1
|
Zhu H, Wang G, Liao Z, Zhang W. AITL-Net: An adaptive interpretable transfer learning network with robust generalization for liver cancer recognition. Knowl Based Syst 2025; 318:113473. [DOI: 10.1016/j.knosys.2025.113473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
|
2
|
Ratiphunpong P, Inmutto N, Angkurawaranon S, Wantanajittikul K, Suwannasak A, Yarach U. A Pilot Study on Deep Learning With Simplified Intravoxel Incoherent Motion Diffusion-Weighted MRI Parameters for Differentiating Hepatocellular Carcinoma From Other Common Liver Masses. Top Magn Reson Imaging 2025; 34:e0316. [PMID: 40249154 DOI: 10.1097/rmr.0000000000000316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 02/18/2025] [Indexed: 04/19/2025]
Abstract
OBJECTIVES To develop and evaluate a deep learning technique for the differentiation of hepatocellular carcinoma (HCC) using "simplified intravoxel incoherent motion (IVIM) parameters" derived from only 3 b-value images. MATERIALS AND METHODS Ninety-eight retrospective magnetic resonance imaging data were collected (68 men, 30 women; mean age 59 ± 14 years), including T2-weighted imaging with fat suppression, in-phase, out-of-phase, and diffusion-weighted imaging (b = 0, 100, 800 s/mm2). Ninety percent of data were used for stratified 10-fold cross-validation. After data preprocessing, diffusion-weighted imaging images were used to compute simplified IVIM and apparent diffusion coefficient (ADC) maps. A 17-layer 3D convolutional neural network (3D-CNN) was implemented, and the input channels were modified for different strategies of input images. RESULTS The 3D-CNN with IVIM maps (ADC, f, and D*) demonstrated superior performance compared with other strategies, achieving an accuracy of 83.25 ± 6.24% and area under the receiver-operating characteristic curve of 92.70 ± 8.24%, significantly surpassing the baseline of 50% (P < 0.05) and outperforming other strategies in all evaluation metrics. This success underscores the effectiveness of simplified IVIM parameters in combination with a 3D-CNN architecture for enhancing HCC differentiation accuracy. CONCLUSIONS Simplified IVIM parameters derived from 3 b-values, when integrated with a 3D-CNN architecture, offer a robust framework for HCC differentiation.
Collapse
Affiliation(s)
- Phimphitcha Ratiphunpong
- Department of Radiologic Technology, Faculty of Associated Medical Science, Chiang Mai University, Chiang Mai, Thailand
- Radiological Technology School, Faculty of Health Science Technology, Chulabhorn Royal Academy, Bangkok, Thailand; and
| | - Nakarin Inmutto
- Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Salita Angkurawaranon
- Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kittichai Wantanajittikul
- Department of Radiologic Technology, Faculty of Associated Medical Science, Chiang Mai University, Chiang Mai, Thailand
| | - Atita Suwannasak
- Department of Radiologic Technology, Faculty of Associated Medical Science, Chiang Mai University, Chiang Mai, Thailand
| | - Uten Yarach
- Department of Radiologic Technology, Faculty of Associated Medical Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
3
|
Theocharopoulos C, Theocharopoulos A, Papadakos SP, Machairas N, Pawlik TM. Deep Learning to Enhance Diagnosis and Management of Intrahepatic Cholangiocarcinoma. Cancers (Basel) 2025; 17:1604. [PMID: 40427103 DOI: 10.3390/cancers17101604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 05/03/2025] [Accepted: 05/07/2025] [Indexed: 05/19/2025] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is associated with a poor prognosis and necessitates a multimodal, multidisciplinary approach from diagnosis to treatment to achieve optimal outcomes. A noninvasive preoperative diagnosis using abdominal imaging techniques can represent a clinical challenge. Given the differential response of iCCA to localized and systemic therapies compared with hepatocellular carcinoma and secondary hepatic malignancies, an accurate diagnosis is crucial. Deep learning (DL) models for image analysis have emerged as a promising adjunct for the abdominal radiologist, potentially enhancing the accurate detection and diagnosis of iCCA. Over the last five years, several reports have proposed robust DL models, which demonstrate a diagnostic accuracy that is either comparable to or surpasses that of radiologists with varying levels of experience. Recent studies have expanded DL applications into other aspects of iCCA management, including histopathologic diagnosis, the prediction of histopathological features, the preoperative prediction of survival, and the pretreatment prediction of responses to systemic therapy. We herein critically evaluate the expanding body of research on DL applications in the diagnosis and management of iCCA, providing insights into the current progress and future research directions. We comprehensively synthesize the performance and limitations of DL models in iCCA research, identifying key challenges that serve as a translational reference for clinicians.
Collapse
Affiliation(s)
- Charalampos Theocharopoulos
- Second Department of Propaedeutic Surgery, Laiko General Hospital, School of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece
| | - Achilleas Theocharopoulos
- Department of Electrical and Computer Engineering, National Technical University of Athens, 10682 Athens, Greece
| | - Stavros P Papadakos
- Department of Gastroenterology, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikolaos Machairas
- Second Department of Propaedeutic Surgery, Laiko General Hospital, School of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece
| | - Timothy M Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Zossou VBS, Rodrigue Gnangnon FH, Biaou O, de Vathaire F, Allodji RS, Ezin EC. Automatic Diagnosis of Hepatocellular Carcinoma and Metastases Based on Computed Tomography Images. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025; 38:873-886. [PMID: 39227538 PMCID: PMC11950545 DOI: 10.1007/s10278-024-01192-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 09/05/2024]
Abstract
Liver cancer, a leading cause of cancer mortality, is often diagnosed by analyzing the grayscale variations in liver tissue across different computed tomography (CT) images. However, the intensity similarity can be strong, making it difficult for radiologists to visually identify hepatocellular carcinoma (HCC) and metastases. It is crucial for the management and prevention strategies to accurately differentiate between these two liver cancers. This study proposes an automated system using a convolutional neural network (CNN) to enhance diagnostic accuracy to detect HCC, metastasis, and healthy liver tissue. This system incorporates automatic segmentation and classification. The liver lesions segmentation model is implemented using residual attention U-Net. A 9-layer CNN classifier implements the lesions classification model. Its input is the combination of the results of the segmentation model with original images. The dataset included 300 patients, with 223 used to develop the segmentation model and 77 to test it. These 77 patients also served as inputs for the classification model, consisting of 20 HCC cases, 27 with metastasis, and 30 healthy. The system achieved a mean Dice score of 87.65 % in segmentation and a mean accuracy of 93.97 % in classification, both in the test phase. The proposed method is a preliminary study with great potential in helping radiologists diagnose liver cancers.
Collapse
Affiliation(s)
- Vincent-Béni Sèna Zossou
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, CESP, Équipe Radiation Epidemiology, 94805, Villejuif, France.
- Centre de recherche en épidémiologie et santé des populations (CESP), U1018, Institut national de la santé et de la recherche médicale (INSERM), 94805, Villejuif, France.
- Department of Clinical Research, Radiation Epidemiology Team, Gustave Roussy, 94805, Villejuif, France.
- Ecole Doctorale Sciences de l'Ingénieur, Université d'Abomey-Calavi, BP 526, Abomey-Calavi, Benin.
| | | | - Olivier Biaou
- Faculté des Sciences de la Santé, Université d'Abomey-Calavi, BP 188, Cotonou, Benin
- Department of Radiology, CNHU-HKM, 1213, Cotonou, Benin
| | - Florent de Vathaire
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, CESP, Équipe Radiation Epidemiology, 94805, Villejuif, France
- Centre de recherche en épidémiologie et santé des populations (CESP), U1018, Institut national de la santé et de la recherche médicale (INSERM), 94805, Villejuif, France
- Department of Clinical Research, Radiation Epidemiology Team, Gustave Roussy, 94805, Villejuif, France
| | - Rodrigue S Allodji
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, CESP, Équipe Radiation Epidemiology, 94805, Villejuif, France
- Centre de recherche en épidémiologie et santé des populations (CESP), U1018, Institut national de la santé et de la recherche médicale (INSERM), 94805, Villejuif, France
- Department of Clinical Research, Radiation Epidemiology Team, Gustave Roussy, 94805, Villejuif, France
| | - Eugène C Ezin
- Institut de Formation et de Recherche en Informatique, Université d'Abomey-Calavi, BP 526, Cotonou, Benin
- Institut de Mathématiques et de Sciences Physiques, Université d'Abomey-Calavi, 613, Dangbo, Benin
| |
Collapse
|
5
|
Inmutto N, Pojchamarnwiputh S, Na Chiangmai W. Multiphase Computed Tomography Scan Findings for Artificial Intelligence Training in the Differentiation of Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma Based on Interobserver Agreement of Expert Abdominal Radiologists. Diagnostics (Basel) 2025; 15:821. [PMID: 40218171 PMCID: PMC11989188 DOI: 10.3390/diagnostics15070821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/23/2025] [Accepted: 03/23/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objective: Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) are the most common primary liver cancer. Computed tomography (CT) is the imaging modality used to evaluate liver nodules and differentiate HCC from ICC. Artificial intelligence (AI), machine learning (ML), and deep learning (DL) have been used in multiple studies in the field of radiology. The purpose of this study was to determine potential CT features for the differentiation of hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Methods: Patients with radiological and pathologically confirmed diagnosis of HCC and ICC between January 2013 and December 2015 were included in this retrospective study. Two board-certified diagnostic radiologists independently reviewed multiphase CT images on a picture archiving and communication system (PACS). Arterial hyperenhancement, portal vein thrombosis, lymph node enlargement, and cirrhosis appearance were evaluated. We then calculated sensitivity, specificity, the likelihood ratio for diagnosis of HCC and ICC. Inter-observed agreement of categorical data was evaluated using Cohen's kappa statistic (k). Results: A total of 74 patients with a pathologically confirmed diagnosis, including 48 HCCs and 26 ICC, were included in this study. Most of HCC patients showed arterial hyperenhancement at 95.8%, and interobserver agreement was moderate (k = 0.47). Arterial enhancement in ICC was less frequent, ranging from 15.4% to 26.9%, and agreement between readers was substantial (k = 0.66). The two readers showed a moderate agreement of cirrhosis appearance in both the HCC and ICC groups, k = 0.43 and k = 0.48, respectively. Cirrhosis appeared in the HCC group more frequently than the ICC group. Lymph node enlargement was more commonly seen in ICC than HCC, and agreement between the readers was almost perfect (k = 0.84). Portal vein invasion in HCC was seen in 14.6% by both readers with a substantial agreement (k = 0.66). Portal vein invasion in ICC was seen in 11.5% to 19.2% of the patients. The diagnostic performance of the two radiologists was satisfactory, with a corrected diagnosis of 87.8% and 94.6%. The two radiologists had high sensitivity in diagnosing HCCs (95.8% to 97.9%) and specificity in diagnosing ICCs (95.8% to 97.9%). Conclusions: Cirrhosis and lymph node metastasis could be ancillary and adopted in future AI training algorithms.
Collapse
Affiliation(s)
| | | | - Wittanee Na Chiangmai
- Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.I.); (S.P.)
| |
Collapse
|
6
|
Prinzi F, Militello C, Zarcaro C, Bartolotta TV, Gaglio S, Vitabile S. Rad4XCNN: A new agnostic method for post-hoc global explanation of CNN-derived features by means of Radiomics. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 260:108576. [PMID: 39798282 DOI: 10.1016/j.cmpb.2024.108576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/11/2024] [Accepted: 12/25/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND AND OBJECTIVE In recent years, machine learning-based clinical decision support systems (CDSS) have played a key role in the analysis of several medical conditions. Despite their promising capabilities, the lack of transparency in AI models poses significant challenges, particularly in medical contexts where reliability is a mandatory aspect. However, it appears that explainability is inversely proportional to accuracy. For this reason, achieving transparency without compromising predictive accuracy remains a key challenge. METHODS This paper presents a novel method, namely Rad4XCNN, to enhance the predictive power of CNN-derived features with the inherent interpretability of radiomic features. Rad4XCNN diverges from conventional methods based on saliency maps, by associating intelligible meaning to CNN-derived features by means of Radiomics, offering new perspectives on explanation methods beyond visualization maps. RESULTS Using a breast cancer classification task as a case study, we evaluated Rad4XCNN on ultrasound imaging datasets, including an online dataset and two in-house datasets for internal and external validation. Some key results are: (i) CNN-derived features guarantee more robust accuracy when compared against ViT-derived and radiomic features; (ii) conventional visualization map methods for explanation present several pitfalls; (iii) Rad4XCNN does not sacrifice model accuracy for their explainability; (iv) Rad4XCNN provides a global explanation enabling the physician to extract global insights and findings. CONCLUSIONS Our method can mitigate some concerns related to the explainability-accuracy trade-off. This study highlighted the importance of proposing new methods for model explanation without affecting their accuracy.
Collapse
Affiliation(s)
- Francesco Prinzi
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo, 90127, Italy.
| | - Carmelo Militello
- Institute for High-Performance Computing and Networking (ICAR-CNR), Italian National Research Council, Palermo, 90146, Italy.
| | - Calogero Zarcaro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo, 90127, Italy.
| | - Tommaso Vincenzo Bartolotta
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo, 90127, Italy.
| | - Salvatore Gaglio
- Institute for High-Performance Computing and Networking (ICAR-CNR), Italian National Research Council, Palermo, 90146, Italy; Department of Engineering, University of Palermo, Palermo, 90128, Italy.
| | - Salvatore Vitabile
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo, 90127, Italy.
| |
Collapse
|
7
|
Du Z, Fan F, Ma J, Liu J, Yan X, Chen X, Dong Y, Wu J, Ding W, Zhao Q, Wang Y, Zhang G, Yu J, Liang P. Development and validation of an ultrasound-based interpretable machine learning model for the classification of ≤3 cm hepatocellular carcinoma: a multicentre retrospective diagnostic study. EClinicalMedicine 2025; 81:103098. [PMID: 40034568 PMCID: PMC11872562 DOI: 10.1016/j.eclinm.2025.103098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 03/05/2025] Open
Abstract
Background Our study aimed to develop a machine learning (ML) model utilizing grayscale ultrasound (US) to distinguish ≤3 cm small hepatocellular carcinoma (sHCC) from non-HCC lesions. Methods A total of 1052 patients with 1058 liver lesions ≤3 cm from 55 hospitals were collected between May 2017 and June 2021, and 756 liver lesions were randomly allocated into train and internal validation cohorts at a 8:2 ratio for the development and evaluation of ML models based on multilayer perceptron (MLP) and extreme gradient boosting (XGBoost) methods (ModelU utilizing US imaging features; ModelUR adding US radiomics features; ModelURC employing clinical features further). The diagnostic performance of three models was assessed in external validation cohort (312 liver lesions from 14 hospitals). The diagnostic efficacy of the optimal model was compared to that of radiologists in external validation cohort. The SHapley Additive exPlanations (SHAP) method was employed to interpret the optimal ML model by ranking feature importance. The study was registered at ClinicalTrials.gov (NCT03871140). Findings ModelURC based XGBoost showed the best performance (AUC = 0.934; 95% CI: 0.894-0.974) in the internal validation cohort. In the external validation cohort, ModelURC also achieved optimal AUC (AUC = 0.899, 95% CI: 0.861-0.931). Upon conducting a subgroup analysis, no statistically significant differences were observed in the diagnostic performance of the ModelURC neither between tumor sizes of ≤2.0 cm and 2.1-3.0 cm nor across different HCC risk stratifications. ModelURC exhibited superior ability compared to all radiologists and ModelURC assistance significantly improved the diagnostic AUC for all radiologists (all P < 0.0001). Interpretation A diagnostic model for sHCC was developed and validated using ML and grayscale US from large cohorts. This model significantly improved the diagnostic performance of grayscale US for sHCC compared with experts. Funding This work was supported by National Key Research and Development Program of China (2022YFC2405500), Major Research Program of the National Natural Science Foundation of China (92159305), National Science Fund for Distinguished Young Scholars (82325027), Key project of National Natural Science Foundation of China (82030047), Military Fund for Geriatric Diseases (20BJZ42), National Natural Science Foundation of China Special Program (82441011). National Natural Science Foundation of China (82402280), National Natural Science Foundation of China (32171363), Key Research and Development Program for Social Development of Yunnan Science and Technology Department (202403AC100014).
Collapse
Affiliation(s)
- Zhicheng Du
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer & Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Fangying Fan
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jun Ma
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jing Liu
- Department of Ultrasound, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xing Yan
- Department of Ultrasound, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xuexue Chen
- Department of Ultrasound, Guangxi Zhuang Autonomous Region People's Hospital, Nanning, China
| | - Yangfang Dong
- Department of Ultrasound, Fuzhou First General Hospital, Fuzhou, China
| | - Jiapeng Wu
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Wenzhen Ding
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qinxian Zhao
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuling Wang
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Guojun Zhang
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer & Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- The Breast Center and the Cancer Institute, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University & Peking University Cancer Hospital Yunnan, Kunming, China
| | - Jie Yu
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ping Liang
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
8
|
Xie XY, Chen R. Research progress of MRI-based radiomics in hepatocellular carcinoma. Front Oncol 2025; 15:1420599. [PMID: 39980543 PMCID: PMC11839447 DOI: 10.3389/fonc.2025.1420599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
Background Primary liver cancer (PLC), notably hepatocellular carcinoma (HCC), stands as a formidable global health challenge, ranking as the sixth most prevalent malignant tumor and the third leading cause of cancer-related deaths. HCC presents a daunting clinical landscape characterized by nonspecific early symptoms and late-stage detection, contributing to its poor prognosis. Moreover, the limited efficacy of existing treatments and high recurrence rates post-surgery compound the challenges in managing this disease. While histopathologic examination remains the cornerstone for HCC diagnosis, its utility in guiding preoperative decisions is constrained. Radiomics, an emerging field, harnesses high-throughput imaging data, encompassing shape, texture, and intensity features, alongside clinical parameters, to elucidate disease characteristics through advanced computational techniques such as machine learning and statistical modeling. MRI radiomics specifically holds significant importance in the diagnosis and treatment of hepatocellular carcinoma (HCC). Objective This study aims to evaluate the methodology of radiomics and delineate the clinical advancements facilitated by MRI-based radiomics in the realm of hepatocellular carcinoma diagnosis and treatment. Methods A systematic review of the literature was conducted, encompassing peer-reviewed articles published between July 2018 and Jan 2025, sourced from PubMed and Google Scholar. Key search terms included Hepatocellular carcinoma, HCC, Liver cancer, Magnetic resonance imaging, MRI, radiomics, deep learning, machine learning, and artificial intelligence. Results A comprehensive analysis of 93 articles underscores the efficacy of MRI radiomics, a noninvasive imaging analysis modality, across various facets of HCC management. These encompass tumor differentiation, subtype classification, histopathological grading, prediction of microvascular invasion (MVI), assessment of treatment response, early recurrence prognostication, and metastasis prediction. Conclusion MRI radiomics emerges as a promising adjunctive tool for early HCC detection and personalized preoperative decision-making, with the overarching goal of optimizing patient outcomes. Nevertheless, the current lack of interpretability within the field underscores the imperative for continued research and validation efforts.
Collapse
Affiliation(s)
- Xiao-Yun Xie
- Department of Radiation Oncology, Medical School of Southeast University, Nanjing, China
| | - Rong Chen
- Department of Radiation Oncology, Zhongda Hospital, Nanjing, China
| |
Collapse
|
9
|
Ding W, Meng Y, Ma J, Pang C, Wu J, Tian J, Yu J, Liang P, Wang K. Contrast-enhanced ultrasound-based AI model for multi-classification of focal liver lesions. J Hepatol 2025:S0168-8278(25)00018-2. [PMID: 39848548 DOI: 10.1016/j.jhep.2025.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/26/2024] [Accepted: 01/08/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUND & AIMS Accurate multi-classification is a prerequisite for appropriate management of focal liver lesions (FLLs). Ultrasound is the most common imaging examination but lacks accuracy. Contrast-enhanced ultrasound (CEUS) offers better performance but is highly dependent on operator experience. Therefore, we aimed to develop a CEUS-based artificial intelligence (AI) model for FLL multi-classification and evaluate its performance in multicenter clinical tests. METHODS Since January 2017 to December 2023, CEUS videos, immunohistochemical biomarkers and clinical information on solid FLLs >1 cm in adults were collected from 52 centers to build and test the model. The model was developed to classify FLLs into six types: hepatocellular carcinoma, hepatic metastasis, intrahepatic cholangiocarcinoma, hepatic hemangioma, hepatic abscess and others. First, Module-Disease, Module-Biomarker and Module-Clinic were built in training set A and a validation set. Then, three modules were aggregated as Model-DCB in training set B and an internal test set. Model-DCB performance was compared with CEUS and MRI radiologists in three external test sets. RESULTS In total 3,725 FLLs from 52 centers were divided into training set A (n = 2,088), the validation set (n = 592), training set B (n = 234), the internal test set (n = 110), and external test sets A (n = 113), B (n = 276) and C (n = 312). In external test sets A, B and C, Model-DCB achieved significantly better performance (accuracy from 0.85 to 0.86) than junior CEUS radiologists (0.59-0.73), and comparable performance to senior CEUS radiologists (0.79-0.85) and senior MRI radiologists (0.82-0.86). In multiple subgroup analyses on demographic characteristics, tumor characteristics and ultrasound devices, its accuracy ranged from 0.79 to 0.92. CONCLUSIONS CEUS-based Model-DCB provides accurate multi-classification of FLLs. It holds promise for a wide range of populations, especially those in remote areas who have difficulty accessing MRI. CLINICAL TRIAL NCT04682886. IMPACT AND IMPLICATIONS Ultrasound is the most common imaging examination for screening focal liver lesions (FLLs), but it lacks accuracy for multi-classification, which is a prerequisite for appropriate clinical management. Contrast-enhanced ultrasound (CEUS) offers better diagnostic performance but relies on the experience of radiologists. We developed a CEUS-based model (Model-DCB) that can help junior CEUS radiologists to achieve comparable diagnostic ability as senior CEUS radiologists and senior MRI radiologists. The combination of an ultrasound device, CEUS examination and Model-DCB means that even patients in remote areas can be accurately diagnosed through examination by junior radiologists.
Collapse
Affiliation(s)
- Wenzhen Ding
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing 100853, China
| | - Yaqing Meng
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Jun Ma
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing 100853, China
| | - Chuan Pang
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing 100853, China
| | - Jiapeng Wu
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing 100853, China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing 100191, China.
| | - Jie Yu
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing 100853, China.
| | - Ping Liang
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing 100853, China.
| | - Kun Wang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
10
|
Mandal S, Balraj K, Kodamana H, Arora C, Clark JM, Kwon DS, Rathore AS. Weakly supervised large-scale pancreatic cancer detection using multi-instance learning. Front Oncol 2024; 14:1362850. [PMID: 39267824 PMCID: PMC11390448 DOI: 10.3389/fonc.2024.1362850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 08/01/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Early detection of pancreatic cancer continues to be a challenge due to the difficulty in accurately identifying specific signs or symptoms that might correlate with the onset of pancreatic cancer. Unlike breast or colon or prostate cancer where screening tests are often useful in identifying cancerous development, there are no tests to diagnose pancreatic cancers. As a result, most pancreatic cancers are diagnosed at an advanced stage, where treatment options, whether systemic therapy, radiation, or surgical interventions, offer limited efficacy. Methods A two-stage weakly supervised deep learning-based model has been proposed to identify pancreatic tumors using computed tomography (CT) images from Henry Ford Health (HFH) and publicly available Memorial Sloan Kettering Cancer Center (MSKCC) data sets. In the first stage, the nnU-Net supervised segmentation model was used to crop an area in the location of the pancreas, which was trained on the MSKCC repository of 281 patient image sets with established pancreatic tumors. In the second stage, a multi-instance learning-based weakly supervised classification model was applied on the cropped pancreas region to segregate pancreatic tumors from normal appearing pancreas. The model was trained, tested, and validated on images obtained from an HFH repository with 463 cases and 2,882 controls. Results The proposed deep learning model, the two-stage architecture, offers an accuracy of 0.907 ± 0.01, sensitivity of 0.905 ± 0.01, specificity of 0.908 ± 0.02, and AUC (ROC) 0.903 ± 0.01. The two-stage framework can automatically differentiate pancreatic tumor from non-tumor pancreas with improved accuracy on the HFH dataset. Discussion The proposed two-stage deep learning architecture shows significantly enhanced performance for predicting the presence of a tumor in the pancreas using CT images compared with other reported studies in the literature.
Collapse
Affiliation(s)
- Shyamapada Mandal
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Keerthiveena Balraj
- Yardi School of Artificial Intelligence, Indian Institute of Technology Delhi, New Delhi, India
| | - Hariprasad Kodamana
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
- Yardi School of Artificial Intelligence, Indian Institute of Technology Delhi, New Delhi, India
| | - Chetan Arora
- Yardi School of Artificial Intelligence, Indian Institute of Technology Delhi, New Delhi, India
- Department of Computer Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Julie M Clark
- Henry Ford Pancreatic Cancer Center, Henry Ford Health, Detroit, MI, United States
| | - David S Kwon
- Henry Ford Pancreatic Cancer Center, Henry Ford Health, Detroit, MI, United States
- Department of Surgery, Henry Ford Health, Detroit, MI, United States
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
- Yardi School of Artificial Intelligence, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
11
|
Al-Obeidat F, Hafez W, Gador M, Ahmed N, Abdeljawad MM, Yadav A, Rashed A. Diagnostic performance of AI-based models versus physicians among patients with hepatocellular carcinoma: a systematic review and meta-analysis. Front Artif Intell 2024; 7:1398205. [PMID: 39224209 PMCID: PMC11368160 DOI: 10.3389/frai.2024.1398205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a common primary liver cancer that requires early diagnosis due to its poor prognosis. Recent advances in artificial intelligence (AI) have facilitated hepatocellular carcinoma detection using multiple AI models; however, their performance is still uncertain. Aim This meta-analysis aimed to compare the diagnostic performance of different AI models with that of clinicians in the detection of hepatocellular carcinoma. Methods We searched the PubMed, Scopus, Cochrane Library, and Web of Science databases for eligible studies. The R package was used to synthesize the results. The outcomes of various studies were aggregated using fixed-effect and random-effects models. Statistical heterogeneity was evaluated using I-squared (I2) and chi-square statistics. Results We included seven studies in our meta-analysis;. Both physicians and AI-based models scored an average sensitivity of 93%. Great variation in sensitivity, accuracy, and specificity was observed depending on the model and diagnostic technique used. The region-based convolutional neural network (RCNN) model showed high sensitivity (96%). Physicians had the highest specificity in diagnosing hepatocellular carcinoma(100%); furthermore, models-based convolutional neural networks achieved high sensitivity. Models based on AI-assisted Contrast-enhanced ultrasound (CEUS) showed poor accuracy (69.9%) compared to physicians and other models. The leave-one-out sensitivity revealed high heterogeneity among studies, which represented true differences among the studies. Conclusion Models based on Faster R-CNN excel in image classification and data extraction, while both CNN-based models and models combining contrast-enhanced ultrasound (CEUS) with artificial intelligence (AI) had good sensitivity. Although AI models outperform physicians in diagnosing HCC, they should be utilized as supportive tools to help make more accurate and timely decisions.
Collapse
Affiliation(s)
- Feras Al-Obeidat
- College of Technological Innovation, Zayed University, Abu Dubai, United Arab Emirates
| | - Wael Hafez
- NMC Royal Hospital, Khalifa City, United Arab Emirates
- Internal Medicine Department, Medical Research and Clinical Studies Institute, The National Research Centre, Cairo, Egypt
| | - Muneir Gador
- Internal Medicine Department, Medical Research and Clinical Studies Institute, The National Research Centre, Cairo, Egypt
| | | | | | - Antesh Yadav
- NMC Royal Hospital, Khalifa City, United Arab Emirates
| | - Asrar Rashed
- NMC Royal Hospital, Khalifa City, United Arab Emirates
- Department of Computer Science, Edinburgh Napier University, Merchiston Campus, Edinburgh, United Kingdom
| |
Collapse
|
12
|
Wang AQ, Karaman BK, Kim H, Rosenthal J, Saluja R, Young SI, Sabuncu MR. A Framework for Interpretability in Machine Learning for Medical Imaging. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2024; 12:53277-53292. [PMID: 39421804 PMCID: PMC11486155 DOI: 10.1109/access.2024.3387702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Interpretability for machine learning models in medical imaging (MLMI) is an important direction of research. However, there is a general sense of murkiness in what interpretability means. Why does the need for interpretability in MLMI arise? What goals does one actually seek to address when interpretability is needed? To answer these questions, we identify a need to formalize the goals and elements of interpretability in MLMI. By reasoning about real-world tasks and goals common in both medical image analysis and its intersection with machine learning, we identify five core elements of interpretability: localization, visual recognizability, physical attribution, model transparency, and actionability. From this, we arrive at a framework for interpretability in MLMI, which serves as a step-by-step guide to approaching interpretability in this context. Overall, this paper formalizes interpretability needs in the context of medical imaging, and our applied perspective clarifies concrete MLMI-specific goals and considerations in order to guide method design and improve real-world usage. Our goal is to provide practical and didactic information for model designers and practitioners, inspire developers of models in the medical imaging field to reason more deeply about what interpretability is achieving, and suggest future directions of interpretability research.
Collapse
Affiliation(s)
- Alan Q Wang
- School of Electrical and Computer Engineering, Cornell University-Cornell Tech, New York City, NY 10044, USA
- Department of Radiology, Weill Cornell Medical School, New York City, NY 10065, USA
| | - Batuhan K Karaman
- School of Electrical and Computer Engineering, Cornell University-Cornell Tech, New York City, NY 10044, USA
- Department of Radiology, Weill Cornell Medical School, New York City, NY 10065, USA
| | - Heejong Kim
- Department of Radiology, Weill Cornell Medical School, New York City, NY 10065, USA
| | - Jacob Rosenthal
- Department of Radiology, Weill Cornell Medical School, New York City, NY 10065, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional M.D.-Ph.D. Program, New York City, NY 10065, USA
| | - Rachit Saluja
- School of Electrical and Computer Engineering, Cornell University-Cornell Tech, New York City, NY 10044, USA
- Department of Radiology, Weill Cornell Medical School, New York City, NY 10065, USA
| | - Sean I Young
- Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA 02129, USA
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA
| | - Mert R Sabuncu
- School of Electrical and Computer Engineering, Cornell University-Cornell Tech, New York City, NY 10044, USA
- Department of Radiology, Weill Cornell Medical School, New York City, NY 10065, USA
| |
Collapse
|
13
|
Zhang P, Gao C, Huang Y, Chen X, Pan Z, Wang L, Dong D, Li S, Qi X. Artificial intelligence in liver imaging: methods and applications. Hepatol Int 2024; 18:422-434. [PMID: 38376649 DOI: 10.1007/s12072-023-10630-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/18/2023] [Indexed: 02/21/2024]
Abstract
Liver disease is regarded as one of the major health threats to humans. Radiographic assessments hold promise in terms of addressing the current demands for precisely diagnosing and treating liver diseases, and artificial intelligence (AI), which excels at automatically making quantitative assessments of complex medical image characteristics, has made great strides regarding the qualitative interpretation of medical imaging by clinicians. Here, we review the current state of medical-imaging-based AI methodologies and their applications concerning the management of liver diseases. We summarize the representative AI methodologies in liver imaging with focusing on deep learning, and illustrate their promising clinical applications across the spectrum of precise liver disease detection, diagnosis and treatment. We also address the current challenges and future perspectives of AI in liver imaging, with an emphasis on feature interpretability, multimodal data integration and multicenter study. Taken together, it is revealed that AI methodologies, together with the large volume of available medical image data, might impact the future of liver disease care.
Collapse
Affiliation(s)
- Peng Zhang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing, China
| | - Chaofei Gao
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing, China
| | - Yifei Huang
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiangyi Chen
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing, China
| | - Zhuoshi Pan
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing, China
| | - Lan Wang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing, China
| | - Di Dong
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shao Li
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing, China.
| | - Xiaolong Qi
- Center of Portal Hypertension, Department of Radiology, Zhongda Hospital, Medical School, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Southeast University, Nanjing, China.
| |
Collapse
|
14
|
Huang J, Bai X, Qiu Y, He X. Application of AI on cholangiocarcinoma. Front Oncol 2024; 14:1324222. [PMID: 38347839 PMCID: PMC10859478 DOI: 10.3389/fonc.2024.1324222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Cholangiocarcinoma, classified as intrahepatic, perihilar, and extrahepatic, is considered a deadly malignancy of the hepatobiliary system. Most cases of cholangiocarcinoma are asymptomatic. Therefore, early detection of cholangiocarcinoma is significant but still challenging. The routine screening of a tumor lacks specificity and accuracy. With the application of AI, high-risk patients can be easily found by analyzing their clinical characteristics, serum biomarkers, and medical images. Moreover, AI can be used to predict the prognosis including recurrence risk and metastasis. Although they have some limitations, AI algorithms will still significantly improve many aspects of cholangiocarcinoma in the medical field with the development of computing power and technology.
Collapse
Affiliation(s)
| | | | | | - Xiaodong He
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Tangruangkiat S, Chaiwongkot N, Pamarapa C, Rawangwong T, Khunnarong A, Chainarong C, Sathapanawanthana P, Hiranrat P, Keerativittayayut R, Sungkarat W, Phonlakrai M. Diagnosis of focal liver lesions from ultrasound images using a pretrained residual neural network. J Appl Clin Med Phys 2024; 25:e14210. [PMID: 37991141 PMCID: PMC10795428 DOI: 10.1002/acm2.14210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/18/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
OBJECTIVE This study aims to develop a ResNet50-based deep learning model for focal liver lesion (FLL) classification in ultrasound images, comparing its performance with other models and prior research. METHODOLOGY We retrospectively collected 581 ultrasound images from the Chulabhorn Hospital's HCC surveillance and screening project (2010-2018). The dataset comprised five classes: non-FLL, hepatic cyst (Cyst), hemangioma (HMG), focal fatty sparing (FFS), and hepatocellular carcinoma (HCC). We conducted 5-fold cross-validation after random dataset partitioning, enhancing training data with data augmentation. Our models used modified pre-trained ResNet50, GGN, ResNet18, and VGG16 architectures. Model performance, assessed via confusion matrices for sensitivity, specificity, and accuracy, was compared across models and with prior studies. RESULTS ResNet50 outperformed other models, achieving a 5-fold cross-validation accuracy of 87 ± 2.2%. While VGG16 showed similar performance, it exhibited higher uncertainty. In the testing phase, the pretrained ResNet50 excelled in classifying non-FLL, cysts, and FFS. To compare with other research, ResNet50 surpassed the prior methods like two-layered feed-forward neural networks (FFNN) and CNN+ReLU in FLL diagnosis. CONCLUSION ResNet50 exhibited good performance in FLL diagnosis, especially for HCC classification, suggesting its potential for developing computer-aided FLL diagnosis. However, further refinement is required for HCC and HMG classification in future studies.
Collapse
Affiliation(s)
- Sutthirak Tangruangkiat
- School of Radiological Technology, Faculty of Health Science TechnologyChulabhorn Royal AcademyBangkokThailand
| | - Napatsorn Chaiwongkot
- School of Radiological Technology, Faculty of Health Science TechnologyChulabhorn Royal AcademyBangkokThailand
| | - Chayanon Pamarapa
- School of Radiological Technology, Faculty of Health Science TechnologyChulabhorn Royal AcademyBangkokThailand
| | - Thanatcha Rawangwong
- School of Radiological Technology, Faculty of Health Science TechnologyChulabhorn Royal AcademyBangkokThailand
| | - Araya Khunnarong
- School of Radiological Technology, Faculty of Health Science TechnologyChulabhorn Royal AcademyBangkokThailand
| | - Chanyanuch Chainarong
- School of Radiological Technology, Faculty of Health Science TechnologyChulabhorn Royal AcademyBangkokThailand
| | - Preeyanun Sathapanawanthana
- School of Radiological Technology, Faculty of Health Science TechnologyChulabhorn Royal AcademyBangkokThailand
| | - Pantajaree Hiranrat
- Sonographer School, Faculty of Health Science TechnologyChulabhorn Royal AcademyBangkokThailand
| | - Ruedeerat Keerativittayayut
- School of Radiological Technology, Faculty of Health Science TechnologyChulabhorn Royal AcademyBangkokThailand
| | - Witaya Sungkarat
- School of Radiological Technology, Faculty of Health Science TechnologyChulabhorn Royal AcademyBangkokThailand
| | - Monchai Phonlakrai
- School of Radiological Technology, Faculty of Health Science TechnologyChulabhorn Royal AcademyBangkokThailand
| |
Collapse
|
16
|
Ahn JC, Shah VH. Artificial intelligence in gastroenterology and hepatology. ARTIFICIAL INTELLIGENCE IN CLINICAL PRACTICE 2024:443-464. [DOI: 10.1016/b978-0-443-15688-5.00016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
17
|
Wei Q, Tan N, Xiong S, Luo W, Xia H, Luo B. Deep Learning Methods in Medical Image-Based Hepatocellular Carcinoma Diagnosis: A Systematic Review and Meta-Analysis. Cancers (Basel) 2023; 15:5701. [PMID: 38067404 PMCID: PMC10705136 DOI: 10.3390/cancers15235701] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 06/24/2024] Open
Abstract
(1) Background: The aim of our research was to systematically review papers specifically focused on the hepatocellular carcinoma (HCC) diagnostic performance of DL methods based on medical images. (2) Materials: To identify related studies, a comprehensive search was conducted in prominent databases, including Embase, IEEE, PubMed, Web of Science, and the Cochrane Library. The search was limited to studies published before 3 July 2023. The inclusion criteria consisted of studies that either developed or utilized DL methods to diagnose HCC using medical images. To extract data, binary information on diagnostic accuracy was collected to determine the outcomes of interest, namely, the sensitivity, specificity, and area under the curve (AUC). (3) Results: Among the forty-eight initially identified eligible studies, thirty studies were included in the meta-analysis. The pooled sensitivity was 89% (95% CI: 87-91), the specificity was 90% (95% CI: 87-92), and the AUC was 0.95 (95% CI: 0.93-0.97). Analyses of subgroups based on medical image methods (contrast-enhanced and non-contrast-enhanced images), imaging modalities (ultrasound, magnetic resonance imaging, and computed tomography), and comparisons between DL methods and clinicians consistently showed the acceptable diagnostic performance of DL models. The publication bias and high heterogeneity observed between studies and subgroups can potentially result in an overestimation of the diagnostic accuracy of DL methods in medical imaging. (4) Conclusions: To improve future studies, it would be advantageous to establish more rigorous reporting standards that specifically address the challenges associated with DL research in this particular field.
Collapse
Affiliation(s)
- Qiuxia Wei
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou 510120, China; (Q.W.); (S.X.); (W.L.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou 510120, China
| | - Nengren Tan
- School of Electronic and Information Engineering, Guangxi Normal University, 15 Qixing District, Guilin 541004, China;
| | - Shiyu Xiong
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou 510120, China; (Q.W.); (S.X.); (W.L.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou 510120, China
| | - Wanrong Luo
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou 510120, China; (Q.W.); (S.X.); (W.L.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou 510120, China
| | - Haiying Xia
- School of Electronic and Information Engineering, Guangxi Normal University, 15 Qixing District, Guilin 541004, China;
| | - Baoming Luo
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou 510120, China; (Q.W.); (S.X.); (W.L.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou 510120, China
| |
Collapse
|
18
|
Taouli B, Ba-Ssalamah A, Chapiro J, Chhatwal J, Fowler K, Kang TW, Knobloch G, Koh DM, Kudo M, Lee JM, Murakami T, Pinato DJ, Ringe KI, Song B, Tabrizian P, Wang J, Yoon JH, Zeng M, Zhou J, Vilgrain V. Consensus report from the 10th Global Forum for Liver Magnetic Resonance Imaging: developments in HCC management. Eur Radiol 2023; 33:9152-9166. [PMID: 37500964 PMCID: PMC10730664 DOI: 10.1007/s00330-023-09928-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 07/29/2023]
Abstract
The 10th Global Forum for Liver Magnetic Resonance Imaging (MRI) was held as a virtual 2-day meeting in October 2021, attended by delegates from North and South America, Asia, Australia, and Europe. Most delegates were radiologists with experience in liver MRI, with representation also from specialists in liver surgery, oncology, and hepatology. Presentations, discussions, and working groups at the Forum focused on the following themes: • Gadoxetic acid in clinical practice: Eastern and Western perspectives on current uses and challenges in hepatocellular carcinoma (HCC) screening/surveillance, diagnosis, and management • Economics and outcomes of HCC imaging • Radiomics, artificial intelligence (AI) and deep learning (DL) applications of MRI in HCC. These themes are the subject of the current manuscript. A second manuscript discusses multidisciplinary tumor board perspectives: how to approach early-, mid-, and late-stage HCC management from the perspectives of a liver surgeon, interventional radiologist, and oncologist (Taouli et al, 2023). Delegates voted on consensus statements that were developed by working groups on these meeting themes. A consensus was considered to be reached if at least 80% of the voting delegates agreed on the statements. CLINICAL RELEVANCE STATEMENT: This review highlights the clinical applications of gadoxetic acid-enhanced MRI for liver cancer screening and diagnosis, as well as its cost-effectiveness and the applications of radiomics and AI in patients with liver cancer. KEY POINTS: • Interpretation of gadoxetic acid-enhanced MRI differs slightly between Eastern and Western guidelines, reflecting different regional requirements for sensitivity vs specificity. • Emerging data are encouraging for the cost-effectiveness of gadoxetic acid-enhanced MRI in HCC screening and diagnosis, but more studies are required. • Radiomics and artificial intelligence are likely, in the future, to contribute to the detection, staging, assessment of treatment response and prediction of prognosis of HCC-reducing the burden on radiologists and other specialists and supporting timely and targeted treatment for patients.
Collapse
Affiliation(s)
- Bachir Taouli
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Ahmed Ba-Ssalamah
- Department of Biomedical Imaging and Image-guided therapy, Medical University of Vienna, Vienna, Austria
| | - Julius Chapiro
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Jagpreet Chhatwal
- Department of Radiology, Institute for Technology Assessment, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kathryn Fowler
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Tae Wook Kang
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Gesine Knobloch
- Global Medical and Clinical Affairs and Digital Development, Radiology, Bayer Pharmaceuticals, Berlin, Germany
| | - Dow-Mu Koh
- Department of Diagnostic Radiology, Royal Marsden Hospital, Sutton, UK
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital and Seoul National University College of Medicine, Seoul, South Korea
| | - Takamichi Murakami
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - David J Pinato
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Kristina I Ringe
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Parissa Tabrizian
- Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jin Wang
- Department of Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
- Liver Disease Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jeong Hee Yoon
- Department of Radiology, Seoul National University Hospital and Seoul National University College of Medicine, Seoul, South Korea
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Valérie Vilgrain
- Université Paris Cité and Department of Radiology, Assistance-Publique Hôpitaux de Paris, APHP Nord, Hôpital Beaujon, Clichy, France
| |
Collapse
|
19
|
Champendal M, Müller H, Prior JO, Dos Reis CS. A scoping review of interpretability and explainability concerning artificial intelligence methods in medical imaging. Eur J Radiol 2023; 169:111159. [PMID: 37976760 DOI: 10.1016/j.ejrad.2023.111159] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/26/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE To review eXplainable Artificial Intelligence/(XAI) methods available for medical imaging/(MI). METHOD A scoping review was conducted following the Joanna Briggs Institute's methodology. The search was performed on Pubmed, Embase, Cinhal, Web of Science, BioRxiv, MedRxiv, and Google Scholar. Studies published in French and English after 2017 were included. Keyword combinations and descriptors related to explainability, and MI modalities were employed. Two independent reviewers screened abstracts, titles and full text, resolving differences through discussion. RESULTS 228 studies met the criteria. XAI publications are increasing, targeting MRI (n = 73), radiography (n = 47), CT (n = 46). Lung (n = 82) and brain (n = 74) pathologies, Covid-19 (n = 48), Alzheimer's disease (n = 25), brain tumors (n = 15) are the main pathologies explained. Explanations are presented visually (n = 186), numerically (n = 67), rule-based (n = 11), textually (n = 11), and example-based (n = 6). Commonly explained tasks include classification (n = 89), prediction (n = 47), diagnosis (n = 39), detection (n = 29), segmentation (n = 13), and image quality improvement (n = 6). The most frequently provided explanations were local (78.1 %), 5.7 % were global, and 16.2 % combined both local and global approaches. Post-hoc approaches were predominantly employed. The used terminology varied, sometimes indistinctively using explainable (n = 207), interpretable (n = 187), understandable (n = 112), transparent (n = 61), reliable (n = 31), and intelligible (n = 3). CONCLUSION The number of XAI publications in medical imaging is increasing, primarily focusing on applying XAI techniques to MRI, CT, and radiography for classifying and predicting lung and brain pathologies. Visual and numerical output formats are predominantly used. Terminology standardisation remains a challenge, as terms like "explainable" and "interpretable" are sometimes being used indistinctively. Future XAI development should consider user needs and perspectives.
Collapse
Affiliation(s)
- Mélanie Champendal
- School of Health Sciences HESAV, HES-SO, University of Applied Sciences Western Switzerland, Lausanne, CH, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne, CH, Switzerland.
| | - Henning Müller
- Informatics Institute, University of Applied Sciences Western Switzerland (HES-SO Valais) Sierre, CH, Switzerland; Medical faculty, University of Geneva, CH, Switzerland.
| | - John O Prior
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, CH, Switzerland; Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital (CHUV), Lausanne, CH, Switzerland.
| | - Cláudia Sá Dos Reis
- School of Health Sciences HESAV, HES-SO, University of Applied Sciences Western Switzerland, Lausanne, CH, Switzerland.
| |
Collapse
|
20
|
Chakrabarti S, Rao US. Lightweight neural network for smart diagnosis of cholangiocarcinoma using histopathological images. Sci Rep 2023; 13:18854. [PMID: 37914815 PMCID: PMC10620203 DOI: 10.1038/s41598-023-46152-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023] Open
Abstract
Traditional Cholangiocarcinoma detection methodology, which involves manual interpretation of histopathological images obtained after biopsy, necessitates extraordinary domain expertise and a significant level of subjectivity, resulting in several deaths due to improper or delayed detection of this cancer that develops in the bile duct lining. Automation in the diagnosis of this dreadful disease is desperately needed to allow for more effective and faster identification of the disease with a better degree of accuracy and reliability, ultimately saving countless human lives. The primary goal of this study is to develop a machine-assisted method of automation for the accurate and rapid identification of Cholangiocarcinoma utilizing histopathology images with little preprocessing. This work proposes CholangioNet, a novel lightweight neural network for detecting Cholangiocarcinoma utilizing histological RGB images. The histological RGB image dataset considered in this research work was found to have limited number of images, hence data augmentation was performed to increase the number of images. The finally obtained dataset was then subjected to minimal preprocessing procedures. These preprocessed images were then fed into the proposed lightweight CholangioNet. The performance of this proposed architecture is then compared with the performance of some of the prominent existing architectures like, VGG16, VGG19, ResNet50 and ResNet101. The Accuracy, Loss, Precision, and Sensitivity metrics are used to assess the efficiency of the proposed system. At 200 epochs, the proposed architecture achieves maximum training accuracy, precision, and recall of 99.90%, 100%, and 100%, respectively. The suggested architecture's validation accuracy, precision, and recall are 98.40%, 100%, and 100%, respectively. When compared to the performance of other AI-based models, the proposed system produced better results making it a potential AI tool for real world application.
Collapse
Affiliation(s)
- Shubhadip Chakrabarti
- School of Computer Science and Engineering, Vellore Institute of Technology, Chennai Campus, Chennai, Tamil Nadu, 600127, India
| | - Ummity Srinivasa Rao
- School of Computer Science and Engineering, Vellore Institute of Technology, Chennai Campus, Chennai, Tamil Nadu, 600127, India.
| |
Collapse
|
21
|
Mulé S, Ronot M, Ghosn M, Sartoris R, Corrias G, Reizine E, Morard V, Quelever R, Dumont L, Hernandez Londono J, Coustaud N, Vilgrain V, Luciani A. Automated CT LI-RADS v2018 scoring of liver observations using machine learning: A multivendor, multicentre retrospective study. JHEP Rep 2023; 5:100857. [PMID: 37771548 PMCID: PMC10522871 DOI: 10.1016/j.jhepr.2023.100857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/21/2023] [Accepted: 07/12/2023] [Indexed: 09/30/2023] Open
Abstract
Background & Aims Assessment of computed tomography (CT)/magnetic resonance imaging Liver Imaging Reporting and Data System (LI-RADS) v2018 major features leads to substantial inter-reader variability and potential decrease in hepatocellular carcinoma diagnostic accuracy. We assessed the performance and added-value of a machine learning (ML)-based algorithm in assessing CT LI-RADS major features and categorisation of liver observations compared with qualitative assessment performed by a panel of radiologists. Methods High-risk patients as per LI-RADS v2018 with pathologically proven liver lesions who underwent multiphase contrast-enhanced CT at diagnosis between January 2015 and March 2019 in seven centres in five countries were retrospectively included and randomly divided into a training set (n = 84 lesions) and a test set (n = 345 lesions). An ML algorithm was trained to classify non-rim arterial phase hyperenhancement, washout, and enhancing capsule as present, absent, or of uncertain presence. LI-RADS major features and categories were compared with qualitative assessment of two independent readers. The performance of a sequential use of the ML algorithm and independent readers were also evaluated in a triage and an add-on scenario in LR-3/4 lesions. The combined evaluation of three other senior readers was used as reference standard. Results A total of 318 patients bearing 429 lesions were included. Sensitivity and specificity for LR-5 in the test set were 0.67 (95% CI, 0.62-0.72) and 0.91 (95% CI, 0.87-0.96) respectively, with 242 (70.1%) lesions accurately categorised. Using the ML algorithm in a triage scenario improved the overall performance for LR-5. (0.86 and 0.93 sensitivity, 0.82 and 0.76 specificity, 78% and 82.3% accuracy for the two independent readers). Conclusions Quantitative assessment of CT LI-RADS v2018 major features is feasible and diagnoses LR-5 observations with high performance especially in combination with the radiologist's visual analysis in patients at high-risk for HCC. Impact and implications Assessment of CT/MRI LI-RADS v2018 major features leads to substantial inter-reader variability and potential decrease in hepatocellular carcinoma diagnostic accuracy. Rather than replacing radiologists, our results highlight the potential benefit from the radiologist-artificial intelligence interaction in improving focal liver lesions characterisation by using the developed algorithm as a triage tool to the radiologist's visual analysis. Such an AI-enriched diagnostic pathway may help standardise and improve the quality of analysis of liver lesions in patients at high risk for HCC, especially in non-expert centres in liver imaging. It may also impact the clinical decision-making and guide the clinician in identifying the lesions to be biopsied, for instance in patients with multiple liver focal lesions.
Collapse
Affiliation(s)
- Sébastien Mulé
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, Créteil, France
- Faculté de Santé, Université Paris Est Créteil, Créteil, France
- INSERM IMRB, U 955, Equipe 18, Créteil, France
| | - Maxime Ronot
- Service de Radiologie, Hôpital Beaujon, AP-HP Nord, Clichy, France
- Université de Paris, CRI, INSERM U1149, Paris, France
| | - Mario Ghosn
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, Créteil, France
- Faculté de Santé, Université Paris Est Créteil, Créteil, France
| | | | - Giuseppe Corrias
- Service de Radiologie, Hôpital Beaujon, AP-HP Nord, Clichy, France
| | - Edouard Reizine
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, Créteil, France
- Faculté de Santé, Université Paris Est Créteil, Créteil, France
- INSERM IMRB, U 955, Equipe 18, Créteil, France
| | | | | | | | | | | | - Valérie Vilgrain
- Service de Radiologie, Hôpital Beaujon, AP-HP Nord, Clichy, France
- Université de Paris, CRI, INSERM U1149, Paris, France
| | - Alain Luciani
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, Créteil, France
- Faculté de Santé, Université Paris Est Créteil, Créteil, France
- INSERM IMRB, U 955, Equipe 18, Créteil, France
| |
Collapse
|
22
|
Park J, Bae JS, Kim JM, Witanto JN, Park SJ, Lee JM. Development of a deep-learning model for classification of LI-RADS major features by using subtraction images of MRI: a preliminary study. Abdom Radiol (NY) 2023; 48:2547-2556. [PMID: 37222771 DOI: 10.1007/s00261-023-03962-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/05/2023] [Accepted: 05/13/2023] [Indexed: 05/25/2023]
Abstract
PURPOSE Liver Imaging Reporting and Data System (LI-RADS) is limited by interreader variability. Thus, our study aimed to develop a deep-learning model for classifying LI-RADS major features using subtraction images using magnetic resonance imaging (MRI). METHODS This single-center retrospective study included 222 consecutive patients who underwent resection for hepatocellular carcinoma (HCC) between January, 2015 and December, 2017. Subtraction arterial, portal venous, and transitional phase images of preoperative gadoxetic acid-enhanced MRI were used to train and test the deep-learning models. Initially, a three-dimensional (3D) nnU-Net-based deep-learning model was developed for HCC segmentation. Subsequently, a 3D U-Net-based deep-learning model was developed to assess three LI-RADS major features (nonrim arterial phase hyperenhancement [APHE], nonperipheral washout, and enhancing capsule [EC]), utilizing the results determined by board-certified radiologists as reference standards. The HCC segmentation performance was assessed using the Dice similarity coefficient (DSC), sensitivity, and precision. The sensitivity, specificity, and accuracy of the deep-learning model for classifying LI-RADS major features were calculated. RESULTS The average DSC, sensitivity, and precision of our model for HCC segmentation were 0.884, 0.891, and 0.887, respectively, across all the phases. Our model demonstrated a sensitivity, specificity, and accuracy of 96.6% (28/29), 66.7% (4/6), and 91.4% (32/35), respectively, for nonrim APHE; 95.0% (19/20), 50.0% (4/8), and 82.1% (23/28), respectively, for nonperipheral washout; and 86.7% (26/30), 54.2% (13/24), and 72.2% (39/54) for EC, respectively. CONCLUSION We developed an end-to-end deep-learning model that classifies the LI-RADS major features using subtraction MRI images. Our model exhibited satisfactory performance in classifying LI-RADS major features.
Collapse
Affiliation(s)
- Junghoan Park
- Department of Radiology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jae Seok Bae
- Department of Radiology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jong-Min Kim
- Research and Science Division, MEDICAL IP Co., Ltd., Seoul, Republic of Korea
| | | | - Sang Joon Park
- Research and Science Division, MEDICAL IP Co., Ltd., Seoul, Republic of Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| |
Collapse
|
23
|
Lakshmipriya B, Pottakkat B, Ramkumar G. Deep learning techniques in liver tumour diagnosis using CT and MR imaging - A systematic review. Artif Intell Med 2023; 141:102557. [PMID: 37295904 DOI: 10.1016/j.artmed.2023.102557] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 06/12/2023]
Abstract
Deep learning has become a thriving force in the computer aided diagnosis of liver cancer, as it solves extremely complicated challenges with high accuracy over time and facilitates medical experts in their diagnostic and treatment procedures. This paper presents a comprehensive systematic review on deep learning techniques applied for various applications pertaining to liver images, challenges faced by the clinicians in liver tumour diagnosis and how deep learning bridges the gap between clinical practice and technological solutions with an in-depth summary of 113 articles. Since, deep learning is an emerging revolutionary technology, recent state-of-the-art research implemented on liver images are reviewed with more focus on classification, segmentation and clinical applications in the management of liver diseases. Additionally, similar review articles in literature are reviewed and compared. The review is concluded by presenting the contemporary trends and unaddressed research issues in the field of liver tumour diagnosis, offering directions for future research in this field.
Collapse
Affiliation(s)
- B Lakshmipriya
- Department of Surgical Gastroenterology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Biju Pottakkat
- Department of Surgical Gastroenterology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India.
| | - G Ramkumar
- Department of Radio Diagnosis, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| |
Collapse
|
24
|
Oh JH, Kim HG, Lee KM. Developing and Evaluating Deep Learning Algorithms for Object Detection: Key Points for Achieving Superior Model Performance. Korean J Radiol 2023; 24:698-714. [PMID: 37404112 DOI: 10.3348/kjr.2022.0765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/29/2023] [Accepted: 05/16/2023] [Indexed: 07/06/2023] Open
Abstract
In recent years, artificial intelligence, especially object detection-based deep learning in computer vision, has made significant advancements, driven by the development of computing power and the widespread use of graphic processor units. Object detection-based deep learning techniques have been applied in various fields, including the medical imaging domain, where remarkable achievements have been reported in disease detection. However, the application of deep learning does not always guarantee satisfactory performance, and researchers have been employing trial-and-error to identify the factors contributing to performance degradation and enhance their models. Moreover, due to the black-box problem, the intermediate processes of a deep learning network cannot be comprehended by humans; as a result, identifying problems in a deep learning model that exhibits poor performance can be challenging. This article highlights potential issues that may cause performance degradation at each deep learning step in the medical imaging domain and discusses factors that must be considered to improve the performance of deep learning models. Researchers who wish to begin deep learning research can reduce the required amount of trial-and-error by understanding the issues discussed in this study.
Collapse
Affiliation(s)
- Jang-Hoon Oh
- Department of Radiology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Korea
| | - Hyug-Gi Kim
- Department of Radiology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Korea
| | - Kyung Mi Lee
- Department of Radiology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Korea.
| |
Collapse
|
25
|
de Vries BM, Zwezerijnen GJC, Burchell GL, van Velden FHP, Menke-van der Houven van Oordt CW, Boellaard R. Explainable artificial intelligence (XAI) in radiology and nuclear medicine: a literature review. Front Med (Lausanne) 2023; 10:1180773. [PMID: 37250654 PMCID: PMC10213317 DOI: 10.3389/fmed.2023.1180773] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Rational Deep learning (DL) has demonstrated a remarkable performance in diagnostic imaging for various diseases and modalities and therefore has a high potential to be used as a clinical tool. However, current practice shows low deployment of these algorithms in clinical practice, because DL algorithms lack transparency and trust due to their underlying black-box mechanism. For successful employment, explainable artificial intelligence (XAI) could be introduced to close the gap between the medical professionals and the DL algorithms. In this literature review, XAI methods available for magnetic resonance (MR), computed tomography (CT), and positron emission tomography (PET) imaging are discussed and future suggestions are made. Methods PubMed, Embase.com and Clarivate Analytics/Web of Science Core Collection were screened. Articles were considered eligible for inclusion if XAI was used (and well described) to describe the behavior of a DL model used in MR, CT and PET imaging. Results A total of 75 articles were included of which 54 and 17 articles described post and ad hoc XAI methods, respectively, and 4 articles described both XAI methods. Major variations in performance is seen between the methods. Overall, post hoc XAI lacks the ability to provide class-discriminative and target-specific explanation. Ad hoc XAI seems to tackle this because of its intrinsic ability to explain. However, quality control of the XAI methods is rarely applied and therefore systematic comparison between the methods is difficult. Conclusion There is currently no clear consensus on how XAI should be deployed in order to close the gap between medical professionals and DL algorithms for clinical implementation. We advocate for systematic technical and clinical quality assessment of XAI methods. Also, to ensure end-to-end unbiased and safe integration of XAI in clinical workflow, (anatomical) data minimization and quality control methods should be included.
Collapse
Affiliation(s)
- Bart M. de Vries
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Gerben J. C. Zwezerijnen
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | | | | | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
26
|
McMahon B, Cohen C, Brown Jr RS, El-Serag H, Ioannou GN, Lok AS, Roberts LR, Singal AG, Block T. Opportunities to address gaps in early detection and improve outcomes of liver cancer. JNCI Cancer Spectr 2023; 7:pkad034. [PMID: 37144952 PMCID: PMC10212536 DOI: 10.1093/jncics/pkad034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/10/2023] [Indexed: 05/06/2023] Open
Abstract
Death rates from primary liver cancer (hepatocellular carcinoma [HCC]) have continued to rise in the United States over the recent decades despite the availability of an increasing range of treatment modalities, including new systemic therapies. Prognosis is strongly associated with tumor stage at diagnosis; however, most cases of HCC are diagnosed beyond an early stage. This lack of early detection has contributed to low survival rates. Professional society guidelines recommend semiannual ultrasound-based HCC screening for at-risk populations, yet HCC surveillance continues to be underused in clinical practice. On April 28, 2022, the Hepatitis B Foundation convened a workshop to discuss the most pressing challenges and barriers to early HCC detection and the need to better leverage existing and emerging tools and technologies that could improve HCC screening and early detection. In this commentary, we summarize technical, patient-level, provider-level, and system-level challenges and opportunities to improve processes and outcomes across the HCC screening continuum. We highlight promising approaches to HCC risk stratification and screening, including new biomarkers, advanced imaging incorporating artificial intelligence, and algorithms for risk stratification. Workshop participants emphasized that action to improve early detection and reduce HCC mortality is urgently needed, noting concern that many of the challenges we face today are the same or similar to those faced a decade ago and that HCC mortality rates have not meaningfully improved. Increasing the uptake of HCC screening was identified as a short-term priority while developing and validating better screening tests and risk-appropriate surveillance strategies.
Collapse
Affiliation(s)
- Brian McMahon
- Liver Disease and Hepatitis Program, Alaska Native Tribal Health Consortium, Anchorage, AK, USA
| | | | - Robert S Brown Jr
- Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY, USA
| | - Hashem El-Serag
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - George N Ioannou
- Department of Medicine, Division of Gastroenterology, VA Puget Sound Health Care System, Seattle, WA, USA
| | - Anna S Lok
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Lewis R Roberts
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Amit G Singal
- Department of Internal Medicine, Division of Digestive and Liver Diseases, UT Southwestern, Dallas, TX, USA
| | - Timothy Block
- Baruch S. Blumberg Institute and Hepatitis B Foundation, Doylestown, PA, USA
| |
Collapse
|
27
|
Midya A, Chakraborty J, Srouji R, Narayan RR, Boerner T, Zheng J, Pak LM, Creasy JM, Escobar LA, Harrington KA, Gonen M, D'Angelica MI, Kingham TP, Do RKG, Jarnagin WR, Simpson AL. Computerized Diagnosis of Liver Tumors From CT Scans Using a Deep Neural Network Approach. IEEE J Biomed Health Inform 2023; 27:2456-2464. [PMID: 37027632 PMCID: PMC10245221 DOI: 10.1109/jbhi.2023.3248489] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The liver is a frequent site of benign and malignant, primary and metastatic tumors. Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) are the most common primary liver cancers, and colorectal liver metastasis (CRLM) is the most common secondary liver cancer. Although the imaging characteristic of these tumors is central to optimal clinical management, it relies on imaging features that are often non-specific, overlap, and are subject to inter-observer variability. Thus, in this study, we aimed to categorize liver tumors automatically from CT scans using a deep learning approach that objectively extracts discriminating features not visible to the naked eye. Specifically, we used a modified Inception v3 network-based classification model to classify HCC, ICC, CRLM, and benign tumors from pretreatment portal venous phase computed tomography (CT) scans. Using a multi-institutional dataset of 814 patients, this method achieved an overall accuracy rate of 96%, with sensitivity rates of 96%, 94%, 99%, and 86% for HCC, ICC, CRLM, and benign tumors, respectively, using an independent dataset. These results demonstrate the feasibility of the proposed computer-assisted system as a novel non-invasive diagnostic tool to classify the most common liver tumors objectively.
Collapse
|
28
|
Borys K, Schmitt YA, Nauta M, Seifert C, Krämer N, Friedrich CM, Nensa F. Explainable AI in medical imaging: An overview for clinical practitioners – Beyond saliency-based XAI approaches. Eur J Radiol 2023; 162:110786. [PMID: 36990051 DOI: 10.1016/j.ejrad.2023.110786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
Driven by recent advances in Artificial Intelligence (AI) and Computer Vision (CV), the implementation of AI systems in the medical domain increased correspondingly. This is especially true for the domain of medical imaging, in which the incorporation of AI aids several imaging-based tasks such as classification, segmentation, and registration. Moreover, AI reshapes medical research and contributes to the development of personalized clinical care. Consequently, alongside its extended implementation arises the need for an extensive understanding of AI systems and their inner workings, potentials, and limitations which the field of eXplainable AI (XAI) aims at. Because medical imaging is mainly associated with visual tasks, most explainability approaches incorporate saliency-based XAI methods. In contrast to that, in this article we would like to investigate the full potential of XAI methods in the field of medical imaging by specifically focusing on XAI techniques not relying on saliency, and providing diversified examples. We dedicate our investigation to a broad audience, but particularly healthcare professionals. Moreover, this work aims at establishing a common ground for cross-disciplinary understanding and exchange across disciplines between Deep Learning (DL) builders and healthcare professionals, which is why we aimed for a non-technical overview. Presented XAI methods are divided by a method's output representation into the following categories: Case-based explanations, textual explanations, and auxiliary explanations.
Collapse
|
29
|
Brunese MC, Fantozzi MR, Fusco R, De Muzio F, Gabelloni M, Danti G, Borgheresi A, Palumbo P, Bruno F, Gandolfo N, Giovagnoni A, Miele V, Barile A, Granata V. Update on the Applications of Radiomics in Diagnosis, Staging, and Recurrence of Intrahepatic Cholangiocarcinoma. Diagnostics (Basel) 2023; 13:diagnostics13081488. [PMID: 37189589 DOI: 10.3390/diagnostics13081488] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND This paper offers an assessment of radiomics tools in the evaluation of intrahepatic cholangiocarcinoma. METHODS The PubMed database was searched for papers published in the English language no earlier than October 2022. RESULTS We found 236 studies, and 37 satisfied our research criteria. Several studies addressed multidisciplinary topics, especially diagnosis, prognosis, response to therapy, and prediction of staging (TNM) or pathomorphological patterns. In this review, we have covered diagnostic tools developed through machine learning, deep learning, and neural network for the recurrence and prediction of biological characteristics. The majority of the studies were retrospective. CONCLUSIONS It is possible to conclude that many performing models have been developed to make differential diagnosis easier for radiologists to predict recurrence and genomic patterns. However, all the studies were retrospective, lacking further external validation in prospective and multicentric cohorts. Furthermore, the radiomics models and the expression of results should be standardized and automatized to be applicable in clinical practice.
Collapse
Affiliation(s)
- Maria Chiara Brunese
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100 Campobasso, Italy
| | | | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Naples, Italy
| | - Federica De Muzio
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100 Campobasso, Italy
| | - Michela Gabelloni
- Nuclear Medicine Unit, Department of Translational Research, University of Pisa, 56126 Pisa, Italy
| | - Ginevra Danti
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, 20122 Milan, Italy
- Department of Emergency Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Alessandra Borgheresi
- Department of Radiology, University Hospital "Azienda Ospedaliera Universitaria delle Marche", 60121 Ancona, Italy
- Department of Clinical, Special and Dental Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Pierpaolo Palumbo
- Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, Abruzzo Health Unit 1, 67100 L'Aquila, Italy
| | - Federico Bruno
- Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, Abruzzo Health Unit 1, 67100 L'Aquila, Italy
| | - Nicoletta Gandolfo
- Diagnostic Imaging Department, Villa Scassi Hospital-ASL 3, 16149 Genoa, Italy
| | - Andrea Giovagnoni
- Department of Radiology, University Hospital "Azienda Ospedaliera Universitaria delle Marche", 60121 Ancona, Italy
- Department of Clinical, Special and Dental Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Vittorio Miele
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, 20122 Milan, Italy
- Department of Emergency Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Antonio Barile
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, 80131 Naples, Italy
| |
Collapse
|
30
|
Kinoshita M, Ueda D, Matsumoto T, Shinkawa H, Yamamoto A, Shiba M, Okada T, Tani N, Tanaka S, Kimura K, Ohira G, Nishio K, Tauchi J, Kubo S, Ishizawa T. Deep Learning Model Based on Contrast-Enhanced Computed Tomography Imaging to Predict Postoperative Early Recurrence after the Curative Resection of a Solitary Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:cancers15072140. [PMID: 37046801 PMCID: PMC10092973 DOI: 10.3390/cancers15072140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
We aimed to develop the deep learning (DL) predictive model for postoperative early recurrence (within 2 years) of hepatocellular carcinoma (HCC) based on contrast-enhanced computed tomography (CECT) imaging. This study included 543 patients who underwent initial hepatectomy for HCC and were randomly classified into training, validation, and test datasets at a ratio of 8:1:1. Several clinical variables and arterial CECT images were used to create predictive models for early recurrence. Artificial intelligence models were implemented using convolutional neural networks and multilayer perceptron as a classifier. Furthermore, the Youden index was used to discriminate between high- and low-risk groups. The importance values of each explanatory variable for early recurrence were calculated using permutation importance. The DL predictive model for postoperative early recurrence was developed with the area under the curve values of 0.71 (test datasets) and 0.73 (validation datasets). Postoperative early recurrence incidences in the high- and low-risk groups were 73% and 30%, respectively (p = 0.0057). Permutation importance demonstrated that among the explanatory variables, the variable with the highest importance value was CECT imaging analysis. We developed a DL model to predict postoperative early HCC recurrence. DL-based analysis is effective for determining the treatment strategies in patients with HCC.
Collapse
Affiliation(s)
- Masahiko Kinoshita
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Daiju Ueda
- Smart Life Science Lab, Center for Health Science Innovation, Osaka Metropolitan University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
- Department of Diagnostic and Interventional Radiology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Toshimasa Matsumoto
- Smart Life Science Lab, Center for Health Science Innovation, Osaka Metropolitan University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
- Department of Diagnostic and Interventional Radiology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Hiroji Shinkawa
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Akira Yamamoto
- Department of Diagnostic and Interventional Radiology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Masatsugu Shiba
- Smart Life Science Lab, Center for Health Science Innovation, Osaka Metropolitan University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
- Department of Biofunctional Analysis, Graduate School of medicine, Osaka Metropolitan University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Takuma Okada
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Naoki Tani
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Shogo Tanaka
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Kenjiro Kimura
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Go Ohira
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Kohei Nishio
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Jun Tauchi
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Shoji Kubo
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Takeaki Ishizawa
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| |
Collapse
|
31
|
Nakaura T, Kobayashi N, Yoshida N, Shiraishi K, Uetani H, Nagayama Y, Kidoh M, Hirai T. Update on the Use of Artificial Intelligence in Hepatobiliary MR Imaging. Magn Reson Med Sci 2023; 22:147-156. [PMID: 36697024 PMCID: PMC10086394 DOI: 10.2463/mrms.rev.2022-0102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/08/2022] [Indexed: 01/26/2023] Open
Abstract
The application of machine learning (ML) and deep learning (DL) in radiology has expanded exponentially. In recent years, an extremely large number of studies have reported about the hepatobiliary domain. Its applications range from differential diagnosis to the diagnosis of tumor invasion and prediction of treatment response and prognosis. Moreover, it has been utilized to improve the image quality of DL reconstruction. However, most clinicians are not familiar with ML and DL, and previous studies about these concepts are relatively challenging to understand. In this review article, we aimed to explain the concepts behind ML and DL and to summarize recent achievements in their use in the hepatobiliary region.
Collapse
Affiliation(s)
- Takeshi Nakaura
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Naoki Kobayashi
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Naofumi Yoshida
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Kaori Shiraishi
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Hiroyuki Uetani
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Yasunori Nagayama
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Masafumi Kidoh
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Toshinori Hirai
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| |
Collapse
|
32
|
Nazir S, Dickson DM, Akram MU. Survey of explainable artificial intelligence techniques for biomedical imaging with deep neural networks. Comput Biol Med 2023; 156:106668. [PMID: 36863192 DOI: 10.1016/j.compbiomed.2023.106668] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 01/12/2023] [Accepted: 02/10/2023] [Indexed: 02/21/2023]
Abstract
Artificial Intelligence (AI) techniques of deep learning have revolutionized the disease diagnosis with their outstanding image classification performance. In spite of the outstanding results, the widespread adoption of these techniques in clinical practice is still taking place at a moderate pace. One of the major hindrance is that a trained Deep Neural Networks (DNN) model provides a prediction, but questions about why and how that prediction was made remain unanswered. This linkage is of utmost importance for the regulated healthcare domain to increase the trust in the automated diagnosis system by the practitioners, patients and other stakeholders. The application of deep learning for medical imaging has to be interpreted with caution due to the health and safety concerns similar to blame attribution in the case of an accident involving autonomous cars. The consequences of both a false positive and false negative cases are far reaching for patients' welfare and cannot be ignored. This is exacerbated by the fact that the state-of-the-art deep learning algorithms comprise of complex interconnected structures, millions of parameters, and a 'black box' nature, offering little understanding of their inner working unlike the traditional machine learning algorithms. Explainable AI (XAI) techniques help to understand model predictions which help develop trust in the system, accelerate the disease diagnosis, and meet adherence to regulatory requirements. This survey provides a comprehensive review of the promising field of XAI for biomedical imaging diagnostics. We also provide a categorization of the XAI techniques, discuss the open challenges, and provide future directions for XAI which would be of interest to clinicians, regulators and model developers.
Collapse
Affiliation(s)
- Sajid Nazir
- Department of Computing, Glasgow Caledonian University, Glasgow, UK.
| | - Diane M Dickson
- Department of Podiatry and Radiography, Research Centre for Health, Glasgow Caledonian University, Glasgow, UK
| | - Muhammad Usman Akram
- Computer and Software Engineering Department, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
33
|
Berbís MA, Paulano Godino F, Royuela del Val J, Alcalá Mata L, Luna A. Clinical impact of artificial intelligence-based solutions on imaging of the pancreas and liver. World J Gastroenterol 2023; 29:1427-1445. [PMID: 36998424 PMCID: PMC10044858 DOI: 10.3748/wjg.v29.i9.1427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/13/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023] Open
Abstract
Artificial intelligence (AI) has experienced substantial progress over the last ten years in many fields of application, including healthcare. In hepatology and pancreatology, major attention to date has been paid to its application to the assisted or even automated interpretation of radiological images, where AI can generate accurate and reproducible imaging diagnosis, reducing the physicians’ workload. AI can provide automatic or semi-automatic segmentation and registration of the liver and pancreatic glands and lesions. Furthermore, using radiomics, AI can introduce new quantitative information which is not visible to the human eye to radiological reports. AI has been applied in the detection and characterization of focal lesions and diffuse diseases of the liver and pancreas, such as neoplasms, chronic hepatic disease, or acute or chronic pancreatitis, among others. These solutions have been applied to different imaging techniques commonly used to diagnose liver and pancreatic diseases, such as ultrasound, endoscopic ultrasonography, computerized tomography (CT), magnetic resonance imaging, and positron emission tomography/CT. However, AI is also applied in this context to many other relevant steps involved in a comprehensive clinical scenario to manage a gastroenterological patient. AI can also be applied to choose the most convenient test prescription, to improve image quality or accelerate its acquisition, and to predict patient prognosis and treatment response. In this review, we summarize the current evidence on the application of AI to hepatic and pancreatic radiology, not only in regard to the interpretation of images, but also to all the steps involved in the radiological workflow in a broader sense. Lastly, we discuss the challenges and future directions of the clinical application of AI methods.
Collapse
Affiliation(s)
- M Alvaro Berbís
- Department of Radiology, HT Médica, San Juan de Dios Hospital, Córdoba 14960, Spain
- Faculty of Medicine, Autonomous University of Madrid, Madrid 28049, Spain
| | | | | | - Lidia Alcalá Mata
- Department of Radiology, HT Médica, Clínica las Nieves, Jaén 23007, Spain
| | - Antonio Luna
- Department of Radiology, HT Médica, Clínica las Nieves, Jaén 23007, Spain
| |
Collapse
|
34
|
Zhou Y, Jiang H, Diao Z, Tong G, Luan Q, Li Y, Li X. MRLA-Net: A tumor segmentation network embedded with a multiple receptive-field lesion attention module in PET-CT images. Comput Biol Med 2023; 153:106538. [PMID: 36646023 DOI: 10.1016/j.compbiomed.2023.106538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/14/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
The tumor image segmentation is an important basis for doctors to diagnose and formulate treatment planning. PET-CT is an extremely important technology for recognizing the systemic situation of diseases due to the complementary advantages of their respective modal information. However, current PET-CT tumor segmentation methods generally focus on the fusion of PET and CT features. The fusion of features will weaken the characteristics of the modality itself. Therefore, enhancing the modal features of the lesions can obtain optimized feature sets, which is extremely necessary to improve the segmentation results. This paper proposed an attention module that integrates the PET-CT diagnostic visual field and the modality characteristics of the lesion, that is, the multiple receptive-field lesion attention module. This paper made full use of the spatial domain, frequency domain, and channel attention, and proposed a large receptive-field lesion localization module and a small receptive-field lesion enhancement module, which together constitute the multiple receptive-field lesion attention module. In addition, a network embedded with a multiple receptive-field lesion attention module has been proposed for tumor segmentation. This paper conducted experiments on a private liver tumor dataset as well as two publicly available datasets, the soft tissue sarcoma dataset, and the head and neck tumor segmentation dataset. The experimental results showed that the proposed method achieves excellent performance on multiple datasets, and has a significant improvement compared with DenseUNet, and the tumor segmentation results on the above three PET/CT datasets were improved by 7.25%, 6.5%, 5.29% in Dice per case. Compared with the latest PET-CT liver tumor segmentation research, the proposed method improves by 8.32%.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Software College, Northeastern University, Shenyang 110819, China
| | - Huiyan Jiang
- Department of Software College, Northeastern University, Shenyang 110819, China.
| | - Zhaoshuo Diao
- Department of Software College, Northeastern University, Shenyang 110819, China
| | - Guoyu Tong
- Department of Software College, Northeastern University, Shenyang 110819, China
| | - Qiu Luan
- Department of Nuclear Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Yaming Li
- Department of Nuclear Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Xuena Li
- Department of Nuclear Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
35
|
Moawad AW, Morshid A, Khalaf AM, Elmohr MM, Hazle JD, Fuentes D, Badawy M, Kaseb AO, Hassan M, Mahvash A, Szklaruk J, Qayyum A, Abusaif A, Bennett WC, Nolan TS, Camp B, Elsayes KM. Multimodality annotated hepatocellular carcinoma data set including pre- and post-TACE with imaging segmentation. Sci Data 2023; 10:33. [PMID: 36653372 PMCID: PMC9849450 DOI: 10.1038/s41597-023-01928-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver neoplasm, and its incidence has doubled over the past two decades owing to increasing risk factors. Despite surveillance, most HCC cases are diagnosed at advanced stages and can only be treated using transarterial chemo-embolization (TACE) or systemic therapy. TACE failure may occur with incidence reaching up to 60% of cases, leaving patients with a financial and emotional burden. Radiomics has emerged as a new tool capable of predicting tumor response to TACE from pre-procedural computed tomography (CT) studies. This data report defines the HCC-TACE data collection of confirmed HCC patients who underwent TACE and have pre- and post-procedure CT imaging studies and available treatment outcomes (time-to-progression and overall survival). Clinically curated segmentation of pre-procedural CT studies was done for the purpose of algorithm training for prediction and automatic liver tumor segmentation.
Collapse
Affiliation(s)
- Ahmed W Moawad
- Departments of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of radiology, Mercy catholic medical center, Darby, PA, 19023, USA.
| | - Ali Morshid
- Departments of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Ahmed M Khalaf
- Departments of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mohab M Elmohr
- Departments of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of radiology, Baylor college of medicine, TX, 77030, Houston, USA.
| | - John D Hazle
- Departments of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - David Fuentes
- Departments of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Mohamed Badawy
- Departments of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ahmed O Kaseb
- Departments of Gastrointestinal Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Manal Hassan
- Departments of Gastrointestinal Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Armeen Mahvash
- Departments of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Janio Szklaruk
- Departments of Body Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Aliyya Qayyum
- Departments of Body Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Abdelrahman Abusaif
- Departments of Body Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - William C Bennett
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| | - Tracy S Nolan
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| | - Brittney Camp
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| | - Khaled M Elsayes
- Departments of Body Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
36
|
Wei J, Jiang H, Zhou Y, Tian J, Furtado FS, Catalano OA. Radiomics: A radiological evidence-based artificial intelligence technique to facilitate personalized precision medicine in hepatocellular carcinoma. Dig Liver Dis 2023:S1590-8658(22)00863-5. [PMID: 36641292 DOI: 10.1016/j.dld.2022.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/16/2023]
Abstract
The high postoperative recurrence rates in hepatocellular carcinoma (HCC) remain a major hurdle in its management. Appropriate staging and treatment selection may alleviate the extent of fatal recurrence. However, effective methods to preoperatively evaluate pathophysiologic and molecular characteristics of HCC are lacking. Imaging plays a central role in HCC diagnosis and stratification due to the non-invasive diagnostic criteria. Vast and crucial information is hidden within image data. Other than providing a morphological sketch for lesion diagnosis, imaging could provide new insights to describe the pathophysiological and genetic landscape of HCC. Radiomics aims to facilitate diagnosis and prognosis of HCC using artificial intelligence techniques to harness the immense information contained in medical images. Radiomics produces a set of archetypal and robust imaging features that are correlated to key pathological or molecular biomarkers to preoperatively risk-stratify HCC patients. Inferred with outcome data, comprehensive combination of radiomic, clinical and/or multi-omics data could also improve direct prediction of response to treatment and prognosis. The evolution of radiomics is changing our understanding of personalized precision medicine in HCC management. Herein, we review the key techniques and clinical applications in HCC radiomics and discuss current limitations and future opportunities to improve clinical decision making.
Collapse
Affiliation(s)
- Jingwei Wei
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China.
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR. China
| | - Yu Zhou
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China; School of Life Science and Technology, Xidian University, Xi'an, PR. China
| | - Jie Tian
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, PR. China; Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR. China.
| | - Felipe S Furtado
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States.
| |
Collapse
|
37
|
Posa A, Barbieri P, Mazza G, Tanzilli A, Natale L, Sala E, Iezzi R. Technological Advancements in Interventional Oncology. Diagnostics (Basel) 2023; 13:228. [PMID: 36673038 PMCID: PMC9857620 DOI: 10.3390/diagnostics13020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Interventional radiology, and particularly interventional oncology, represents one of the medical subspecialties in which technological advancements and innovations play an utterly fundamental role. Artificial intelligence, consisting of big data analysis and feature extrapolation through computational algorithms for disease diagnosis and treatment response evaluation, is nowadays playing an increasingly important role in various healthcare fields and applications, from diagnosis to treatment response prediction. One of the fields which greatly benefits from artificial intelligence is interventional oncology. In addition, digital health, consisting of practical technological applications, can assist healthcare practitioners in their daily activities. This review aims to cover the most useful, established, and interesting artificial intelligence and digital health innovations and updates, to help physicians become more and more involved in their use in clinical practice, particularly in the field of interventional oncology.
Collapse
Affiliation(s)
- Alessandro Posa
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology—A. Gemelli University Hospital Foundation IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Pierluigi Barbieri
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology—A. Gemelli University Hospital Foundation IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Giulia Mazza
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology—A. Gemelli University Hospital Foundation IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Alessandro Tanzilli
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology—A. Gemelli University Hospital Foundation IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Luigi Natale
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology—A. Gemelli University Hospital Foundation IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Istituto di Radiodiagnostica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Evis Sala
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology—A. Gemelli University Hospital Foundation IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Istituto di Radiodiagnostica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Roberto Iezzi
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology—A. Gemelli University Hospital Foundation IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Istituto di Radiodiagnostica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
38
|
Park HJ, Kim KW, Lee SS. Artificial intelligence in radiology and its application in liver disease. ARTIFICIAL INTELLIGENCE, MACHINE LEARNING, AND DEEP LEARNING IN PRECISION MEDICINE IN LIVER DISEASES 2023:53-79. [DOI: 10.1016/b978-0-323-99136-0.00002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
39
|
Chen P, Yang Z, Zhang H, Huang G, Li Q, Ning P, Yu H. Personalized intrahepatic cholangiocarcinoma prognosis prediction using radiomics: Application and development trend. Front Oncol 2023; 13:1133867. [PMID: 37035147 PMCID: PMC10076873 DOI: 10.3389/fonc.2023.1133867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Radiomics was proposed by Lambin et al. in 2012 and since then there has been an explosion of related research. There has been significant interest in developing high-throughput methods that can automatically extract a large number of quantitative image features from medical images for better diagnostic or predictive performance. There have also been numerous radiomics investigations on intrahepatic cholangiocarcinoma in recent years, but no pertinent review materials are readily available. This work discusses the modeling analysis of radiomics for the prediction of lymph node metastasis, microvascular invasion, and early recurrence of intrahepatic cholangiocarcinoma, as well as the use of deep learning. This paper briefly reviews the current status of radiomics research to provide a reference for future studies.
Collapse
Affiliation(s)
- Pengyu Chen
- Department of Hepatobiliary Surgery, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Zhenwei Yang
- Department of Hepatobiliary Surgery, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Haofeng Zhang
- Department of Hepatobiliary Surgery, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Guan Huang
- Department of Hepatobiliary Surgery, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingshan Li
- Department of Hepatobiliary Surgery, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Peigang Ning
- Department of Radiology, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Haibo Yu
- Department of Hepatobiliary Surgery, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
- Department of Hepatobiliary Surgery, People’s Hospital of Zhengzhou University, Zhengzhou, China
- Department of Hepatobiliary Surgery, Henan Provincial People’s Hospital, Zhengzhou, China
- *Correspondence: Haibo Yu,
| |
Collapse
|
40
|
Artificial intelligence: A review of current applications in hepatocellular carcinoma imaging. Diagn Interv Imaging 2023; 104:24-36. [PMID: 36272931 DOI: 10.1016/j.diii.2022.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 01/10/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and currently the third-leading cause of cancer-related death worldwide. Recently, artificial intelligence (AI) has emerged as an important tool to improve clinical management of HCC, including for diagnosis, prognostication and evaluation of treatment response. Different AI approaches, such as machine learning and deep learning, are both based on the concept of developing prediction algorithms from large amounts of data, or big data. The era of digital medicine has led to a rapidly expanding amount of routinely collected health data which can be leveraged for the development of AI models. Various studies have constructed AI models by using features extracted from ultrasound imaging, computed tomography imaging and magnetic resonance imaging. Most of these models have used convolutional neural networks. These tools have shown promising results for HCC detection, characterization of liver lesions and liver/tumor segmentation. Regarding treatment, studies have outlined a role for AI in evaluation of treatment response and improvement of pre-treatment planning. Several challenges remain to fully integrate AI models in clinical practice. Future research is still needed to robustly evaluate AI algorithms in prospective trials, and improve interpretability, generalizability and transparency. If such challenges can be overcome, AI has the potential to profoundly change the management of patients with HCC. The purpose of this review was to sum up current evidence on AI approaches using imaging for the clinical management of HCC.
Collapse
|
41
|
Fahmy D, Alksas A, Elnakib A, Mahmoud A, Kandil H, Khalil A, Ghazal M, van Bogaert E, Contractor S, El-Baz A. The Role of Radiomics and AI Technologies in the Segmentation, Detection, and Management of Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14246123. [PMID: 36551606 PMCID: PMC9777232 DOI: 10.3390/cancers14246123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary hepatic neoplasm. Thanks to recent advances in computed tomography (CT) and magnetic resonance imaging (MRI), there is potential to improve detection, segmentation, discrimination from HCC mimics, and monitoring of therapeutic response. Radiomics, artificial intelligence (AI), and derived tools have already been applied in other areas of diagnostic imaging with promising results. In this review, we briefly discuss the current clinical applications of radiomics and AI in the detection, segmentation, and management of HCC. Moreover, we investigate their potential to reach a more accurate diagnosis of HCC and to guide proper treatment planning.
Collapse
Affiliation(s)
- Dalia Fahmy
- Diagnostic Radiology Department, Mansoura University Hospital, Mansoura 35516, Egypt
| | - Ahmed Alksas
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Ahmed Elnakib
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Ali Mahmoud
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Heba Kandil
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
- Faculty of Computer Sciences and Information, Mansoura University, Mansoura 35516, Egypt
| | - Ashraf Khalil
- College of Technological Innovation, Zayed University, Abu Dhabi 4783, United Arab Emirates
| | - Mohammed Ghazal
- Electrical, Computer, and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates
| | - Eric van Bogaert
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA
| | - Sohail Contractor
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA
| | - Ayman El-Baz
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
- Correspondence:
| |
Collapse
|
42
|
Farahani FV, Fiok K, Lahijanian B, Karwowski W, Douglas PK. Explainable AI: A review of applications to neuroimaging data. Front Neurosci 2022; 16:906290. [PMID: 36583102 PMCID: PMC9793854 DOI: 10.3389/fnins.2022.906290] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
Deep neural networks (DNNs) have transformed the field of computer vision and currently constitute some of the best models for representations learned via hierarchical processing in the human brain. In medical imaging, these models have shown human-level performance and even higher in the early diagnosis of a wide range of diseases. However, the goal is often not only to accurately predict group membership or diagnose but also to provide explanations that support the model decision in a context that a human can readily interpret. The limited transparency has hindered the adoption of DNN algorithms across many domains. Numerous explainable artificial intelligence (XAI) techniques have been developed to peer inside the "black box" and make sense of DNN models, taking somewhat divergent approaches. Here, we suggest that these methods may be considered in light of the interpretation goal, including functional or mechanistic interpretations, developing archetypal class instances, or assessing the relevance of certain features or mappings on a trained model in a post-hoc capacity. We then focus on reviewing recent applications of post-hoc relevance techniques as applied to neuroimaging data. Moreover, this article suggests a method for comparing the reliability of XAI methods, especially in deep neural networks, along with their advantages and pitfalls.
Collapse
Affiliation(s)
- Farzad V. Farahani
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, United States
- Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, United States
| | - Krzysztof Fiok
- Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, United States
| | - Behshad Lahijanian
- Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL, United States
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Waldemar Karwowski
- Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, United States
| | - Pamela K. Douglas
- School of Modeling, Simulation, and Training, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
43
|
Chen H, Gomez C, Huang CM, Unberath M. Explainable medical imaging AI needs human-centered design: guidelines and evidence from a systematic review. NPJ Digit Med 2022; 5:156. [PMID: 36261476 PMCID: PMC9581990 DOI: 10.1038/s41746-022-00699-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Transparency in Machine Learning (ML), often also referred to as interpretability or explainability, attempts to reveal the working mechanisms of complex models. From a human-centered design perspective, transparency is not a property of the ML model but an affordance, i.e., a relationship between algorithm and users. Thus, prototyping and user evaluations are critical to attaining solutions that afford transparency. Following human-centered design principles in highly specialized and high stakes domains, such as medical image analysis, is challenging due to the limited access to end users and the knowledge imbalance between those users and ML designers. To investigate the state of transparent ML in medical image analysis, we conducted a systematic review of the literature from 2012 to 2021 in PubMed, EMBASE, and Compendex databases. We identified 2508 records and 68 articles met the inclusion criteria. Current techniques in transparent ML are dominated by computational feasibility and barely consider end users, e.g. clinical stakeholders. Despite the different roles and knowledge of ML developers and end users, no study reported formative user research to inform the design and development of transparent ML models. Only a few studies validated transparency claims through empirical user evaluations. These shortcomings put contemporary research on transparent ML at risk of being incomprehensible to users, and thus, clinically irrelevant. To alleviate these shortcomings in forthcoming research, we introduce the INTRPRT guideline, a design directive for transparent ML systems in medical image analysis. The INTRPRT guideline suggests human-centered design principles, recommending formative user research as the first step to understand user needs and domain requirements. Following these guidelines increases the likelihood that the algorithms afford transparency and enable stakeholders to capitalize on the benefits of transparent ML.
Collapse
Affiliation(s)
- Haomin Chen
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Catalina Gomez
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Chien-Ming Huang
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Mathias Unberath
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
44
|
Wang L, Zhang L, Jiang B, Zhao K, Zhang Y, Xie X. Clinical application of deep learning and radiomics in hepatic disease imaging: a systematic scoping review. Br J Radiol 2022; 95:20211136. [PMID: 35816550 PMCID: PMC10162062 DOI: 10.1259/bjr.20211136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/26/2022] [Accepted: 07/05/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Artificial intelligence (AI) has begun to play a pivotal role in hepatic imaging. This systematic scoping review summarizes the latest progress of AI in evaluating hepatic diseases based on computed tomography (CT) and magnetic resonance (MR) imaging. METHODS We searched PubMed and Web of Science for publications, using terms related to deep learning, radiomics, imaging methods (CT or MR), and the liver. Two reviewers independently selected articles and extracted data from each eligible article. The Quality Assessment of Diagnostic Accuracy Studies-AI (QUADAS-AI) tool was used to assess the risk of bias and concerns regarding applicability. RESULTS The screening identified 45 high-quality publications from 235 candidates, including 8 on diffuse liver diseases and 37 on focal liver lesions. Nine studies used deep learning and 36 studies used radiomics. All 45 studies were rated as low risk of bias in patient selection and workflow, but 36 (80%) were rated as high risk of bias in the index test because they lacked external validation. In terms of concerns regarding applicability, all 45 studies were rated as low concerns. These studies demonstrated that deep learning and radiomics can evaluate liver fibrosis, cirrhosis, portal hypertension, and a series of complications caused by cirrhosis, predict the prognosis of malignant hepatic tumors, and differentiate focal hepatic lesions. CONCLUSIONS The latest studies have shown that deep learning and radiomics based on hepatic CT and MR imaging have potential application value in the diagnosis, treatment evaluation, and prognosis prediction of common liver diseases. The AI methods may become useful tools to support clinical decision-making in the future. ADVANCES IN KNOWLEDGE Deep learning and radiomics have shown their potential in the diagnosis, treatment evaluation, and prognosis prediction of a series of common diffuse liver diseases and focal liver lesions.
Collapse
Affiliation(s)
- Lingyun Wang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Zhang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Beibei Jiang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Keke Zhao
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaping Zhang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueqian Xie
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
45
|
The Potential and Emerging Role of Quantitative Imaging Biomarkers for Cancer Characterization. Cancers (Basel) 2022; 14:cancers14143349. [PMID: 35884409 PMCID: PMC9321521 DOI: 10.3390/cancers14143349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Modern, personalized therapy approaches are increasingly changing advanced cancer into a chronic disease. Compared to imaging, novel omics methodologies in molecular biology have already achieved an individual characterization of cancerous lesions. With quantitative imaging biomarkers, analyzed by radiomics or deep learning, an imaging-based assessment of tumoral biology can be brought into clinical practice. Combining these with other non-invasive methods, e.g., liquid profiling, could allow for more individual decision making regarding therapies and applications. Abstract Similar to the transformation towards personalized oncology treatment, emerging techniques for evaluating oncologic imaging are fostering a transition from traditional response assessment towards more comprehensive cancer characterization via imaging. This development can be seen as key to the achievement of truly personalized and optimized cancer diagnosis and treatment. This review gives a methodological introduction for clinicians interested in the potential of quantitative imaging biomarkers, treating of radiomics models, texture visualization, convolutional neural networks and automated segmentation, in particular. Based on an introduction to these methods, clinical evidence for the corresponding imaging biomarkers—(i) dignity and etiology assessment; (ii) tumoral heterogeneity; (iii) aggressiveness and response; and (iv) targeting for biopsy and therapy—is summarized. Further requirements for the clinical implementation of these imaging biomarkers and the synergistic potential of personalized molecular cancer diagnostics and liquid profiling are discussed.
Collapse
|
46
|
van der Velden BH, Kuijf HJ, Gilhuijs KG, Viergever MA. Explainable artificial intelligence (XAI) in deep learning-based medical image analysis. Med Image Anal 2022; 79:102470. [DOI: 10.1016/j.media.2022.102470] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 03/15/2022] [Accepted: 05/02/2022] [Indexed: 12/11/2022]
|
47
|
Liu L, Tang C, Li L, Chen P, Tan Y, Hu X, Chen K, Shang Y, Liu D, Liu H, Liu H, Nie F, Tian J, Zhao M, He W, Guo Y. Deep learning radiomics for focal liver lesions diagnosis on long-range contrast-enhanced ultrasound and clinical factors. Quant Imaging Med Surg 2022; 12:3213-3226. [PMID: 35655832 PMCID: PMC9131334 DOI: 10.21037/qims-21-1004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/18/2022] [Indexed: 11/15/2023]
Abstract
BACKGROUND Routine clinical factors play an important role in the clinical diagnosis of focal liver lesions (FLLs); however, they are rarely used in computer-assisted diagnosis. Therefore, we developed a deep learning (DL) radiomics model, and investigated its effectiveness in diagnosing FLLs using long-range contrast-enhanced ultrasound (CEUS) cines and clinical factors. METHODS Herein, 303 patients with pathologically confirmed FLLs after surgery at three hospitals were retrospectively enrolled and divided into a training cohort (n=203), internal validation (IV) cohort (n=50) from one hospital with the ratio of 4:1, and external validation (EV) cohort (n=50) from the other two hospitals. Four DL radiomics models, namely Four Stream 3D convolutional neural network (FS3DU) (trained with CEUS cines only), FS3DU+A (trained with CEUS cines and alpha fetoprotein), FS3DU+H (trained with CEUS cines and hepatitis), and FS3DU+A+H (trained with CEUS cines, alpha fetoprotein, and hepatitis), were formed based on 3D convolutional neural networks (CNNs). They used approximately 20-s preoperative CEUS cines and/or clinical factors to extract spatiotemporal features for the classification of FLLs and the location of the region of interest. The area under curve of the receiver operating characteristic and diagnosis speed were calculated to evaluate the models in the IV and EV cohorts, and they were compared with those of two radiologists. Two-sided Delong tests were used to calculate the statistical differences between the models and radiologists. RESULTS FS3DU+A+H, which incorporated CEUS cines, hepatitis, and alpha fetoprotein, achieved the highest area under curve of 0.969 (95% CI: 0.901-1.000) and 0.957 (95% CI: 0.894-1.000) among radiologists and other models in IV and EV cohorts, respectively. A significant difference was observed when comparing FS3DU and radiologist 2 (all P<0.05). The diagnosis speed of all the models was the same (10.76 s per patient), and it was two times faster than those of the radiologists (radiologist 1: 23.74 and 27.75 s; radiologist 2: 25.95 and 29.50 s in IV and EV cohorts, respectively). CONCLUSIONS The proposed DL radiomics demonstrated excellent performance on the benign and malignant diagnosis of FLLs by combining CEUS cines and clinical factors. It could help the individualized characterization of FLLs, and enhance the accuracy of diagnosis in the future.
Collapse
Affiliation(s)
- Li Liu
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Digital Medicine, School of Biomedical Engineering and Medical Imaging, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chunlin Tang
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lu Li
- CHISON Medical Technologies Co., LTD, Wuxi, China
| | - Ping Chen
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ying Tan
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaofei Hu
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Kaixuan Chen
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yongning Shang
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Deng Liu
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - He Liu
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hongjun Liu
- Department of Digital Medicine, School of Biomedical Engineering and Medical Imaging, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fang Nie
- Department of Ultrasound, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiawei Tian
- Department of Ultrasound, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | - Wen He
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanli Guo
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
48
|
Calderaro J, Seraphin TP, Luedde T, Simon TG. Artificial intelligence for the prevention and clinical management of hepatocellular carcinoma. J Hepatol 2022; 76:1348-1361. [PMID: 35589255 PMCID: PMC9126418 DOI: 10.1016/j.jhep.2022.01.014] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/26/2021] [Accepted: 01/14/2022] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) currently represents the fifth most common malignancy and the third-leading cause of cancer-related death worldwide, with incidence and mortality rates that are increasing. Recently, artificial intelligence (AI) has emerged as a unique opportunity to improve the full spectrum of HCC clinical care, by improving HCC risk prediction, diagnosis, and prognostication. AI approaches include computational search algorithms, machine learning (ML) and deep learning (DL) models. ML consists of a computer running repeated iterations of models, in order to progressively improve performance of a specific task, such as classifying an outcome. DL models are a subtype of ML, based on neural network structures that are inspired by the neuroanatomy of the human brain. A growing body of recent data now apply DL models to diverse data sources - including electronic health record data, imaging modalities, histopathology and molecular biomarkers - to improve the accuracy of HCC risk prediction, detection and prediction of treatment response. Despite the promise of these early results, future research is still needed to standardise AI data, and to improve both the generalisability and interpretability of results. If such challenges can be overcome, AI has the potential to profoundly change the way in which care is provided to patients with or at risk of HCC.
Collapse
Affiliation(s)
- Julien Calderaro
- Assistance Publique-Hôpitaux de Paris, Henri Mondor University Hospital, Department of Pathology, Créteil, France; Inserm U955 and Univ Paris Est Creteil, INSERM, IMRB, 94010, Creteil, France
| | - Tobias Paul Seraphin
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty at Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty at Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Tracey G. Simon
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Clinical and Translational Epidemiology Unit (CTEU), Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
49
|
Chen HY, Ge P, Liu JY, Qu JL, Bao F, Xu CM, Chen HL, Shang D, Zhang GX. Artificial intelligence: Emerging player in the diagnosis and treatment of digestive disease. World J Gastroenterol 2022; 28:2152-2162. [PMID: 35721881 PMCID: PMC9157617 DOI: 10.3748/wjg.v28.i20.2152] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/24/2021] [Accepted: 04/24/2022] [Indexed: 02/06/2023] Open
Abstract
Given the breakthroughs in key technologies, such as image recognition, deep learning and neural networks, artificial intelligence (AI) continues to be increasingly developed, leading to closer and deeper integration with an increasingly data-, knowledge- and brain labor-intensive medical industry. As society continues to advance and individuals become more aware of their health needs, the problems associated with the aging of the population are receiving increasing attention, and there is an urgent demand for improving medical technology, prolonging human life and enhancing health. Digestive system diseases are the most common clinical diseases and are characterized by complex clinical manifestations and a general lack of obvious symptoms in the early stage. Such diseases are very difficult to diagnose and treat. In recent years, the incidence of diseases of the digestive system has increased. As AI applications in the field of health care continue to be developed, AI has begun playing an important role in the diagnosis and treatment of diseases of the digestive system. In this paper, the application of AI in assisted diagnosis and the application and prospects of AI in malignant and benign digestive system diseases are reviewed.
Collapse
Affiliation(s)
- Hai-Yang Chen
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| | - Peng Ge
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| | - Jia-Yue Liu
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| | - Jia-Lin Qu
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Fang Bao
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| | - Cai-Ming Xu
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Hai-Long Chen
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Dong Shang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Gui-Xin Zhang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| |
Collapse
|
50
|
Penrice DD, Rattan P, Simonetto DA. Artificial Intelligence and the Future of Gastroenterology and Hepatology. GASTRO HEP ADVANCES 2022; 1:581-595. [PMID: 39132066 PMCID: PMC11307848 DOI: 10.1016/j.gastha.2022.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/22/2022] [Indexed: 08/13/2024]
Abstract
The integration of artificial intelligence (AI) into gastroenterology and hepatology (GI) will inevitably transform the practice of GI in the coming decade. While the application of AI in health care is not new, advancements are occurring rapidly, and the future landscape of AI is beginning to come into focus. From endoscopic assistance via computer vision technology to the predictive capabilities of the vast information contained in the electronic health records, AI promises to optimize and expedite clinical and procedural practice and research in GI. The extensive body of literature already available on AI applications in gastroenterology may seem daunting at first; however, this review aims to provide a breakdown of the key studies conducted thus far and demonstrate the many potential ways this technology may impact the field. This review will also take a look into the future and imagine how GI can be transformed over the coming years, as well as potential limitations and pitfalls that must be overcome to realize this future.
Collapse
Affiliation(s)
- Daniel D. Penrice
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Puru Rattan
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|