1
|
Tun HM, Rahman HA, Naing L, Malik OA. Artificial intelligence utilization in cancer screening program across ASEAN: a scoping review. BMC Cancer 2025; 25:703. [PMID: 40234807 PMCID: PMC12001681 DOI: 10.1186/s12885-025-14026-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 03/26/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Cancer remains a significant health challenge in the ASEAN region, highlighting the need for effective screening programs. However, approaches, target demographics, and intervals vary across ASEAN member states, necessitating a comprehensive understanding of these variations to assess program effectiveness. Additionally, while artificial intelligence (AI) holds promise as a tool for cancer screening, its utilization in the ASEAN region is unexplored. PURPOSE This study aims to identify and evaluate different cancer screening programs across ASEAN, with a focus on assessing the integration and impact of AI in these programs. METHODS A scoping review was conducted using PRISMA-ScR guidelines to provide a comprehensive overview of cancer screening programs and AI usage across ASEAN. Data were collected from government health ministries, official guidelines, literature databases, and relevant documents. The use of AI in cancer screening reviews involved searches through PubMed, Scopus, and Google Scholar with the inclusion criteria of only included studies that utilized data from the ASEAN region from January 2019 to May 2024. RESULTS The findings reveal diverse cancer screening approaches in ASEAN. Countries like Myanmar, Laos, Cambodia, Vietnam, Brunei, Philippines, Indonesia and Timor-Leste primarily adopt opportunistic screening, while Singapore, Malaysia, and Thailand focus on organized programs. Cervical cancer screening is widespread, using both opportunistic and organized methods. Fourteen studies were included in the scoping review, covering breast (5 studies), cervical (2 studies), colon (4 studies), hepatic (1 study), lung (1 study), and oral (1 study) cancers. Studies revealed that different stages of AI integration for cancer screening: prospective clinical evaluation (50%), silent trial (36%) and exploratory model development (14%), with promising results in enhancing cancer screening accuracy and efficiency. CONCLUSION Cancer screening programs in the ASEAN region require more organized approaches targeting appropriate age groups at regular intervals to meet the WHO's 2030 screening targets. Efforts to integrate AI in Singapore, Malaysia, Vietnam, Thailand, and Indonesia show promise in optimizing screening processes, reducing costs, and improving early detection. AI technology integration enhances cancer identification accuracy during screening, improving early detection and cancer management across the ASEAN region.
Collapse
Affiliation(s)
- Hein Minn Tun
- PAPRSB Institute of Health Science, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei.
- School of Digital Science, Universiti Brunei Darussalam, Lebuhraya Tungku, Bandar Seri Begawan, Brunei.
| | - Hanif Abdul Rahman
- PAPRSB Institute of Health Science, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei
- School of Digital Science, Universiti Brunei Darussalam, Lebuhraya Tungku, Bandar Seri Begawan, Brunei
| | - Lin Naing
- PAPRSB Institute of Health Science, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei
| | - Owais Ahmed Malik
- School of Digital Science, Universiti Brunei Darussalam, Lebuhraya Tungku, Bandar Seri Begawan, Brunei
| |
Collapse
|
2
|
Enslin S, Kaul V. Past, Present, and Future: A History Lesson in Artificial Intelligence. Gastrointest Endosc Clin N Am 2025; 35:265-278. [PMID: 40021228 DOI: 10.1016/j.giec.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Over the past 5 decades, artificial intelligence (AI) has evolved rapidly. Moving from basic models to advanced machine learning and deep learning systems, the impact of AI on various fields, including medicine, has been profound. In gastroenterology, AI-driven computer-aided detection and computer-aided diagnosis systems have revolutionized endoscopy, imaging, and pathology detection. The future promises further advancements in diagnostic precision, personalized treatment, and clinical research. However, challenges such as transparency, liability, and ethical concerns must be addressed. By fostering collaboration, robust governance and development of quality metrics, AI can be leveraged to enhance patient care and advance scientific knowledge.
Collapse
Affiliation(s)
- Sarah Enslin
- Division of Gastroenterology and Hepatology, Center for Advanced Therapeutic Endoscopy, University of Rochester Medical Center, 601 Elmwood Avenue, Box 646, Rochester, NY 14642, USA
| | - Vivek Kaul
- Division of Gastroenterology and Hepatology, Center for Advanced Therapeutic Endoscopy, University of Rochester Medical Center, 601 Elmwood Avenue, Box 646, Rochester, NY 14642, USA.
| |
Collapse
|
3
|
Meinikheim M, Mendel R, Palm C, Probst A, Muzalyova A, Scheppach MW, Nagl S, Schnoy E, Römmele C, Schulz DAH, Schlottmann J, Prinz F, Rauber D, Rückert T, Matsumura T, Fernández-Esparrach G, Parsa N, Byrne MF, Messmann H, Ebigbo A. Influence of artificial intelligence on the diagnostic performance of endoscopists in the assessment of Barrett's esophagus: a tandem randomized and video trial. Endoscopy 2024; 56:641-649. [PMID: 38547927 DOI: 10.1055/a-2296-5696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
BACKGROUND This study evaluated the effect of an artificial intelligence (AI)-based clinical decision support system on the performance and diagnostic confidence of endoscopists in their assessment of Barrett's esophagus (BE). METHODS 96 standardized endoscopy videos were assessed by 22 endoscopists with varying degrees of BE experience from 12 centers. Assessment was randomized into two video sets: group A (review first without AI and second with AI) and group B (review first with AI and second without AI). Endoscopists were required to evaluate each video for the presence of Barrett's esophagus-related neoplasia (BERN) and then decide on a spot for a targeted biopsy. After the second assessment, they were allowed to change their clinical decision and confidence level. RESULTS AI had a stand-alone sensitivity, specificity, and accuracy of 92.2%, 68.9%, and 81.3%, respectively. Without AI, BE experts had an overall sensitivity, specificity, and accuracy of 83.3%, 58.1%, and 71.5%, respectively. With AI, BE nonexperts showed a significant improvement in sensitivity and specificity when videos were assessed a second time with AI (sensitivity 69.8% [95%CI 65.2%-74.2%] to 78.0% [95%CI 74.0%-82.0%]; specificity 67.3% [95%CI 62.5%-72.2%] to 72.7% [95%CI 68.2%-77.3%]). In addition, the diagnostic confidence of BE nonexperts improved significantly with AI. CONCLUSION BE nonexperts benefitted significantly from additional AI. BE experts and nonexperts remained significantly below the stand-alone performance of AI, suggesting that there may be other factors influencing endoscopists' decisions to follow or discard AI advice.
Collapse
Affiliation(s)
- Michael Meinikheim
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| | - Robert Mendel
- Regensburg Medical Image Computing, Ostbayerische Technische Hochschule Regensburg, Regensburg, Germany
| | - Christoph Palm
- Regensburg Medical Image Computing, Ostbayerische Technische Hochschule Regensburg, Regensburg, Germany
| | - Andreas Probst
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| | - Anna Muzalyova
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| | - Markus W Scheppach
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| | - Sandra Nagl
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| | - Elisabeth Schnoy
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| | - Christoph Römmele
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| | - Dominik A H Schulz
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| | - Jakob Schlottmann
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| | - Friederike Prinz
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| | - David Rauber
- Regensburg Medical Image Computing, Ostbayerische Technische Hochschule Regensburg, Regensburg, Germany
| | - Tobias Rückert
- Regensburg Medical Image Computing, Ostbayerische Technische Hochschule Regensburg, Regensburg, Germany
| | - Tomoaki Matsumura
- Department of Gastroenterology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Glòria Fernández-Esparrach
- Endoscopy Unit, Gastroenterology Department, ICMDM, Hospital Clínic de Barcelona, Barcelona, Spain
- Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Nasim Parsa
- Division of Gastroenterology and Hepatology, Mayo Clinic, Scottsdale, United States
- Satisfai Health, Vancouver, Canada
| | - Michael F Byrne
- Satisfai Health, Vancouver, Canada
- Gastroenterology, Vancouver General Hospital, The University of British Columbia, Vancouver, Canada
| | - Helmut Messmann
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| | - Alanna Ebigbo
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| |
Collapse
|
4
|
Kikuchi R, Okamoto K, Ozawa T, Shibata J, Ishihara S, Tada T. Endoscopic Artificial Intelligence for Image Analysis in Gastrointestinal Neoplasms. Digestion 2024; 105:419-435. [PMID: 39068926 DOI: 10.1159/000540251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Artificial intelligence (AI) using deep learning systems has recently been utilized in various medical fields. In the field of gastroenterology, AI is primarily implemented in image recognition and utilized in the realm of gastrointestinal (GI) endoscopy. In GI endoscopy, computer-aided detection/diagnosis (CAD) systems assist endoscopists in GI neoplasm detection or differentiation of cancerous or noncancerous lesions. Several AI systems for colorectal polyps have already been applied in colonoscopy clinical practices. In esophagogastroduodenoscopy, a few CAD systems for upper GI neoplasms have been launched in Asian countries. The usefulness of these CAD systems in GI endoscopy has been gradually elucidated. SUMMARY In this review, we outline recent articles on several studies of endoscopic AI systems for GI neoplasms, focusing on esophageal squamous cell carcinoma (ESCC), esophageal adenocarcinoma (EAC), gastric cancer (GC), and colorectal polyps. In ESCC and EAC, computer-aided detection (CADe) systems were mainly developed, and a recent meta-analysis study showed sensitivities of 91.2% and 93.1% and specificities of 80% and 86.9%, respectively. In GC, a recent meta-analysis study on CADe systems demonstrated that their sensitivity and specificity were as high as 90%. A randomized controlled trial (RCT) also showed that the use of the CADe system reduced the miss rate. Regarding computer-aided diagnosis (CADx) systems for GC, although RCTs have not yet been conducted, most studies have demonstrated expert-level performance. In colorectal polyps, multiple RCTs have shown the usefulness of the CADe system for improving the polyp detection rate, and several CADx systems have been shown to have high accuracy in colorectal polyp differentiation. KEY MESSAGES Most analyses of endoscopic AI systems suggested that their performance was better than that of nonexpert endoscopists and equivalent to that of expert endoscopists. Thus, endoscopic AI systems may be useful for reducing the risk of overlooking lesions and improving the diagnostic ability of endoscopists.
Collapse
Affiliation(s)
- Ryosuke Kikuchi
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuaki Okamoto
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Ozawa
- Tomohiro Tada the Institute of Gastroenterology and Proctology, Saitama, Japan
- AI Medical Service Inc., Tokyo, Japan
| | - Junichi Shibata
- Tomohiro Tada the Institute of Gastroenterology and Proctology, Saitama, Japan
- AI Medical Service Inc., Tokyo, Japan
| | - Soichiro Ishihara
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Tada
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Tomohiro Tada the Institute of Gastroenterology and Proctology, Saitama, Japan
- AI Medical Service Inc., Tokyo, Japan
| |
Collapse
|
5
|
Tao Y, Fang L, Qin G, Xu Y, Zhang S, Zhang X, Du S. Efficiency of endoscopic artificial intelligence in the diagnosis of early esophageal cancer. Thorac Cancer 2024; 15:1296-1304. [PMID: 38685604 PMCID: PMC11147664 DOI: 10.1111/1759-7714.15261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND The accuracy of artificial intelligence (AI) and experts in diagnosing early esophageal cancer (EC) and its infiltration depth was summarized and analyzed, thus identifying the advantages of AI over traditional manual diagnosis, with a view to more accurately assisting doctors in evaluating the patients' conditions and improving their cure and survival rates. METHODS The PubMed, EMBASE, Cochrane, Google, and CNKI databases were searched for relevant literature related to AI diagnosis of early EC and its invasion depth published before August 2023. Summary analysis of pooled sensitivity, specificity, summary receiver operating characteristics (SROC) and area under the curve (AUC) of AI in diagnosing early EC were performed, and Review Manager and Stata were adopted for data analysis. RESULTS A total of 19 studies were enrolled with a low to moderate total risk of bias. The pooled sensitivity of AI for diagnosing early EC was markedly higher than that of novices and comparable to that of endoscopists. Moreover, AI predicted early EC with markedly higher AUCs than novices and experts (0.93 vs. 0.74 vs. 0.89). In addition, pooled sensitivity and specificity in the diagnosis of invasion depth in early EC were higher than that of experts, with AUCs of 0.97 and 0.92, respectively. CONCLUSION AI-assistance can diagnose early EC and its infiltration depth more accurately, which can help in its early intervention and the customization of personalized treatment plans. Therefore, AI systems have great potential in the early diagnosis of EC.
Collapse
Affiliation(s)
- Yongkang Tao
- Department of GastroenterologyChina‐Japan Friendship HospitalBeijingChina
| | - Long Fang
- Department of GastroenterologyChina‐Japan Friendship HospitalBeijingChina
| | - Geng Qin
- Department of GastroenterologyChina‐Japan Friendship HospitalBeijingChina
| | - Yingying Xu
- Department of GastroenterologyChina‐Japan Friendship HospitalBeijingChina
| | - Shuang Zhang
- Beijing University of Chinese MedicineBeijingChina
| | | | - Shiyu Du
- Department of GastroenterologyChina‐Japan Friendship HospitalBeijingChina
| |
Collapse
|
6
|
Takeda T, Asaoka D, Ueyama H, Abe D, Suzuki M, Inami Y, Uemura Y, Yamamoto M, Iwano T, Uchida R, Utsunomiya H, Oki S, Suzuki N, Ikeda A, Akazawa Y, Matsumoto K, Ueda K, Hojo M, Nojiri S, Tada T, Nagahara A. Development of an Artificial Intelligence Diagnostic System Using Linked Color Imaging for Barrett's Esophagus. J Clin Med 2024; 13:1990. [PMID: 38610762 PMCID: PMC11012507 DOI: 10.3390/jcm13071990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Background: Barrett's esophagus and esophageal adenocarcinoma cases are increasing as gastroesophageal reflux disease increases. Using artificial intelligence (AI) and linked color imaging (LCI), our aim was to establish a method of diagnosis for short-segment Barrett's esophagus (SSBE). Methods: We retrospectively selected 624 consecutive patients in total at our hospital, treated between May 2017 and March 2020, who experienced an esophagogastroduodenoscopy with white light imaging (WLI) and LCI. Images were randomly chosen as data for learning from WLI: 542 (SSBE+/- 348/194) of 696 (SSBE+/- 444/252); and LCI: 643 (SSBE+/- 446/197) of 805 (SSBE+/- 543/262). Using a Vision Transformer (Vit-B/16-384) to diagnose SSBE, we established two AI systems for WLI and LCI. Finally, 126 WLI (SSBE+/- 77/49) and 137 LCI (SSBE+/- 81/56) images were used for verification purposes. The accuracy of six endoscopists in making diagnoses was compared to that of AI. Results: Study participants were 68.2 ± 12.3 years, M/F 330/294, SSBE+/- 409/215. The accuracy/sensitivity/specificity (%) of AI were 84.1/89.6/75.5 for WLI and 90.5/90.1/91.1/for LCI, and those of experts and trainees were 88.6/88.7/88.4, 85.7/87.0/83.7 for WLI and 93.4/92.6/94.6, 84.7/88.1/79.8 for LCI, respectively. Conclusions: Using AI to diagnose SSBE was similar in accuracy to using a specialist. Our finding may aid the diagnosis of SSBE in the clinic.
Collapse
Affiliation(s)
- Tsutomu Takeda
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; (H.U.); (D.A.); (Y.U.); (M.Y.); (T.I.); (R.U.); (H.U.); (S.O.); (N.S.); (A.I.); (Y.A.); (K.M.); (K.U.); (M.H.); (A.N.)
| | - Daisuke Asaoka
- Department of Gastroenterology, Juntendo Tokyo Koto Geriatric Medical Center, Tokyo 136-0075, Japan; (D.A.); (M.S.); (Y.I.)
| | - Hiroya Ueyama
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; (H.U.); (D.A.); (Y.U.); (M.Y.); (T.I.); (R.U.); (H.U.); (S.O.); (N.S.); (A.I.); (Y.A.); (K.M.); (K.U.); (M.H.); (A.N.)
| | - Daiki Abe
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; (H.U.); (D.A.); (Y.U.); (M.Y.); (T.I.); (R.U.); (H.U.); (S.O.); (N.S.); (A.I.); (Y.A.); (K.M.); (K.U.); (M.H.); (A.N.)
| | - Maiko Suzuki
- Department of Gastroenterology, Juntendo Tokyo Koto Geriatric Medical Center, Tokyo 136-0075, Japan; (D.A.); (M.S.); (Y.I.)
| | - Yoshihiro Inami
- Department of Gastroenterology, Juntendo Tokyo Koto Geriatric Medical Center, Tokyo 136-0075, Japan; (D.A.); (M.S.); (Y.I.)
| | - Yasuko Uemura
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; (H.U.); (D.A.); (Y.U.); (M.Y.); (T.I.); (R.U.); (H.U.); (S.O.); (N.S.); (A.I.); (Y.A.); (K.M.); (K.U.); (M.H.); (A.N.)
| | - Momoko Yamamoto
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; (H.U.); (D.A.); (Y.U.); (M.Y.); (T.I.); (R.U.); (H.U.); (S.O.); (N.S.); (A.I.); (Y.A.); (K.M.); (K.U.); (M.H.); (A.N.)
| | - Tomoyo Iwano
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; (H.U.); (D.A.); (Y.U.); (M.Y.); (T.I.); (R.U.); (H.U.); (S.O.); (N.S.); (A.I.); (Y.A.); (K.M.); (K.U.); (M.H.); (A.N.)
| | - Ryota Uchida
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; (H.U.); (D.A.); (Y.U.); (M.Y.); (T.I.); (R.U.); (H.U.); (S.O.); (N.S.); (A.I.); (Y.A.); (K.M.); (K.U.); (M.H.); (A.N.)
| | - Hisanori Utsunomiya
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; (H.U.); (D.A.); (Y.U.); (M.Y.); (T.I.); (R.U.); (H.U.); (S.O.); (N.S.); (A.I.); (Y.A.); (K.M.); (K.U.); (M.H.); (A.N.)
| | - Shotaro Oki
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; (H.U.); (D.A.); (Y.U.); (M.Y.); (T.I.); (R.U.); (H.U.); (S.O.); (N.S.); (A.I.); (Y.A.); (K.M.); (K.U.); (M.H.); (A.N.)
| | - Nobuyuki Suzuki
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; (H.U.); (D.A.); (Y.U.); (M.Y.); (T.I.); (R.U.); (H.U.); (S.O.); (N.S.); (A.I.); (Y.A.); (K.M.); (K.U.); (M.H.); (A.N.)
| | - Atsushi Ikeda
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; (H.U.); (D.A.); (Y.U.); (M.Y.); (T.I.); (R.U.); (H.U.); (S.O.); (N.S.); (A.I.); (Y.A.); (K.M.); (K.U.); (M.H.); (A.N.)
| | - Yoichi Akazawa
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; (H.U.); (D.A.); (Y.U.); (M.Y.); (T.I.); (R.U.); (H.U.); (S.O.); (N.S.); (A.I.); (Y.A.); (K.M.); (K.U.); (M.H.); (A.N.)
| | - Kohei Matsumoto
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; (H.U.); (D.A.); (Y.U.); (M.Y.); (T.I.); (R.U.); (H.U.); (S.O.); (N.S.); (A.I.); (Y.A.); (K.M.); (K.U.); (M.H.); (A.N.)
| | - Kumiko Ueda
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; (H.U.); (D.A.); (Y.U.); (M.Y.); (T.I.); (R.U.); (H.U.); (S.O.); (N.S.); (A.I.); (Y.A.); (K.M.); (K.U.); (M.H.); (A.N.)
| | - Mariko Hojo
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; (H.U.); (D.A.); (Y.U.); (M.Y.); (T.I.); (R.U.); (H.U.); (S.O.); (N.S.); (A.I.); (Y.A.); (K.M.); (K.U.); (M.H.); (A.N.)
| | - Shuko Nojiri
- Department of Medical Technology Innovation Center, Juntendo University School of Medicine, Tokyo 113-8421, Japan;
| | | | - Akihito Nagahara
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; (H.U.); (D.A.); (Y.U.); (M.Y.); (T.I.); (R.U.); (H.U.); (S.O.); (N.S.); (A.I.); (Y.A.); (K.M.); (K.U.); (M.H.); (A.N.)
| |
Collapse
|
7
|
Fockens KN, Jong MR, Jukema JB, Boers TGW, Kusters CHJ, van der Putten JA, Pouw RE, Duits LC, Montazeri NSM, van Munster SN, Weusten BLAM, Alvarez Herrero L, Houben MHMG, Nagengast WB, Westerhof J, Alkhalaf A, Mallant-Hent RC, Scholten P, Ragunath K, Seewald S, Elbe P, Baldaque-Silva F, Barret M, Ortiz Fernández-Sordo J, Villarejo GM, Pech O, Beyna T, van der Sommen F, de With PH, de Groof AJ, Bergman JJ. A deep learning system for detection of early Barrett's neoplasia: a model development and validation study. Lancet Digit Health 2023; 5:e905-e916. [PMID: 38000874 DOI: 10.1016/s2589-7500(23)00199-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/22/2023] [Accepted: 09/18/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Computer-aided detection (CADe) systems could assist endoscopists in detecting early neoplasia in Barrett's oesophagus, which could be difficult to detect in endoscopic images. The aim of this study was to develop, test, and benchmark a CADe system for early neoplasia in Barrett's oesophagus. METHODS The CADe system was first pretrained with ImageNet followed by domain-specific pretraining with GastroNet. We trained the CADe system on a dataset of 14 046 images (2506 patients) of confirmed Barrett's oesophagus neoplasia and non-dysplastic Barrett's oesophagus from 15 centres. Neoplasia was delineated by 14 Barrett's oesophagus experts for all datasets. We tested the performance of the CADe system on two independent test sets. The all-comers test set comprised 327 (73 patients) non-dysplastic Barrett's oesophagus images, 82 (46 patients) neoplastic images, 180 (66 of the same patients) non-dysplastic Barrett's oesophagus videos, and 71 (45 of the same patients) neoplastic videos. The benchmarking test set comprised 100 (50 patients) neoplastic images, 300 (125 patients) non-dysplastic images, 47 (47 of the same patients) neoplastic videos, and 141 (82 of the same patients) non-dysplastic videos, and was enriched with subtle neoplasia cases. The benchmarking test set was evaluated by 112 endoscopists from six countries (first without CADe and, after 6 weeks, with CADe) and by 28 external international Barrett's oesophagus experts. The primary outcome was the sensitivity of Barrett's neoplasia detection by general endoscopists without CADe assistance versus with CADe assistance on the benchmarking test set. We compared sensitivity using a mixed-effects logistic regression model with conditional odds ratios (ORs; likelihood profile 95% CIs). FINDINGS Sensitivity for neoplasia detection among endoscopists increased from 74% to 88% with CADe assistance (OR 2·04; 95% CI 1·73-2·42; p<0·0001 for images and from 67% to 79% [2·35; 1·90-2·94; p<0·0001] for video) without compromising specificity (from 89% to 90% [1·07; 0·96-1·19; p=0·20] for images and from 96% to 94% [0·94; 0·79-1·11; ] for video; p=0·46). In the all-comers test set, CADe detected neoplastic lesions in 95% (88-98) of images and 97% (90-99) of videos. In the benchmarking test set, the CADe system was superior to endoscopists in detecting neoplasia (90% vs 74% [OR 3·75; 95% CI 1·93-8·05; p=0·0002] for images and 91% vs 67% [11·68; 3·85-47·53; p<0·0001] for video) and non-inferior to Barrett's oesophagus experts (90% vs 87% [OR 1·74; 95% CI 0·83-3·65] for images and 91% vs 86% [2·94; 0·99-11·40] for video). INTERPRETATION CADe outperformed endoscopists in detecting Barrett's oesophagus neoplasia and, when used as an assistive tool, it improved their detection rate. CADe detected virtually all neoplasia in a test set of consecutive cases. FUNDING Olympus.
Collapse
Affiliation(s)
- K N Fockens
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - M R Jong
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - J B Jukema
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - T G W Boers
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - C H J Kusters
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - J A van der Putten
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - R E Pouw
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - L C Duits
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - N S M Montazeri
- Biostatistics Unit, Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - S N van Munster
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Department of Gastroenterology and Hepatology, St Antonius Hospital, Nieuwegein, Netherlands
| | - B L A M Weusten
- Department of Gastroenterology and Hepatology, UMC Utrecht, University of Utrecht, Utrecht, Netherlands; Department of Gastroenterology and Hepatology, St Antonius Hospital, Nieuwegein, Netherlands
| | - L Alvarez Herrero
- Department of Gastroenterology and Hepatology, St Antonius Hospital, Nieuwegein, Netherlands
| | - M H M G Houben
- Department of Gastroenterology and Hepatology, HagaZiekenhuis Den Haag, Den Haag, Netherlands
| | - W B Nagengast
- Department of Gastroenterology and Hepatology, UMC Groningen, University of Groningen, Groningen, Netherlands
| | - J Westerhof
- Department of Gastroenterology and Hepatology, UMC Groningen, University of Groningen, Groningen, Netherlands
| | - A Alkhalaf
- Department of Gastroenterology and Hepatology, Isala Hospital Zwolle, Zwolle, Netherlands
| | - R C Mallant-Hent
- Department of Gastroenterology and Hepatology, Flevoziekenhuis Almere, Almere, Netherlands
| | - P Scholten
- Department of Gastroenterology and Hepatology, Onze Lieve Vrouwe Gasthuis, Amsterdam, Netherlands
| | - K Ragunath
- Department of Gastroenterology and Hepatology, Royal Perth Hospital, Curtin University, Perth, WA, Australia
| | - S Seewald
- Department of Gastroenterology and Hepatology, Hirslanden Klinik, Zurich, Switzerland
| | - P Elbe
- Department of Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden; Division of Surgery, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - F Baldaque-Silva
- Department of Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden; Center for Advanced Endoscopy Carlos Moreira da Silva, Gastroenterology Department, Pedro Hispano Hospital, Matosinhos, Portugal
| | - M Barret
- Department of Gastroenterology and Hepatology, Cochin Hospital Paris, Paris, France
| | - J Ortiz Fernández-Sordo
- Department of Gastroenterology and Hepatology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - G Moral Villarejo
- Department of Gastroenterology and Hepatology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - O Pech
- Department of Gastroenterology and Hepatology, St John of God Hospital, Regensburg, Germany
| | - T Beyna
- Department of Gastroenterology and Hepatology, Evangalisches Krankenhaus Düsseldorf, Düsseldorf, Germany
| | - F van der Sommen
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - P H de With
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - A J de Groof
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - J J Bergman
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
8
|
Tang S, Yu X, Cheang CF, Ji X, Yu HH, Choi IC. CLELNet: A continual learning network for esophageal lesion analysis on endoscopic images. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 231:107399. [PMID: 36780717 DOI: 10.1016/j.cmpb.2023.107399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/03/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND OBJECTIVE A deep learning-based intelligent diagnosis system can significantly reduce the burden of endoscopists in the daily analysis of esophageal lesions. Considering the need to add new tasks in the diagnosis system, a deep learning model that can train a series of tasks incrementally using endoscopic images is essential for identifying the types and regions of esophageal lesions. METHOD In this paper, we proposed a continual learning-based esophageal lesion network (CLELNet), in which a convolutional autoencoder was designed to extract representation features of endoscopic images among different esophageal lesions. The proposed CLELNet consists of shared layers and task-specific layers. Shared layers are used to extract common features among different lesions while task-specific layers can complete different tasks. The first two tasks trained by the CLELNet are the classification (task 1) and the segmentation (task 2). We collected a dataset of esophageal endoscopic images from Macau Kiang Wu Hospital for training and testing the CLELNet. RESULTS The experimental results showed that the classification accuracy of task 1 was 95.96%, and the Intersection Over Union and the Dice Similarity Coefficient of task 2 were 65.66% and 78.08%, respectively. CONCLUSIONS The proposed CLELNet can realize task-incremental learning without forgetting the previous tasks and thus become a useful computer-aided diagnosis system in esophageal lesions analysis.
Collapse
Affiliation(s)
- Suigu Tang
- Faculty of Innovation Engineering-School of Computer Science and Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR
| | - Xiaoyuan Yu
- Faculty of Innovation Engineering-School of Computer Science and Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR
| | - Chak Fong Cheang
- Faculty of Innovation Engineering-School of Computer Science and Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR.
| | - Xiaoyu Ji
- Faculty of Innovation Engineering-School of Computer Science and Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR
| | - Hon Ho Yu
- Kiang Wu Hospital, Rua de Coelho do Amaral, Macau SAR
| | - I Cheong Choi
- Kiang Wu Hospital, Rua de Coelho do Amaral, Macau SAR
| |
Collapse
|
9
|
Meinikheim M, Messmann H, Ebigbo A. Role of artificial intelligence in diagnosing Barrett's esophagus-related neoplasia. Clin Endosc 2023; 56:14-22. [PMID: 36646423 PMCID: PMC9902686 DOI: 10.5946/ce.2022.247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/25/2022] [Indexed: 01/18/2023] Open
Abstract
Barrett's esophagus is associated with an increased risk of adenocarcinoma. Thorough screening during endoscopic surveillance is crucial to improve patient prognosis. Detecting and characterizing dysplastic or neoplastic Barrett's esophagus during routine endoscopy are challenging, even for expert endoscopists. Artificial intelligence-based clinical decision support systems have been developed to provide additional assistance to physicians performing diagnostic and therapeutic gastrointestinal endoscopy. In this article, we review the current role of artificial intelligence in the management of Barrett's esophagus and elaborate on potential artificial intelligence in the future.
Collapse
Affiliation(s)
- Michael Meinikheim
- Department of Gastroenterology, University Hospital of Augsburg, Augsburg, Germany,Correspondence: Michael Meinikheim Department of Gastroenterology, University Hospital of Augsburg, Stenglinstr. 2, D-86156 Augsburg, Germany E-mail:
| | - Helmut Messmann
- Department of Gastroenterology, University Hospital of Augsburg, Augsburg, Germany
| | - Alanna Ebigbo
- Department of Gastroenterology, University Hospital of Augsburg, Augsburg, Germany
| |
Collapse
|
10
|
Galati JS, Duve RJ, O'Mara M, Gross SA. Artificial intelligence in gastroenterology: A narrative review. Artif Intell Gastroenterol 2022; 3:117-141. [DOI: 10.35712/aig.v3.i5.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Artificial intelligence (AI) is a complex concept, broadly defined in medicine as the development of computer systems to perform tasks that require human intelligence. It has the capacity to revolutionize medicine by increasing efficiency, expediting data and image analysis and identifying patterns, trends and associations in large datasets. Within gastroenterology, recent research efforts have focused on using AI in esophagogastroduodenoscopy, wireless capsule endoscopy (WCE) and colonoscopy to assist in diagnosis, disease monitoring, lesion detection and therapeutic intervention. The main objective of this narrative review is to provide a comprehensive overview of the research being performed within gastroenterology on AI in esophagogastroduodenoscopy, WCE and colonoscopy.
Collapse
Affiliation(s)
- Jonathan S Galati
- Department of Medicine, NYU Langone Health, New York, NY 10016, United States
| | - Robert J Duve
- Department of Internal Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, United States
| | - Matthew O'Mara
- Division of Gastroenterology, NYU Langone Health, New York, NY 10016, United States
| | - Seth A Gross
- Division of Gastroenterology, NYU Langone Health, New York, NY 10016, United States
| |
Collapse
|
11
|
Islam MM, Poly TN, Walther BA, Yeh CY, Seyed-Abdul S, Li YC(J, Lin MC. Deep Learning for the Diagnosis of Esophageal Cancer in Endoscopic Images: A Systematic Review and Meta-Analysis. Cancers (Basel) 2022; 14:cancers14235996. [PMID: 36497480 PMCID: PMC9736434 DOI: 10.3390/cancers14235996] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/17/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Esophageal cancer, one of the most common cancers with a poor prognosis, is the sixth leading cause of cancer-related mortality worldwide. Early and accurate diagnosis of esophageal cancer, thus, plays a vital role in choosing the appropriate treatment plan for patients and increasing their survival rate. However, an accurate diagnosis of esophageal cancer requires substantial expertise and experience. Nowadays, the deep learning (DL) model for the diagnosis of esophageal cancer has shown promising performance. Therefore, we conducted an updated meta-analysis to determine the diagnostic accuracy of the DL model for the diagnosis of esophageal cancer. A search of PubMed, EMBASE, Scopus, and Web of Science, between 1 January 2012 and 1 August 2022, was conducted to identify potential studies evaluating the diagnostic performance of the DL model for esophageal cancer using endoscopic images. The study was performed in accordance with PRISMA guidelines. Two reviewers independently assessed potential studies for inclusion and extracted data from retrieved studies. Methodological quality was assessed by using the QUADAS-2 guidelines. The pooled accuracy, sensitivity, specificity, positive and negative predictive value, and the area under the receiver operating curve (AUROC) were calculated using a random effect model. A total of 28 potential studies involving a total of 703,006 images were included. The pooled accuracy, sensitivity, specificity, and positive and negative predictive value of DL for the diagnosis of esophageal cancer were 92.90%, 93.80%, 91.73%, 93.62%, and 91.97%, respectively. The pooled AUROC of DL for the diagnosis of esophageal cancer was 0.96. Furthermore, there was no publication bias among the studies. The findings of our study show that the DL model has great potential to accurately and quickly diagnose esophageal cancer. However, most studies developed their model using endoscopic data from the Asian population. Therefore, we recommend further validation through studies of other populations as well.
Collapse
Affiliation(s)
- Md. Mohaimenul Islam
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei 110, Taiwan
- Research Center of Big Data and Meta-Analysis, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Tahmina Nasrin Poly
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei 110, Taiwan
- Research Center of Big Data and Meta-Analysis, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Bruno Andreas Walther
- Deep Sea Ecology and Technology, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - Chih-Yang Yeh
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Shabbir Seyed-Abdul
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Chuan (Jack) Li
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei 110, Taiwan
- Research Center of Big Data and Meta-Analysis, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Department of Dermatology, Wan Fang Hospital, Taipei 116, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Ming-Chin Lin
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence:
| |
Collapse
|
12
|
Luo D, Kuang F, Du J, Zhou M, Liu X, Luo X, Tang Y, Li B, Su S. Artificial Intelligence-Assisted Endoscopic Diagnosis of Early Upper Gastrointestinal Cancer: A Systematic Review and Meta-Analysis. Front Oncol 2022; 12:855175. [PMID: 35756602 PMCID: PMC9229174 DOI: 10.3389/fonc.2022.855175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
Objective The aim of this study was to assess the diagnostic ability of artificial intelligence (AI) in the detection of early upper gastrointestinal cancer (EUGIC) using endoscopic images. Methods Databases were searched for studies on AI-assisted diagnosis of EUGIC using endoscopic images. The pooled area under the curve (AUC), sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR) with 95% confidence interval (CI) were calculated. Results Overall, 34 studies were included in our final analysis. Among the 17 image-based studies investigating early esophageal cancer (EEC) detection, the pooled AUC, sensitivity, specificity, PLR, NLR, and DOR were 0.98, 0.95 (95% CI, 0.95–0.96), 0.95 (95% CI, 0.94–0.95), 10.76 (95% CI, 7.33–15.79), 0.07 (95% CI, 0.04–0.11), and 173.93 (95% CI, 81.79–369.83), respectively. Among the seven patient-based studies investigating EEC detection, the pooled AUC, sensitivity, specificity, PLR, NLR, and DOR were 0.98, 0.94 (95% CI, 0.91–0.96), 0.90 (95% CI, 0.88–0.92), 6.14 (95% CI, 2.06–18.30), 0.07 (95% CI, 0.04–0.11), and 69.13 (95% CI, 14.73–324.45), respectively. Among the 15 image-based studies investigating early gastric cancer (EGC) detection, the pooled AUC, sensitivity, specificity, PLR, NLR, and DOR were 0.94, 0.87 (95% CI, 0.87–0.88), 0.88 (95% CI, 0.87–0.88), 7.20 (95% CI, 4.32–12.00), 0.14 (95% CI, 0.09–0.23), and 48.77 (95% CI, 24.98–95.19), respectively. Conclusions On the basis of our meta-analysis, AI exhibited high accuracy in diagnosis of EUGIC. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, identifier PROSPERO (CRD42021270443).
Collapse
Affiliation(s)
- De Luo
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fei Kuang
- Department of General Surgery, Changhai Hospital of The Second Military Medical University, Shanghai, China
| | - Juan Du
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Mengjia Zhou
- Department of Ultrasound, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiangdong Liu
- Department of Hepatobiliary Surgery, Zigong Fourth People's Hospital, Zigong, China
| | - Xinchen Luo
- Department of Gastroenterology, Zigong Third People's Hospital, Zigong, China
| | - Yong Tang
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Song Su
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
13
|
Abstract
Artificial intelligence (AI) is rapidly developing in various medical fields, and there is an increase in research performed in the field of gastrointestinal (GI) endoscopy. In particular, the advent of convolutional neural network, which is a class of deep learning method, has the potential to revolutionize the field of GI endoscopy, including esophagogastroduodenoscopy (EGD), capsule endoscopy (CE), and colonoscopy. A total of 149 original articles pertaining to AI (27 articles in esophagus, 30 articles in stomach, 29 articles in CE, and 63 articles in colon) were identified in this review. The main focuses of AI in EGD are cancer detection, identifying the depth of cancer invasion, prediction of pathological diagnosis, and prediction of Helicobacter pylori infection. In the field of CE, automated detection of bleeding sites, ulcers, tumors, and various small bowel diseases is being investigated. AI in colonoscopy has advanced with several patient-based prospective studies being conducted on the automated detection and classification of colon polyps. Furthermore, research on inflammatory bowel disease has also been recently reported. Most studies of AI in the field of GI endoscopy are still in the preclinical stages because of the retrospective design using still images. Video-based prospective studies are needed to advance the field. However, AI will continue to develop and be used in daily clinical practice in the near future. In this review, we have highlighted the published literature along with providing current status and insights into the future of AI in GI endoscopy.
Collapse
Affiliation(s)
- Yutaka Okagawa
- Endoscopy Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Department of Gastroenterology, Tonan Hospital, Sapporo, Japan
| | - Seiichiro Abe
- Endoscopy Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Masayoshi Yamada
- Endoscopy Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Ichiro Oda
- Endoscopy Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yutaka Saito
- Endoscopy Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| |
Collapse
|
14
|
Okimoto E, Ishimura N, Adachi K, Kinoshita Y, Ishihara S, Tada T. Application of Convolutional Neural Networks for Diagnosis of Eosinophilic Esophagitis Based on Endoscopic Imaging. J Clin Med 2022; 11:jcm11092529. [PMID: 35566653 PMCID: PMC9105792 DOI: 10.3390/jcm11092529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/17/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
Subjective symptoms associated with eosinophilic esophagitis (EoE), such as dysphagia, are not specific, thus the endoscopic identification of suggestive EoE findings is quite important for facilitating endoscopic biopsy sampling. However, poor inter-observer agreement among endoscopists regarding diagnosis has become a complicated issue, especially with inexperienced practitioners. Therefore, we constructed a computer-assisted diagnosis (CAD) system using a convolutional neural network (CNN) and evaluated its performance as a diagnostic utility. A CNN-based CAD system was developed based on ResNet50 architecture. The CNN was trained using a total of 1192 characteristic endoscopic images of 108 patients histologically proven to be in an active phase of EoE (≥15 eosinophils per high power field) as well as 1192 normal esophagus images. To evaluate diagnostic accuracy, an independent test set of 756 endoscopic images from 35 patients with EoE and 96 subjects with a normal esophagus was examined with the constructed CNN. The CNN correctly diagnosed EoE in 94.7% using a diagnosis per image analysis, with an overall sensitivity of 90.8% and specificity of 96.6%. For each case, the CNN correctly diagnosed 37 of 39 EoE cases with overall sensitivity and specificity of 94.9% and 99.0%, respectively. These findings indicate the usefulness of CNN for diagnosing EoE, especially for aiding inexperienced endoscopists during medical check-up screening.
Collapse
Affiliation(s)
- Eiko Okimoto
- Department of Internal Medicine II, Shimane University Faculty of Medicine, Izumo 693-8501, Japan; (E.O.); (S.I.)
| | - Norihisa Ishimura
- Department of Internal Medicine II, Shimane University Faculty of Medicine, Izumo 693-8501, Japan; (E.O.); (S.I.)
- Correspondence: ; Tel.: +81-853-20-2190
| | - Kyoichi Adachi
- Health Center, Shimane Environment and Health Public Corporation, Matsue 690-0012, Japan;
| | - Yoshikazu Kinoshita
- Department of Medicine, Hyogo Prefectural Harima-Himeji General Medical Center, Himeji 670-8560, Japan;
| | - Shunji Ishihara
- Department of Internal Medicine II, Shimane University Faculty of Medicine, Izumo 693-8501, Japan; (E.O.); (S.I.)
| | - Tomohiro Tada
- AI Medical Service Inc., Toshima, Tokyo 170-0013, Japan;
| |
Collapse
|
15
|
Artificial Intelligence in the Management of Barrett’s Esophagus and Early Esophageal Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14081918. [PMID: 35454824 PMCID: PMC9028107 DOI: 10.3390/cancers14081918] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Esophageal adenocarcinoma is increasing in incidence and is the most common subtype of esophageal cancer in Western societies. AI systems are currently under development and validation in many fields of gas-troenterology. Abstract Esophageal adenocarcinoma is increasing in incidence and is the most common subtype of esophageal cancer in Western societies. The stepwise progression of Barrett´s metaplasia to high-grade dysplasia and invasive adenocarcinoma provides an opportunity for screening and surveillance. There are important unresolved issues, which include (i) refining the definition of the screening population in order to avoid unnecessary invasive diagnostics, (ii) a more precise prediction of the (very heterogeneous) individual progression risk from metaplasia to invasive cancer in order to better tailor surveillance recommendations, (iii) improvement of the quality of endoscopy in order to reduce the high miss rate for early neoplastic lesions, and (iv) support for the diagnosis of tumor infiltration depth in order to guide treatment decisions. Artificial intelligence (AI) systems might be useful as a support to better solve the above-mentioned issues.
Collapse
|
16
|
Nagao S, Tani Y, Shibata J, Tsuji Y, Tada T, Ishihara R, Fujishiro M. Implementation of artificial intelligence in upper gastrointestinal endoscopy. DEN OPEN 2022; 2:e72. [PMID: 35873509 PMCID: PMC9302271 DOI: 10.1002/deo2.72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/11/2021] [Accepted: 10/16/2021] [Indexed: 12/24/2022]
Abstract
The application of artificial intelligence (AI) using deep learning has significantly expanded in the field of esophagogastric endoscopy. Recent studies have shown promising results in detecting and differentiating early gastric cancer using AI tools built using white light, magnified, or image-enhanced endoscopic images. Some studies have reported the use of AI tools to predict the depth of early gastric cancer based on endoscopic images. Similarly, studies based on using AI for detecting early esophageal cancer have also been reported, with an accuracy comparable to that of endoscopy specialists. Moreover, an AI system, developed to diagnose pharyngeal cancer, has shown promising performance with high sensitivity. These reports suggest that, if introduced for regular use in clinical settings, AI systems can significantly reduce the burden on physicians. This review summarizes the current status of AI applications in the upper gastrointestinal tract and presents directions for clinical practice implementation and future research.
Collapse
Affiliation(s)
- Sayaka Nagao
- Department of GastroenterologyGraduate School of Medicinethe University of TokyoTokyoJapan
- Department of Endoscopy and Endoscopic SurgeryGraduate School of Medicinethe University of TokyoTokyoJapan
| | - Yasuhiro Tani
- Department of Gastrointestinal OncologyOsaka International Cancer InstituteOsakaJapan
| | - Junichi Shibata
- Tada Tomohiro Institute of Gastroenterology and ProctologySaitamaJapan
| | - Yosuke Tsuji
- Department of GastroenterologyGraduate School of Medicinethe University of TokyoTokyoJapan
| | - Tomohiro Tada
- Tada Tomohiro Institute of Gastroenterology and ProctologySaitamaJapan
- AI Medical Service Inc.TokyoJapan
- Department of Surgical OncologyGraduate School of Medicinethe University of TokyoTokyoJapan
| | - Ryu Ishihara
- Department of Gastrointestinal OncologyOsaka International Cancer InstituteOsakaJapan
| | - Mitsuhiro Fujishiro
- Department of GastroenterologyGraduate School of Medicinethe University of TokyoTokyoJapan
| |
Collapse
|
17
|
Visaggi P, Barberio B, Gregori D, Azzolina D, Martinato M, Hassan C, Sharma P, Savarino E, de Bortoli N. Systematic review with meta-analysis: artificial intelligence in the diagnosis of oesophageal diseases. Aliment Pharmacol Ther 2022; 55:528-540. [PMID: 35098562 PMCID: PMC9305819 DOI: 10.1111/apt.16778] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/09/2022] [Accepted: 01/09/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Artificial intelligence (AI) has recently been applied to endoscopy and questionnaires for the evaluation of oesophageal diseases (ODs). AIM We performed a systematic review with meta-analysis to evaluate the performance of AI in the diagnosis of malignant and benign OD. METHODS We searched MEDLINE, EMBASE, EMBASE Classic and the Cochrane Library. A bivariate random-effect model was used to calculate pooled diagnostic efficacy of AI models and endoscopists. The reference tests were histology for neoplasms and the clinical and instrumental diagnosis for gastro-oesophageal reflux disease (GERD). The pooled area under the summary receiver operating characteristic (AUROC), sensitivity, specificity, positive and negative likelihood ratio (PLR and NLR) and diagnostic odds ratio (DOR) were estimated. RESULTS For the diagnosis of Barrett's neoplasia, AI had AUROC of 0.90, sensitivity 0.89, specificity 0.86, PLR 6.50, NLR 0.13 and DOR 50.53. AI models' performance was comparable with that of endoscopists (P = 0.35). For the diagnosis of oesophageal squamous cell carcinoma, the AUROC, sensitivity, specificity, PLR, NLR and DOR were 0.97, 0.95, 0.92, 12.65, 0.05 and DOR 258.36, respectively. In this task, AI performed better than endoscopists although without statistically significant differences. In the detection of abnormal intrapapillary capillary loops, the performance of AI was: AUROC 0.98, sensitivity 0.94, specificity 0.94, PLR 14.75, NLR 0.07 and DOR 225.83. For the diagnosis of GERD based on questionnaires, the AUROC, sensitivity, specificity, PLR, NLR and DOR were 0.99, 0.97, 0.97, 38.26, 0.03 and 1159.6, respectively. CONCLUSIONS AI demonstrated high performance in the clinical and endoscopic diagnosis of OD.
Collapse
Affiliation(s)
- Pierfrancesco Visaggi
- Gastroenterology UnitDepartment of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| | - Brigida Barberio
- Division of GastroenterologyDepartment of Surgery, Oncology and GastroenterologyUniversity of PadovaPadovaItaly
| | - Dario Gregori
- Unit of Biostatistics, Epidemiology and Public HealthDepartment of Cardiac, Thoracic, Vascular Sciences and Public HealthUniversity of PadovaPadovaItaly
| | - Danila Azzolina
- Unit of Biostatistics, Epidemiology and Public HealthDepartment of Cardiac, Thoracic, Vascular Sciences and Public HealthUniversity of PadovaPadovaItaly
- Department of Medical ScienceUniversity of FerraraFerraraItaly
| | - Matteo Martinato
- Unit of Biostatistics, Epidemiology and Public HealthDepartment of Cardiac, Thoracic, Vascular Sciences and Public HealthUniversity of PadovaPadovaItaly
| | - Cesare Hassan
- Department of Biomedical Sciences, Humanitas UniversityVia Rita Levi Montalcini 420072 Pieve Emanuele, MilanItaly
- IRCCS Humanitas Research Hospitalvia Manzoni 5620089 Rozzano, MilanItaly
| | - Prateek Sharma
- University of Kansas School of Medicine and VA Medical CenterKansas CityMissouriUSA
| | - Edoardo Savarino
- Division of GastroenterologyDepartment of Surgery, Oncology and GastroenterologyUniversity of PadovaPadovaItaly
| | - Nicola de Bortoli
- Gastroenterology UnitDepartment of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| |
Collapse
|
18
|
Hamada K, Kawahara Y, Tanimoto T, Ohto A, Toda A, Aida T, Yamasaki Y, Gotoda T, Ogawa T, Abe M, Okanoue S, Takei K, Kikuchi S, Kuroda S, Fujiwara T, Okada H. Application of convolutional neural networks for evaluating the depth of invasion of early gastric cancer based on endoscopic images. J Gastroenterol Hepatol 2022; 37:352-357. [PMID: 34713495 DOI: 10.1111/jgh.15725] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 10/14/2021] [Accepted: 10/24/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIM Recently, artificial intelligence (AI) has been used in endoscopic examination and is expected to help in endoscopic diagnosis. We evaluated the feasibility of AI using convolutional neural network (CNN) systems for evaluating the depth of invasion of early gastric cancer (EGC), based on endoscopic images. METHODS This study used a deep CNN model, ResNet152. From patients who underwent treatment for EGC at our hospital between January 2012 and December 2016, we selected 100 consecutive patients with mucosal (M) cancers and 100 consecutive patients with cancers invading the submucosa (SM cancers). A total of 3508 non-magnifying endoscopic images of EGCs, including white-light imaging, linked color imaging, blue laser imaging-bright, and indigo-carmine dye contrast imaging, were included in this study. A total of 2288 images from 132 patients served as the development dataset, and 1220 images from 68 patients served as the testing dataset. Invasion depth was evaluated for each image and lesion. The majority vote was applied to lesion-based evaluation. RESULTS The sensitivity, specificity, and accuracy for diagnosing M cancer were 84.9% (95% confidence interval [CI] 82.3%-87.5%), 70.7% (95% CI 66.8%-74.6%), and 78.9% (95% CI 76.6%-81.2%), respectively, for image-based evaluation, and 85.3% (95% CI 73.4%-97.2%), 82.4% (95% CI 69.5%-95.2%), and 83.8% (95% CI 75.1%-92.6%), respectively, for lesion-based evaluation. CONCLUSIONS The application of AI using CNN to evaluate the depth of invasion of EGCs based on endoscopic images is feasible, and it is worth investing more effort to put this new technology into practical use.
Collapse
Affiliation(s)
- Kenta Hamada
- Department of Endoscopy, Okayama University Hospital, Okayama, Japan.,Department of Practical Gastrointestinal Endoscopy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshiro Kawahara
- Department of Practical Gastrointestinal Endoscopy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | - Akimitsu Ohto
- Health Care Company, Ryobi Systems Co., Ltd., Okayama, Japan
| | - Akira Toda
- Business Strategy Division, Ryobi Systems Co., Ltd., Okayama, Japan
| | - Toshiaki Aida
- Okayama University Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama, Japan
| | - Yasushi Yamasaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tatsuhiro Gotoda
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Taiji Ogawa
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Makoto Abe
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shotaro Okanoue
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kensuke Takei
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoru Kikuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinji Kuroda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
19
|
Visaggi P, de Bortoli N, Barberio B, Savarino V, Oleas R, Rosi EM, Marchi S, Ribolsi M, Savarino E. Artificial Intelligence in the Diagnosis of Upper Gastrointestinal Diseases. J Clin Gastroenterol 2022; 56:23-35. [PMID: 34739406 PMCID: PMC9988236 DOI: 10.1097/mcg.0000000000001629] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Artificial intelligence (AI) has enormous potential to support clinical routine workflows and therefore is gaining increasing popularity among medical professionals. In the field of gastroenterology, investigations on AI and computer-aided diagnosis (CAD) systems have mainly focused on the lower gastrointestinal (GI) tract. However, numerous CAD tools have been tested also in upper GI disorders showing encouraging results. The main application of AI in the upper GI tract is endoscopy; however, the need to analyze increasing loads of numerical and categorical data in short times has pushed researchers to investigate applications of AI systems in other upper GI settings, including gastroesophageal reflux disease, eosinophilic esophagitis, and motility disorders. AI and CAD systems will be increasingly incorporated into daily clinical practice in the coming years, thus at least basic notions will be soon required among physicians. For noninsiders, the working principles and potential of AI may be as fascinating as obscure. Accordingly, we reviewed systematic reviews, meta-analyses, randomized controlled trials, and original research articles regarding the performance of AI in the diagnosis of both malignant and benign esophageal and gastric diseases, also discussing essential characteristics of AI.
Collapse
Affiliation(s)
- Pierfrancesco Visaggi
- Gastroenterology Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa
| | - Nicola de Bortoli
- Gastroenterology Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa
| | - Brigida Barberio
- Department of Surgery, Oncology, and Gastroenterology, Division of Gastroenterology, University of Padua, Padua
| | - Vincenzo Savarino
- Gastroenterology Unit, Department of Internal Medicine, University of Genoa, Genoa
| | - Roberto Oleas
- Ecuadorean Institute of Digestive Diseases, Guayaquil, Ecuador
| | - Emma M. Rosi
- Gastroenterology Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa
| | - Santino Marchi
- Gastroenterology Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa
| | - Mentore Ribolsi
- Department of Digestive Diseases, Campus Bio Medico University of Rome, Roma, Italy
| | - Edoardo Savarino
- Department of Surgery, Oncology, and Gastroenterology, Division of Gastroenterology, University of Padua, Padua
| |
Collapse
|
20
|
Con D, van Langenberg DR, Vasudevan A. Deep learning vs conventional learning algorithms for clinical prediction in Crohn's disease: A proof-of-concept study. World J Gastroenterol 2021; 27:6476-6488. [PMID: 34720536 PMCID: PMC8517788 DOI: 10.3748/wjg.v27.i38.6476] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/26/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Traditional methods of developing predictive models in inflammatory bowel diseases (IBD) rely on using statistical regression approaches to deriving clinical scores such as the Crohn's disease (CD) activity index. However, traditional approaches are unable to take advantage of more complex data structures such as repeated measurements. Deep learning methods have the potential ability to automatically find and learn complex, hidden relationships between predictive markers and outcomes, but their application to clinical prediction in CD and IBD has not been explored previously. AIM To determine and compare the utility of deep learning with conventional algorithms in predicting response to anti-tumor necrosis factor (anti-TNF) therapy in CD. METHODS This was a retrospective single-center cohort study of all CD patients who commenced anti-TNF therapy (either adalimumab or infliximab) from January 1, 2010 to December 31, 2015. Remission was defined as a C-reactive protein (CRP) < 5 mg/L at 12 mo after anti-TNF commencement. Three supervised learning algorithms were compared: (1) A conventional statistical learning algorithm using multivariable logistic regression on baseline data only; (2) A deep learning algorithm using a feed-forward artificial neural network on baseline data only; and (3) A deep learning algorithm using a recurrent neural network on repeated data. Predictive performance was assessed using area under the receiver operator characteristic curve (AUC) after 10× repeated 5-fold cross-validation. RESULTS A total of 146 patients were included (median age 36 years, 48% male). Concomitant therapy at anti-TNF commencement included thiopurines (68%), methotrexate (18%), corticosteroids (44%) and aminosalicylates (33%). After 12 mo, 64% had CRP < 5 mg/L. The conventional learning algorithm selected the following baseline variables for the predictive model: Complex disease behavior, albumin, monocytes, lymphocytes, mean corpuscular hemoglobin concentration and gamma-glutamyl transferase, and had a cross-validated AUC of 0.659, 95% confidence interval (CI): 0.562-0.756. A feed-forward artificial neural network using only baseline data demonstrated an AUC of 0.710 (95%CI: 0.622-0.799; P = 0.25 vs conventional). A recurrent neural network using repeated biomarker measurements demonstrated significantly higher AUC compared to the conventional algorithm (0.754, 95%CI: 0.674-0.834; P = 0.036). CONCLUSION Deep learning methods are feasible and have the potential for stronger predictive performance compared to conventional model building methods when applied to predicting remission after anti-TNF therapy in CD.
Collapse
Affiliation(s)
- Danny Con
- Department of Gastroenterology and Hepatology, Eastern Health, Box Hill 3128, Victoria, Australia
| | - Daniel R van Langenberg
- Department of Gastroenterology and Hepatology, Eastern Health, Box Hill 3128, Victoria, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Box Hill 3128, Victoria, Australia
| | - Abhinav Vasudevan
- Department of Gastroenterology and Hepatology, Eastern Health, Box Hill 3128, Victoria, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Box Hill 3128, Victoria, Australia
| |
Collapse
|
21
|
Yang H, Hu B. Early gastrointestinal cancer: The application of artificial intelligence. Artif Intell Gastrointest Endosc 2021; 2:185-197. [DOI: 10.37126/aige.v2.i4.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/25/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Early gastrointestinal (GI) cancer has been the core of clinical endoscopic work. Its early detection and treatment are tightly associated with patients’ prognoses. As a novel technology, artificial intelligence has been improved and applied in the field of endoscopy. Studies on detection, diagnosis, risk, and prognosis evaluation of diseases in the GI tract have been in development, including precancerous lesions, adenoma, early GI cancers, and advanced GI cancers. In this review, research on esophagus, stomach, and colon was concluded, and associated with the process from precancerous lesions to early GI cancer, such as from Barrett’s esophagus to early esophageal cancer, from dysplasia to early gastric cancer, and from adenoma to early colonic cancer. A status quo of research on early GI cancers and artificial intelligence was provided.
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
22
|
Zhou J, Hu N, Huang ZY, Song B, Wu CC, Zeng FX, Wu M. Application of artificial intelligence in gastrointestinal disease: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1188. [PMID: 34430629 PMCID: PMC8350704 DOI: 10.21037/atm-21-3001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/29/2021] [Indexed: 02/05/2023]
Abstract
Objective We collected evidence on the application of artificial intelligence (AI) in gastroenterology field. The review was carried out from two aspects of endoscopic types and gastrointestinal diseases, and briefly summarized the challenges and future directions in this field. Background Due to the advancement of computational power and a surge of available data, a solid foundation has been laid for the growth of AI. Specifically, varied machine learning (ML) techniques have been emerging in endoscopic image analysis. To improve the accuracy and efficiency of clinicians, AI has been widely applied to gastrointestinal endoscopy. Methods PubMed electronic database was searched using the keywords containing “AI”, “ML”, “deep learning (DL)”, “convolution neural network”, “endoscopy (such as white light endoscopy (WLE), narrow band imaging (NBI) endoscopy, magnifying endoscopy with narrow band imaging (ME-NBI), chromoendoscopy, endocytoscopy (EC), and capsule endoscopy (CE))”. Search results were assessed for relevance and then used for detailed discussion. Conclusions This review described the basic knowledge of AI, ML, and DL, and summarizes the application of AI in various endoscopes and gastrointestinal diseases. Finally, the challenges and directions of AI in clinical application were discussed. At present, the application of AI has solved some clinical problems, but more still needs to be done.
Collapse
Affiliation(s)
- Jun Zhou
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Na Hu
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Zhi-Yin Huang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Song
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Chun-Cheng Wu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Fan-Xin Zeng
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Min Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| |
Collapse
|
23
|
Zhang SM, Wang YJ, Zhang ST. Accuracy of artificial intelligence-assisted detection of esophageal cancer and neoplasms on endoscopic images: A systematic review and meta-analysis. J Dig Dis 2021; 22:318-328. [PMID: 33871932 PMCID: PMC8361665 DOI: 10.1111/1751-2980.12992] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/02/2021] [Accepted: 04/15/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To investigate systematically previous studies on the accuracy of artificial intelligence (AI)-assisted diagnostic models in detecting esophageal neoplasms on endoscopic images so as to provide scientific evidence for the effectiveness of these models. METHODS A literature search was conducted on the PubMed, EMBASE and Cochrane Library databases for studies on the AI-assisted detection of esophageal neoplasms on endoscopic images published up to December 2020. A bivariate mixed-effects regression model was used to calculate the pooled diagnostic efficacy of AI-assisted system. Subgroup analyses and meta-regression analyses were performed to explore the sources of heterogeneity. The effectiveness of AI-assisted models was also compared with that of the endoscopists. RESULTS Sixteen studies were included in the systematic review and meta-analysis. The pooled sensitivity, specificity, positive and negative likelihood ratios, diagnostic odds ratio and area under the summary receiver operating characteristic curve regarding AI-assisted detection of esophageal neoplasms were 94% (95% confidence interval [CI] 92%-96%), 85% (95% CI 73%-92%), 6.40 (95% CI 3.38-12.11), 0.06 (95% CI 0.04-0.10), 98.88 (95% CI 39.45-247.87) and 0.97 (95% CI 0.95-0.98), respectively. AI-based models performed better than endoscopists in terms of the pooled sensitivity (94% [95% CI 84%-98%] vs 82% [95% CI 77%-86%, P < 0.01). CONCLUSIONS The use of AI results in increased accuracy in detecting early esophageal cancer. However, most of the included studies have a retrospective study design, thus further validation with prospective trials is required.
Collapse
Affiliation(s)
- Si Min Zhang
- Department of GastroenterologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina,National Clinical Research Center for Digestive DiseasesBeijingChina,Beijing Digestive Disease CenterBeijingChina
| | - Yong Jun Wang
- Department of GastroenterologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina,National Clinical Research Center for Digestive DiseasesBeijingChina,Beijing Digestive Disease CenterBeijingChina
| | - Shu Tian Zhang
- Department of GastroenterologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina,National Clinical Research Center for Digestive DiseasesBeijingChina,Beijing Digestive Disease CenterBeijingChina
| |
Collapse
|
24
|
Shao Y, Zhang YX, Chen HH, Lu SS, Zhang SC, Zhang JX. Advances in the application of artificial intelligence in solid tumor imaging. Artif Intell Cancer 2021; 2:12-24. [DOI: 10.35713/aic.v2.i2.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/02/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Affiliation(s)
- Ying Shao
- Department of Laboratory Medicine, People Hospital of Jiangying, Jiangying 214400, Jiangsu Province, China
| | - Yu-Xuan Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Huan-Huan Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Shan-Shan Lu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Shi-Chang Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Jie-Xin Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
25
|
Senbekov M, Saliev T, Bukeyeva Z, Almabayeva A, Zhanaliyeva M, Aitenova N, Toishibekov Y, Fakhradiyev I. The Recent Progress and Applications of Digital Technologies in Healthcare: A Review. Int J Telemed Appl 2020; 2020:8830200. [PMID: 33343657 PMCID: PMC7732404 DOI: 10.1155/2020/8830200] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The implementation of medical digital technologies can provide better accessibility and flexibility of healthcare for the public. It encompasses the availability of open information on the health, treatment, complications, and recent progress on biomedical research. At present, even in low-income countries, diagnostic and medical services are becoming more accessible and available. However, many issues related to digital health technologies remain unmet, including the reliability, safety, testing, and ethical aspects. PURPOSE The aim of the review is to discuss and analyze the recent progress on the application of big data, artificial intelligence, telemedicine, block-chain platforms, smart devices in healthcare, and medical education. Basic Design. The publication search was carried out using Google Scholar, PubMed, Web of Sciences, Medline, Wiley Online Library, and CrossRef databases. The review highlights the applications of artificial intelligence, "big data," telemedicine and block-chain technologies, and smart devices (internet of things) for solving the real problems in healthcare and medical education. Major Findings. We identified 252 papers related to the digital health area. However, the number of papers discussed in the review was limited to 152 due to the exclusion criteria. The literature search demonstrated that digital health technologies became highly sought due to recent pandemics, including COVID-19. The disastrous dissemination of COVID-19 through all continents triggered the need for fast and effective solutions to localize, manage, and treat the viral infection. In this regard, the use of telemedicine and other e-health technologies might help to lessen the pressure on healthcare systems. Summary. Digital platforms can help optimize diagnosis, consulting, and treatment of patients. However, due to the lack of official regulations and recommendations, the stakeholders, including private and governmental organizations, are facing the problem with adequate validation and approbation of novel digital health technologies. In this regard, proper scientific research is required before a digital product is deployed for the healthcare sector.
Collapse
Affiliation(s)
- Maksut Senbekov
- S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Timur Saliev
- S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | | | | | | | - Nazym Aitenova
- NJSC “Astana Medical University”, Nur-Sultan, Kazakhstan
| | | | - Ildar Fakhradiyev
- S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| |
Collapse
|
26
|
Syed T, Doshi A, Guleria S, Syed S, Shah T. Artificial Intelligence and Its Role in Identifying Esophageal Neoplasia. Dig Dis Sci 2020; 65:3448-3455. [PMID: 33057945 PMCID: PMC8139616 DOI: 10.1007/s10620-020-06643-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/26/2020] [Indexed: 12/15/2022]
Abstract
Randomized trials have demonstrated that ablation of dysplastic Barrett's esophagus can reduce the risk of progression to cancer. Endoscopic resection for early stage esophageal adenocarcinoma and squamous cell carcinoma can significantly reduce postoperative morbidity compared to esophagectomy. Unfortunately, current endoscopic surveillance technologies (e.g., high-definition white light, electronic, and dye-based chromoendoscopy) lack sensitivity at identifying subtle areas of dysplasia and cancer. Random biopsies sample only approximately 5% of the esophageal mucosa at risk, and there is poor agreement among pathologists in identifying low-grade dysplasia. Machine-based deep learning medical image and video assessment technologies have progressed significantly in recent years, enabled in large part by advances in computer processing capabilities. In deep learning, sequential layers allow models to transform input data (e.g., pixels for imaging data) into a composite representation that allows for classification and feature identification. Several publications have attempted to use this technology to help identify dysplasia and early esophageal cancer. The aims of this reviews are as follows: (a) discussing limitations in our current strategies to identify esophageal dysplasia and cancer, (b) explaining the concepts behind deep learning and convolutional neural networks using language appropriate for clinicians without an engineering background, (c) systematically reviewing the literature for studies that have used deep learning to identify esophageal neoplasia, and (d) based on the systemic review, outlining strategies on further work necessary before these technologies are ready for "prime-time," i.e., use in routine clinical care.
Collapse
Affiliation(s)
- Taseen Syed
- Division of Gastroenterology, Virginia Commonwealth University Health System, 1200 East Marshall St, PO Box 980711, Richmond, VA, 23298, USA. .,Division of Gastroenterology, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, VA, USA.
| | - Akash Doshi
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shan Guleria
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Sana Syed
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, University of Virginia School of Medicine and UVA Child Health Research Center, Charlottesville, VA, USA
| | - Tilak Shah
- Division of Gastroenterology, Virginia Commonwealth University Health System, 1200 East Marshall St, PO Box 980711, Richmond, VA, 23298, USA.,Division of Gastroenterology, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, VA, USA
| |
Collapse
|