad, Nageh A. Abou-Taleb, Khaled A. M. Abouzid, Hussein Al-Sawaf, Zeinab Hassan. An investigative study of antitumor properties of a novel thiazolo[4,5-d]pyrimidine small molecule revealing superior antitumor activity with CDK1 selectivity and potent pro-apoptotic properties. Bioorganic & Medicinal Chemistry 2020; 28(17): 115633 doi: 10.1016/j.bmc.2020.115633
|
32 |
Ji Chuan Kong, Feng Zhou, Liting Shi, Yihui Wei, Chunhong Wu. A novel nanodrug for the sensitization of photothermal chemotherapy for breast cancer in vitro. RSC Advances 2024; 14(30): 21292 doi: 10.1039/D4RA01611D
|
33 |
You Li, Wenqi Liao, Wei Huang, Fenglin Liu, Lin Ma, Xiaoping Qian. Mechanism of gambogic acid repressing invasion and metastasis of colorectal cancer by regulating macrophage polarization via tumor cell‐derived extracellular vesicle‐shuttled miR‐21. Drug Development Research 2024; 85(1) doi: 10.1002/ddr.22141
|