1
|
Huang R, Jin X, Liu Q, Bai X, Karako K, Tang W, Wang L, Zhu W. Artificial intelligence in colorectal cancer liver metastases: From classification to precision medicine. Biosci Trends 2025; 19:150-164. [PMID: 40240167 DOI: 10.5582/bst.2025.01045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Colorectal cancer liver metastasis (CRLM) remains the leading cause of mortality among colorectal cancer (CRC) patients, with more than half eventually developing hepatic metastases. Achieving long-term survival in CRLM necessitates early detection, robust stratification, and precision treatment tailored to individual classifications. These processes encompass critical aspects such as tumor staging, predictive modeling of therapeutic responses, and risk stratification for survival outcomes. The rapid evolution of artificial intelligence (AI) has ushered in unprecedented opportunities to address these challenges, offering transformative potential for clinical oncology. This review summarizes the current methodologies for CRLM grading and classification, alongside a detailed discussion of the machine learning models commonly used in oncology and AI-driven applications. It also highlights recent advances in using AI to refine CRLM subtyping and precision medicine approaches, underscoring the indispensable role of interdisciplinary collaboration between clinical oncology and the computational sciences in driving innovation and improving patient outcomes in metastatic colorectal cancer.
Collapse
Affiliation(s)
- Runze Huang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
| | - Xin Jin
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
| | - Qinyu Liu
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
| | - Xuanci Bai
- Department of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kenji Karako
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Wei Tang
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- National Center for Global Health and Medicine, Japan Institute for Health Security, Tokyo, Japan
| | - Lu Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
| | - Weiping Zhu
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
| |
Collapse
|
2
|
Howell HJ, McGale JP, Choucair A, Shirini D, Aide N, Postow MA, Wang L, Tordjman M, Lopci E, Lecler A, Champiat S, Chen DL, Deandreis D, Dercle L. Artificial Intelligence for Drug Discovery: An Update and Future Prospects. Semin Nucl Med 2025; 55:406-422. [PMID: 39966029 DOI: 10.1053/j.semnuclmed.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/20/2025]
Abstract
Artificial intelligence (AI) has become a pivotal tool for medical image analysis, significantly enhancing drug discovery through improved diagnostics, staging, prognostication, and response assessment. At a high level, AI-driven image analysis enables the quantification and synthesis of previously qualitative imaging characteristics, facilitating the identification of novel disease-specific biomarkers, patient risk stratification, prognostication, and adverse event prediction. In addition, AI can assist in response assessment by capturing changes in imaging "phenotype" over time, allowing for optimized treatment plans based on real-time analysis. Integrating this emerging technology into drug discovery pipelines has the potential to accelerate the identification and development of new pharmaceuticals by assisting in target identification and patient selection, as well as reducing the incidence, and therefore cost, of failed trials through high-throughput, reproducible, and data-driven insights. Continued progress in AI applications will shape the future of medical imaging, ultimately fostering more efficient, accurate, and tailored drug discovery processes. Herein, we offer a comprehensive overview of how AI enhances medical imaging to inform drug development and therapeutic strategies.
Collapse
Affiliation(s)
- Harrison J Howell
- Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Jeremy P McGale
- Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | | | - Dorsa Shirini
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nicolas Aide
- Centre Havrais d'Imagerie Nucléaire, Octeville, France
| | - Michael A Postow
- Department of Medicine, Memorial Sloan Kettering and Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Lucy Wang
- School of Medicine, New York Medical College, Valhalla, NY
| | - Mickael Tordjman
- Department of Radiology, Biomedical Engineering & Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Egesta Lopci
- Nuclear Medicine Unit, IRCCS-Humanitas Research Hospital, Rozzano, Italy
| | - Augustin Lecler
- Department of Neuroradiology, Foundation Adolphe de Rothschild Hospital, Université Paris Cité, Paris, France
| | - Stéphane Champiat
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Delphine L Chen
- Department of Radiology, University of Washington, Seattle, WA
| | | | - Laurent Dercle
- Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY.
| |
Collapse
|
3
|
Naemi A, Tashk A, Sorayaie Azar A, Samimi T, Tavassoli G, Bagherzadeh Mohasefi A, Nasiri Khanshan E, Heshmat Najafabad M, Tarighi V, Wiil UK, Bagherzadeh Mohasefi J, Pirnejad H, Niazkhani Z. Applications of Artificial Intelligence for Metastatic Gastrointestinal Cancer: A Systematic Literature Review. Cancers (Basel) 2025; 17:558. [PMID: 39941923 PMCID: PMC11817159 DOI: 10.3390/cancers17030558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/18/2025] [Accepted: 02/05/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND/OBJECTIVES This systematic literature review examines the application of Artificial Intelligence (AI) in the diagnosis, treatment, and follow-up of metastatic gastrointestinal cancers. METHODS The databases PubMed, Scopus, Embase (Ovid), and Google Scholar were searched for published articles in English from January 2010 to January 2022, focusing on AI models in metastatic gastrointestinal cancers. RESULTS forty-six studies were included in the final set of reviewed papers. The critical appraisal and data extraction followed the checklist for systematic reviews of prediction modeling studies. The risk of bias in the included papers was assessed using the prediction risk of bias assessment tool. CONCLUSIONS AI techniques, including machine learning and deep learning models, have shown promise in improving diagnostic accuracy, predicting treatment outcomes, and identifying prognostic biomarkers. Despite these advancements, challenges persist, such as reliance on retrospective data, variability in imaging protocols, small sample sizes, and data preprocessing and model interpretability issues. These challenges limit the generalizability, clinical application, and integration of AI models.
Collapse
Affiliation(s)
- Amin Naemi
- Nordcee, Department of Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Ashkan Tashk
- Cognitive Systems, DTU Compute, The Technical University of Denmark (DTU), 2800 Copenhagen, Denmark;
| | - Amir Sorayaie Azar
- SDU Health Informatics and Technology, The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, 5230 Odense, Denmark; (A.S.A.); (U.K.W.); (J.B.M.)
- Department of Computer Engineering, Urmia University, Urmia 165, Iran; (A.B.M.); (E.N.K.); (M.H.N.); (V.T.)
| | - Tahereh Samimi
- Student Research Committee, Urmia University of Medical Sciences, Urmia 1138, Iran;
- Department of Medical Informatics, Urmia University of Medical Sciences, Urmia 1138, Iran
| | - Ghanbar Tavassoli
- Department of Computer Engineering, Urmia Branch, Islamic Azad University, Urmia 969, Iran;
| | - Anita Bagherzadeh Mohasefi
- Department of Computer Engineering, Urmia University, Urmia 165, Iran; (A.B.M.); (E.N.K.); (M.H.N.); (V.T.)
| | - Elaheh Nasiri Khanshan
- Department of Computer Engineering, Urmia University, Urmia 165, Iran; (A.B.M.); (E.N.K.); (M.H.N.); (V.T.)
| | - Mehrdad Heshmat Najafabad
- Department of Computer Engineering, Urmia University, Urmia 165, Iran; (A.B.M.); (E.N.K.); (M.H.N.); (V.T.)
| | - Vafa Tarighi
- Department of Computer Engineering, Urmia University, Urmia 165, Iran; (A.B.M.); (E.N.K.); (M.H.N.); (V.T.)
| | - Uffe Kock Wiil
- SDU Health Informatics and Technology, The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, 5230 Odense, Denmark; (A.S.A.); (U.K.W.); (J.B.M.)
| | - Jamshid Bagherzadeh Mohasefi
- SDU Health Informatics and Technology, The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, 5230 Odense, Denmark; (A.S.A.); (U.K.W.); (J.B.M.)
- Department of Computer Engineering, Urmia University, Urmia 165, Iran; (A.B.M.); (E.N.K.); (M.H.N.); (V.T.)
| | - Habibollah Pirnejad
- Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia 1138, Iran;
- Department of Family Medicine, Amsterdam University Medical Center, 7057 Amsterdam, The Netherlands
| | - Zahra Niazkhani
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia 1138, Iran;
- Erasmus School of Health Policy and Management (ESHPM), Erasmus University Rotterdam, 3000 Rotterdam, The Netherlands
| |
Collapse
|
4
|
Bartnik K, Krzyziński M, Bartczak T, Korzeniowski K, Lamparski K, Wróblewski T, Grąt M, Hołówko W, Mech K, Lisowska J, Januszewicz M, Biecek P. A novel radiomics approach for predicting TACE outcomes in hepatocellular carcinoma patients using deep learning for multi-organ segmentation. Sci Rep 2024; 14:14779. [PMID: 38926517 PMCID: PMC11208561 DOI: 10.1038/s41598-024-65630-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
Transarterial chemoembolization (TACE) represent the standard of therapy for non-operative hepatocellular carcinoma (HCC), while prediction of long term treatment outcomes is a complex and multifactorial task. In this study, we present a novel machine learning approach utilizing radiomics features from multiple organ volumes of interest (VOIs) to predict TACE outcomes for 252 HCC patients. Unlike conventional radiomics models requiring laborious manual segmentation limited to tumoral regions, our approach captures information comprehensively across various VOIs using a fully automated, pretrained deep learning model applied to pre-TACE CT images. Evaluation of radiomics random survival forest models against clinical ones using Cox proportional hazard demonstrated comparable performance in predicting overall survival. However, radiomics outperformed clinical models in predicting progression-free survival. Explainable analysis highlighted the significance of non-tumoral VOI features, with their cumulative importance superior to features from the largest liver tumor. The proposed approach overcomes the limitations of manual VOI segmentation, requires no radiologist input and highlight the clinical relevance of features beyond tumor regions. Our findings suggest the potential of this radiomics models in predicting TACE outcomes, with possible implications for other clinical scenarios.
Collapse
Affiliation(s)
- Krzysztof Bartnik
- Second Department of Radiology, Medical University of Warsaw, Banacha 1a st., 02-097, Warsaw, Poland.
| | - Mateusz Krzyziński
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75 st., Warsaw, Poland
| | - Tomasz Bartczak
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75 st., Warsaw, Poland
| | - Krzysztof Korzeniowski
- Second Department of Radiology, Medical University of Warsaw, Banacha 1a st., 02-097, Warsaw, Poland
| | - Krzysztof Lamparski
- Second Department of Radiology, Medical University of Warsaw, Banacha 1a st., 02-097, Warsaw, Poland
| | - Tadeusz Wróblewski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Banacha 1a st., Warsaw, Poland
| | - Michał Grąt
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Banacha 1a st., Warsaw, Poland
| | - Wacław Hołówko
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Banacha 1a st., Warsaw, Poland
| | - Katarzyna Mech
- Department of General, Gastroenterological and Oncological Surgery, Medical University of Warsaw, Banacha 1a st., Warsaw, Poland
| | - Joanna Lisowska
- Department of General, Gastroenterological and Oncological Surgery, Medical University of Warsaw, Banacha 1a st., Warsaw, Poland
| | - Magdalena Januszewicz
- Second Department of Radiology, Medical University of Warsaw, Banacha 1a st., 02-097, Warsaw, Poland
| | - Przemysław Biecek
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75 st., Warsaw, Poland
| |
Collapse
|
5
|
Bangolo A, Wadhwani N, Nagesh VK, Dey S, Tran HHV, Aguilar IK, Auda A, Sidiqui A, Menon A, Daoud D, Liu J, Pulipaka SP, George B, Furman F, Khan N, Plumptre A, Sekhon I, Lo A, Weissman S. Impact of artificial intelligence in the management of esophageal, gastric and colorectal malignancies. Artif Intell Gastrointest Endosc 2024; 5:90704. [DOI: 10.37126/aige.v5.i2.90704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/28/2024] [Accepted: 03/04/2024] [Indexed: 05/11/2024] Open
Abstract
The incidence of gastrointestinal malignancies has increased over the past decade at an alarming rate. Colorectal and gastric cancers are the third and fifth most commonly diagnosed cancers worldwide but are cited as the second and third leading causes of mortality. Early institution of appropriate therapy from timely diagnosis can optimize patient outcomes. Artificial intelligence (AI)-assisted diagnostic, prognostic, and therapeutic tools can assist in expeditious diagnosis, treatment planning/response prediction, and post-surgical prognostication. AI can intercept neoplastic lesions in their primordial stages, accurately flag suspicious and/or inconspicuous lesions with greater accuracy on radiologic, histopathological, and/or endoscopic analyses, and eliminate over-dependence on clinicians. AI-based models have shown to be on par, and sometimes even outperformed experienced gastroenterologists and radiologists. Convolutional neural networks (state-of-the-art deep learning models) are powerful computational models, invaluable to the field of precision oncology. These models not only reliably classify images, but also accurately predict response to chemotherapy, tumor recurrence, metastasis, and survival rates post-treatment. In this systematic review, we analyze the available evidence about the diagnostic, prognostic, and therapeutic utility of artificial intelligence in gastrointestinal oncology.
Collapse
Affiliation(s)
- Ayrton Bangolo
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Nikita Wadhwani
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Vignesh K Nagesh
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Shraboni Dey
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Hadrian Hoang-Vu Tran
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Izage Kianifar Aguilar
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Auda Auda
- Department of Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Aman Sidiqui
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Aiswarya Menon
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Deborah Daoud
- Department of Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - James Liu
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Sai Priyanka Pulipaka
- Department of Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Blessy George
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Flor Furman
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Nareeman Khan
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Adewale Plumptre
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Imranjot Sekhon
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Abraham Lo
- Department of Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Simcha Weissman
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| |
Collapse
|
6
|
Radiya K, Joakimsen HL, Mikalsen KØ, Aahlin EK, Lindsetmo RO, Mortensen KE. Performance and clinical applicability of machine learning in liver computed tomography imaging: a systematic review. Eur Radiol 2023; 33:6689-6717. [PMID: 37171491 PMCID: PMC10511359 DOI: 10.1007/s00330-023-09609-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 05/13/2023]
Abstract
OBJECTIVES Machine learning (ML) for medical imaging is emerging for several organs and image modalities. Our objectives were to provide clinicians with an overview of this field by answering the following questions: (1) How is ML applied in liver computed tomography (CT) imaging? (2) How well do ML systems perform in liver CT imaging? (3) What are the clinical applications of ML in liver CT imaging? METHODS A systematic review was carried out according to the guidelines from the PRISMA-P statement. The search string focused on studies containing content relating to artificial intelligence, liver, and computed tomography. RESULTS One hundred ninety-one studies were included in the study. ML was applied to CT liver imaging by image analysis without clinicians' intervention in majority of studies while in newer studies the fusion of ML method with clinical intervention have been identified. Several were documented to perform very accurately on reliable but small data. Most models identified were deep learning-based, mainly using convolutional neural networks. Potentially many clinical applications of ML to CT liver imaging have been identified through our review including liver and its lesion segmentation and classification, segmentation of vascular structure inside the liver, fibrosis and cirrhosis staging, metastasis prediction, and evaluation of chemotherapy. CONCLUSION Several studies attempted to provide transparent result of the model. To make the model convenient for a clinical application, prospective clinical validation studies are in urgent call. Computer scientists and engineers should seek to cooperate with health professionals to ensure this. KEY POINTS • ML shows great potential for CT liver image tasks such as pixel-wise segmentation and classification of liver and liver lesions, fibrosis staging, metastasis prediction, and retrieval of relevant liver lesions from similar cases of other patients. • Despite presenting the result is not standardized, many studies have attempted to provide transparent results to interpret the machine learning method performance in the literature. • Prospective studies are in urgent call for clinical validation of ML method, preferably carried out by cooperation between clinicians and computer scientists.
Collapse
Affiliation(s)
- Keyur Radiya
- Department of Gastroenterological Surgery at University Hospital of North Norway (UNN), Tromso, Norway.
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway.
| | - Henrik Lykke Joakimsen
- Institute of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway
- Centre for Clinical Artificial Intelligence (SPKI), University Hospital of North Norway, Tromso, Norway
| | - Karl Øyvind Mikalsen
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway
- Centre for Clinical Artificial Intelligence (SPKI), University Hospital of North Norway, Tromso, Norway
- UiT Machine Learning Group, Department of Physics and Technology, UiT the Arctic University of Norway, Tromso, Norway
| | - Eirik Kjus Aahlin
- Department of Gastroenterological Surgery at University Hospital of North Norway (UNN), Tromso, Norway
| | - Rolv-Ole Lindsetmo
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway
- Head Clinic of Surgery, Oncology and Women Health, University Hospital of North Norway, Tromso, Norway
| | - Kim Erlend Mortensen
- Department of Gastroenterological Surgery at University Hospital of North Norway (UNN), Tromso, Norway
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway
| |
Collapse
|
7
|
Spinelli A, Carrano FM, Laino ME, Andreozzi M, Koleth G, Hassan C, Repici A, Chand M, Savevski V, Pellino G. Artificial intelligence in colorectal surgery: an AI-powered systematic review. Tech Coloproctol 2023; 27:615-629. [PMID: 36805890 DOI: 10.1007/s10151-023-02772-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023]
Abstract
Artificial intelligence (AI) has the potential to revolutionize surgery in the coming years. Still, it is essential to clarify what the meaningful current applications are and what can be reasonably expected. This AI-powered review assessed the role of AI in colorectal surgery. A Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)-compliant systematic search of PubMed, Embase, Scopus, Cochrane Library databases, and gray literature was conducted on all available articles on AI in colorectal surgery (from January 1 1997 to March 1 2021), aiming to define the perioperative applications of AI. Potentially eligible studies were identified using novel software powered by natural language processing (NLP) and machine learning (ML) technologies dedicated to systematic reviews. Out of 1238 articles identified, 115 were included in the final analysis. Available articles addressed the role of AI in several areas of interest. In the preoperative phase, AI can be used to define tailored treatment algorithms, support clinical decision-making, assess the risk of complications, and predict surgical outcomes and survival. Intraoperatively, AI-enhanced surgery and integration of AI in robotic platforms have been suggested. After surgery, AI can be implemented in the Enhanced Recovery after Surgery (ERAS) pathway. Additional areas of applications included the assessment of patient-reported outcomes, automated pathology assessment, and research. Available data on these aspects are limited, and AI in colorectal surgery is still in its infancy. However, the rapid evolution of technologies makes it likely that it will increasingly be incorporated into everyday practice.
Collapse
Affiliation(s)
- A Spinelli
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, MI, Italy.
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy.
| | - F M Carrano
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, MI, Italy
| | - M E Laino
- Artificial Intelligence Center, Humanitas Clinical and Research Center-IRCCS, Via A. Manzoni 56, 20089, Rozzano, MI, Italy
| | - M Andreozzi
- Department of Clinical Medicine and Surgery, University "Federico II" of Naples, Naples, Italy
| | - G Koleth
- Department of Gastroenterology and Hepatology, Hospital Selayang, Selangor, Malaysia
| | - C Hassan
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, MI, Italy
| | - A Repici
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, MI, Italy
| | - M Chand
- Wellcome EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, London, UK
| | - V Savevski
- Artificial Intelligence Center, Humanitas Clinical and Research Center-IRCCS, Via A. Manzoni 56, 20089, Rozzano, MI, Italy
| | - G Pellino
- Department of Advanced Medical and Surgical Sciences, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
- Colorectal Surgery, Vall d'Hebron University Hospital, Universitat Autonoma de Barcelona UAB, Barcelona, Spain
| |
Collapse
|
8
|
Saber R, Henault D, Messaoudi N, Rebolledo R, Montagnon E, Soucy G, Stagg J, Tang A, Turcotte S, Kadoury S. Radiomics using computed tomography to predict CD73 expression and prognosis of colorectal cancer liver metastases. J Transl Med 2023; 21:507. [PMID: 37501197 PMCID: PMC10375693 DOI: 10.1186/s12967-023-04175-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/30/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Finding a noninvasive radiomic surrogate of tumor immune features could help identify patients more likely to respond to novel immune checkpoint inhibitors. Particularly, CD73 is an ectonucleotidase that catalyzes the breakdown of extracellular AMP into immunosuppressive adenosine, which can be blocked by therapeutic antibodies. High CD73 expression in colorectal cancer liver metastasis (CRLM) resected with curative intent is associated with early recurrence and shorter patient survival. The aim of this study was hence to evaluate whether machine learning analysis of preoperative liver CT-scan could estimate high vs low CD73 expression in CRLM and whether such radiomic score would have a prognostic significance. METHODS We trained an Attentive Interpretable Tabular Learning (TabNet) model to predict, from preoperative CT images, stratified expression levels of CD73 (CD73High vs. CD73Low) assessed by immunofluorescence (IF) on tissue microarrays. Radiomic features were extracted from 160 segmented CRLM of 122 patients with matched IF data, preprocessed and used to train the predictive model. We applied a five-fold cross-validation and validated the performance on a hold-out test set. RESULTS TabNet provided areas under the receiver operating characteristic curve of 0.95 (95% CI 0.87 to 1.0) and 0.79 (0.65 to 0.92) on the training and hold-out test sets respectively, and outperformed other machine learning models. The TabNet-derived score, termed rad-CD73, was positively correlated with CD73 histological expression in matched CRLM (Spearman's ρ = 0.6004; P < 0.0001). The median time to recurrence (TTR) and disease-specific survival (DSS) after CRLM resection in rad-CD73High vs rad-CD73Low patients was 13.0 vs 23.6 months (P = 0.0098) and 53.4 vs 126.0 months (P = 0.0222), respectively. The prognostic value of rad-CD73 was independent of the standard clinical risk score, for both TTR (HR = 2.11, 95% CI 1.30 to 3.45, P < 0.005) and DSS (HR = 1.88, 95% CI 1.11 to 3.18, P = 0.020). CONCLUSIONS Our findings reveal promising results for non-invasive CT-scan-based prediction of CD73 expression in CRLM and warrant further validation as to whether rad-CD73 could assist oncologists as a biomarker of prognosis and response to immunotherapies targeting the adenosine pathway.
Collapse
Affiliation(s)
- Ralph Saber
- MedICAL Laboratory, Polytechnique Montréal, Montréal, H3T 1J4, Canada
- Imaging and Engineering Axis, Centre de recherche du Centre Hospitalier de l'Université de Montréal/Institut du cancer de Montréal, 900 rue Saint-Denis R10.430, Montréal, QC, H2X 0A9, Canada
| | - David Henault
- Cancer Axis, Centre de recherche du Centre Hospitalier de l'Université de Montréal/Institut du cancer de Montréal, 900 rue Saint-Denis, Room R10.430, Montréal, QC, H2X 0A9, Canada
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Service, Centre hospitalier de l'Université de Montréal, 1000, rue Saint-Denis, Montréal, QC, H2X 0C1, Canada
| | - Nouredin Messaoudi
- Cancer Axis, Centre de recherche du Centre Hospitalier de l'Université de Montréal/Institut du cancer de Montréal, 900 rue Saint-Denis, Room R10.430, Montréal, QC, H2X 0A9, Canada
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Service, Centre hospitalier de l'Université de Montréal, 1000, rue Saint-Denis, Montréal, QC, H2X 0C1, Canada
- Department of Surgery, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel) and Europe Hospitals, Brussels, Belgium
| | - Rolando Rebolledo
- Cancer Axis, Centre de recherche du Centre Hospitalier de l'Université de Montréal/Institut du cancer de Montréal, 900 rue Saint-Denis, Room R10.430, Montréal, QC, H2X 0A9, Canada
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Service, Centre hospitalier de l'Université de Montréal, 1000, rue Saint-Denis, Montréal, QC, H2X 0C1, Canada
| | - Emmanuel Montagnon
- Imaging and Engineering Axis, Centre de recherche du Centre Hospitalier de l'Université de Montréal/Institut du cancer de Montréal, 900 rue Saint-Denis R10.430, Montréal, QC, H2X 0A9, Canada
| | - Geneviève Soucy
- Pahology Department, Centre hospitalier de l'Université de Montréal, 1000, rue Saint-Denis, Montréal, QC, H2X 0C1, Canada
| | - John Stagg
- Cancer Axis, Centre de recherche du Centre Hospitalier de l'Université de Montréal/Institut du cancer de Montréal, 900 rue Saint-Denis, Room R10.430, Montréal, QC, H2X 0A9, Canada
| | - An Tang
- Imaging and Engineering Axis, Centre de recherche du Centre Hospitalier de l'Université de Montréal/Institut du cancer de Montréal, 900 rue Saint-Denis R10.430, Montréal, QC, H2X 0A9, Canada
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montréal, H3T 1J4, Canada
| | - Simon Turcotte
- Cancer Axis, Centre de recherche du Centre Hospitalier de l'Université de Montréal/Institut du cancer de Montréal, 900 rue Saint-Denis, Room R10.430, Montréal, QC, H2X 0A9, Canada.
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Service, Centre hospitalier de l'Université de Montréal, 1000, rue Saint-Denis, Montréal, QC, H2X 0C1, Canada.
| | - Samuel Kadoury
- MedICAL Laboratory, Polytechnique Montréal, Montréal, H3T 1J4, Canada.
- Imaging and Engineering Axis, Centre de recherche du Centre Hospitalier de l'Université de Montréal/Institut du cancer de Montréal, 900 rue Saint-Denis R10.430, Montréal, QC, H2X 0A9, Canada.
- Department of Computer and Software Engineering, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, H3T 1J4, Canada.
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montréal, H3T 1J4, Canada.
| |
Collapse
|
9
|
Zhang Z, Wei X. Artificial intelligence-assisted selection and efficacy prediction of antineoplastic strategies for precision cancer therapy. Semin Cancer Biol 2023; 90:57-72. [PMID: 36796530 DOI: 10.1016/j.semcancer.2023.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/12/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
The rapid development of artificial intelligence (AI) technologies in the context of the vast amount of collectable data obtained from high-throughput sequencing has led to an unprecedented understanding of cancer and accelerated the advent of a new era of clinical oncology with a tone of precision treatment and personalized medicine. However, the gains achieved by a variety of AI models in clinical oncology practice are far from what one would expect, and in particular, there are still many uncertainties in the selection of clinical treatment options that pose significant challenges to the application of AI in clinical oncology. In this review, we summarize emerging approaches, relevant datasets and open-source software of AI and show how to integrate them to address problems from clinical oncology and cancer research. We focus on the principles and procedures for identifying different antitumor strategies with the assistance of AI, including targeted cancer therapy, conventional cancer therapy, and cancer immunotherapy. In addition, we also highlight the current challenges and directions of AI in clinical oncology translation. Overall, we hope this article will provide researchers and clinicians with a deeper understanding of the role and implications of AI in precision cancer therapy, and help AI move more quickly into accepted cancer guidelines.
Collapse
Affiliation(s)
- Zhe Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, PR China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
10
|
Alshohoumi F, Al-Hamdani A, Hedjam R, AlAbdulsalam A, Al Zaabi A. A Review of Radiomics in Predicting Therapeutic Response in Colorectal Liver Metastases: From Traditional to Artificial Intelligence Techniques. Healthcare (Basel) 2022; 10:2075. [PMID: 36292522 PMCID: PMC9602631 DOI: 10.3390/healthcare10102075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 12/12/2024] Open
Abstract
An early evaluation of colorectal cancer liver metastasis (CRCLM) is crucial in determining treatment options that ultimately affect patient survival rates and outcomes. Radiomics (quantitative imaging features) have recently gained popularity in diagnostic and therapeutic strategies. Despite this, radiomics faces many challenges and limitations. This study sheds light on these limitations by reviewing the studies that used radiomics to predict therapeutic response in CRCLM. Despite radiomics' potential to enhance clinical decision-making, it lacks standardization. According to the results of this study, the instability of radiomics quantification is caused by changes in CT scan parameters used to obtain CT scans, lesion segmentation methods used for contouring liver metastases, feature extraction methods, and dataset size used for experimentation and validation. Accordingly, the study recommends combining radiomics with deep learning to improve prediction accuracy.
Collapse
Affiliation(s)
- Fatma Alshohoumi
- Department of Computer Science, College of Science, Sultan Qaboos University, P.O. Box 36, Muscat 123, Oman
| | - Abdullah Al-Hamdani
- Department of Computer Science, College of Science, Sultan Qaboos University, P.O. Box 36, Muscat 123, Oman
| | - Rachid Hedjam
- Department of Computer Science, College of Science, Sultan Qaboos University, P.O. Box 36, Muscat 123, Oman
| | - AbdulRahman AlAbdulsalam
- Department of Computer Science, College of Science, Sultan Qaboos University, P.O. Box 36, Muscat 123, Oman
| | - Adhari Al Zaabi
- Department of Human and Clinical Anatomy, College of Medicine & Health Sciences, Sultan Qaboos University, P.O. Box 36, Muscat 123, Oman
| |
Collapse
|
11
|
Russo V, Lallo E, Munnia A, Spedicato M, Messerini L, D’Aurizio R, Ceroni EG, Brunelli G, Galvano A, Russo A, Landini I, Nobili S, Ceppi M, Bruzzone M, Cianchi F, Staderini F, Roselli M, Riondino S, Ferroni P, Guadagni F, Mini E, Peluso M. Artificial Intelligence Predictive Models of Response to Cytotoxic Chemotherapy Alone or Combined to Targeted Therapy for Metastatic Colorectal Cancer Patients: A Systematic Review and Meta-Analysis. Cancers (Basel) 2022; 14:4012. [PMID: 36011003 PMCID: PMC9406544 DOI: 10.3390/cancers14164012] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/26/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022] Open
Abstract
Tailored treatments for metastatic colorectal cancer (mCRC) have not yet completely evolved due to the variety in response to drugs. Therefore, artificial intelligence has been recently used to develop prognostic and predictive models of treatment response (either activity/efficacy or toxicity) to aid in clinical decision making. In this systematic review, we have examined the ability of learning methods to predict response to chemotherapy alone or combined with targeted therapy in mCRC patients by targeting specific narrative publications in Medline up to April 2022 to identify appropriate original scientific articles. After the literature search, 26 original articles met inclusion and exclusion criteria and were included in the study. Our results show that all investigations conducted on this field have provided generally promising results in predicting the response to therapy or toxic side-effects. By a meta-analytic approach we found that the overall weighted means of the area under the receiver operating characteristic (ROC) curve (AUC) were 0.90, 95% C.I. 0.80-0.95 and 0.83, 95% C.I. 0.74-0.89 in training and validation sets, respectively, indicating a good classification performance in discriminating response vs. non-response. The calculation of overall HR indicates that learning models have strong ability to predict improved survival. Lastly, the delta-radiomics and the 74 gene signatures were able to discriminate response vs. non-response by correctly identifying up to 99% of mCRC patients who were responders and up to 100% of patients who were non-responders. Specifically, when we evaluated the predictive models with tests reaching 80% sensitivity (SE) and 90% specificity (SP), the delta radiomics showed an SE of 99% and an SP of 94% in the training set and an SE of 85% and SP of 92 in the test set, whereas for the 74 gene signatures the SE was 97.6% and the SP 100% in the training set.
Collapse
Affiliation(s)
- Valentina Russo
- Research and Development Branch, Regional Cancer Prevention Laboratory, ISPRO-Study, Prevention and Oncology Network Institute, 50139 Florence, Italy
| | - Eleonora Lallo
- Research and Development Branch, Regional Cancer Prevention Laboratory, ISPRO-Study, Prevention and Oncology Network Institute, 50139 Florence, Italy
| | - Armelle Munnia
- Research and Development Branch, Regional Cancer Prevention Laboratory, ISPRO-Study, Prevention and Oncology Network Institute, 50139 Florence, Italy
| | - Miriana Spedicato
- Research and Development Branch, Regional Cancer Prevention Laboratory, ISPRO-Study, Prevention and Oncology Network Institute, 50139 Florence, Italy
| | - Luca Messerini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Romina D’Aurizio
- Institute of Informatics and Telematics, National Research Council, 56124 Pisa, Italy
| | - Elia Giuseppe Ceroni
- Institute of Informatics and Telematics, National Research Council, 56124 Pisa, Italy
| | - Giulia Brunelli
- Institute of Informatics and Telematics, National Research Council, 56124 Pisa, Italy
| | - Antonio Galvano
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Ida Landini
- Department of Health Sciences, University of Florence, 50139 Florence, Italy
| | - Stefania Nobili
- Department of Neurosciences, Imaging and Clinical Sciences, “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Marcello Ceppi
- Clinical Epidemiology Unit, IRCCS-Ospedale Policlinico San Martino, 16131 Genova, Italy
| | - Marco Bruzzone
- Clinical Epidemiology Unit, IRCCS-Ospedale Policlinico San Martino, 16131 Genova, Italy
| | - Fabio Cianchi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Fabio Staderini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Mario Roselli
- Medical Oncology Unit, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
| | - Silvia Riondino
- Medical Oncology Unit, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
| | - Patrizia Ferroni
- BioBIM (InterInstitutional Multidisciplinary Biobank), IRCCS San Raffaele Roma, 00166 Rome, Italy
- Department of Human Sciences & Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Fiorella Guadagni
- BioBIM (InterInstitutional Multidisciplinary Biobank), IRCCS San Raffaele Roma, 00166 Rome, Italy
- Department of Human Sciences & Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Enrico Mini
- Department of Health Sciences, University of Florence, 50139 Florence, Italy
| | - Marco Peluso
- Research and Development Branch, Regional Cancer Prevention Laboratory, ISPRO-Study, Prevention and Oncology Network Institute, 50139 Florence, Italy
| |
Collapse
|
12
|
Rompianesi G, Pegoraro F, Ceresa CDL, Montalti R, Troisi RI. Artificial intelligence in the diagnosis and management of colorectal cancer liver metastases. World J Gastroenterol 2022; 28:108-122. [PMID: 35125822 PMCID: PMC8793013 DOI: 10.3748/wjg.v28.i1.108] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/12/2021] [Accepted: 12/25/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common malignancy worldwide, with approximately 50% of patients developing colorectal cancer liver metastasis (CRLM) during the follow-up period. Management of CRLM is best achieved via a multidisciplinary approach and the diagnostic and therapeutic decision-making process is complex. In order to optimize patients' survival and quality of life, there are several unsolved challenges which must be overcome. These primarily include a timely diagnosis and the identification of reliable prognostic factors. Furthermore, to allow optimal treatment options, a precision-medicine, personalized approach is required. The widespread digitalization of healthcare generates a vast amount of data and together with accessible high-performance computing, artificial intelligence (AI) technologies can be applied. By increasing diagnostic accuracy, reducing timings and costs, the application of AI could help mitigate the current shortcomings in CRLM management. In this review we explore the available evidence of the possible role of AI in all phases of the CRLM natural history. Radiomics analysis and convolutional neural networks (CNN) which combine computed tomography (CT) images with clinical data have been developed to predict CRLM development in CRC patients. AI models have also proven themselves to perform similarly or better than expert radiologists in detecting CRLM on CT and magnetic resonance scans or identifying them from the noninvasive analysis of patients' exhaled air. The application of AI and machine learning (ML) in diagnosing CRLM has also been extended to histopathological examination in order to rapidly and accurately identify CRLM tissue and its different histopathological growth patterns. ML and CNN have shown good accuracy in predicting response to chemotherapy, early local tumor progression after ablation treatment, and patient survival after surgical treatment or chemotherapy. Despite the initial enthusiasm and the accumulating evidence, AI technologies' role in healthcare and CRLM management is not yet fully established. Its limitations mainly concern safety and the lack of regulation and ethical considerations. AI is unlikely to fully replace any human role but could be actively integrated to facilitate physicians in their everyday practice. Moving towards a personalized and evidence-based patient approach and management, further larger, prospective and rigorous studies evaluating AI technologies in patients at risk or affected by CRLM are needed.
Collapse
Affiliation(s)
- Gianluca Rompianesi
- Division of Hepato-Bilio-Pancreatic, Minimally Invasive and Robotic Surgery, Department of Clinical Medicine and Surgery, Federico II University Hospital, Naples 80125, Italy
| | - Francesca Pegoraro
- Division of Hepato-Bilio-Pancreatic, Minimally Invasive and Robotic Surgery, Department of Clinical Medicine and Surgery, Federico II University Hospital, Naples 80125, Italy
| | - Carlo DL Ceresa
- Department of Hepato-Pancreato-Biliary Surgery, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9ES, United Kingdom
| | - Roberto Montalti
- Division of Hepato-Bilio-Pancreatic, Minimally Invasive and Robotic Surgery, Department of Public Health, Federico II University Hospital, Naples 80125, Italy
| | - Roberto Ivan Troisi
- Division of Hepato-Bilio-Pancreatic, Minimally Invasive and Robotic Surgery, Department of Clinical Medicine and Surgery, Federico II University Hospital, Naples 80125, Italy
| |
Collapse
|
13
|
Svecic A, Mansour R, Tang A, Kadoury S. Prediction of post transarterial chemoembolization MR images of hepatocellular carcinoma using spatio-temporal graph convolutional networks. PLoS One 2021; 16:e0259692. [PMID: 34874934 PMCID: PMC8651128 DOI: 10.1371/journal.pone.0259692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/24/2021] [Indexed: 11/25/2022] Open
Abstract
Magnetic resonance imaging (MRI) plays a critical role in the planning and monitoring of hepatocellular carcinomas (HCC) treated with locoregional therapies, in order to assess disease progression or recurrence. Dynamic contrast-enhanced (DCE)-MRI sequences offer temporal data on tumor enhancement characteristics which has strong prognostic value. Yet, predicting follow-up DCE-MR images from which tumor enhancement and viability can be measured, before treatment of HCC actually begins, remains an unsolved problem given the complexity of spatial and temporal information. We propose an approach to predict future DCE-MRI examinations following transarterial chemoembolization (TACE) by learning the spatio-temporal features related to HCC response from pre-TACE images. A novel Spatial-Temporal Discriminant Graph Neural Network (STDGNN) based on graph convolutional networks is presented. First, embeddings of viable, equivocal and non-viable HCCs are separated within a joint low-dimensional latent space, which is created using a discriminant neural network representing tumor-specific features. Spatial tumoral features from independent MRI volumes are then extracted with a structural branch, while dynamic features are extracted from the multi-phase sequence with a separate temporal branch. The model extracts spatio-temporal features by a joint minimization of the network branches. At testing, a pre-TACE diagnostic DCE-MRI is embedded on the discriminant spatio-temporal latent space, which is then translated to the follow-up domain space, thus allowing to predict the post-TACE DCE-MRI describing HCC treatment response. A dataset of 366 HCC's from liver cancer patients was used to train and test the model using DCE-MRI examinations with associated pathological outcomes, with the spatio-temporal framework yielding 93.5% classification accuracy in response identification, and generating follow-up images yielding insignificant differences in perfusion parameters compared to ground-truth post-TACE examinations.
Collapse
Affiliation(s)
- Andrei Svecic
- Department of Computer Engineering, MedICAL, Polytechnique Montréal, Montréal, Québec, Canada
| | | | - An Tang
- CHUM Research Center, Montréal, Québec, Canada
- Department of Radiology, CHUM, Montréal, Québec, Canada
| | - Samuel Kadoury
- Department of Computer Engineering, MedICAL, Polytechnique Montréal, Montréal, Québec, Canada
- CHUM Research Center, Montréal, Québec, Canada
| |
Collapse
|
14
|
Cao B, Zhang KC, Wei B, Chen L. Status quo and future prospects of artificial neural network from the perspective of gastroenterologists. World J Gastroenterol 2021; 27:2681-2709. [PMID: 34135549 PMCID: PMC8173384 DOI: 10.3748/wjg.v27.i21.2681] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/29/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Artificial neural networks (ANNs) are one of the primary types of artificial intelligence and have been rapidly developed and used in many fields. In recent years, there has been a sharp increase in research concerning ANNs in gastrointestinal (GI) diseases. This state-of-the-art technique exhibits excellent performance in diagnosis, prognostic prediction, and treatment. Competitions between ANNs and GI experts suggest that efficiency and accuracy might be compatible in virtue of technique advancements. However, the shortcomings of ANNs are not negligible and may induce alterations in many aspects of medical practice. In this review, we introduce basic knowledge about ANNs and summarize the current achievements of ANNs in GI diseases from the perspective of gastroenterologists. Existing limitations and future directions are also proposed to optimize ANN's clinical potential. In consideration of barriers to interdisciplinary knowledge, sophisticated concepts are discussed using plain words and metaphors to make this review more easily understood by medical practitioners and the general public.
Collapse
Affiliation(s)
- Bo Cao
- Department of General Surgery & Institute of General Surgery, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Ke-Cheng Zhang
- Department of General Surgery & Institute of General Surgery, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Bo Wei
- Department of General Surgery & Institute of General Surgery, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Lin Chen
- Department of General Surgery & Institute of General Surgery, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| |
Collapse
|