1
|
Liao H, Huang C, Liu C, Zhang J, Tao F, Liu H, Liang H, Hu X, Li Y, Chen S, Li Y. Deep learning-based MVIT-MLKA model for accurate classification of pancreatic lesions: a multicenter retrospective cohort study. LA RADIOLOGIA MEDICA 2025; 130:508-523. [PMID: 39832039 DOI: 10.1007/s11547-025-01949-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/01/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Accurate differentiation between benign and malignant pancreatic lesions is critical for effective patient management. This study aimed to develop and validate a novel deep learning network using baseline computed tomography (CT) images to predict the classification of pancreatic lesions. METHODS This retrospective study included 864 patients (422 men, 442 women) with confirmed histopathological results across three medical centers, forming a training cohort, internal testing cohort, and external validation cohort. A novel hybrid model, Multi-Scale Large Kernel Attention with Mobile Vision Transformer (MVIT-MLKA), was developed, integrating CNN and Transformer architectures to classify pancreatic lesions. The model's performance was compared with traditional machine learning methods and advanced deep learning models. We also evaluated the diagnostic accuracy of radiologists with and without the assistance of the optimal model. Model performance was assessed through discrimination, calibration, and clinical applicability. RESULTS The MVIT-MLKA model demonstrated superior performance in classifying pancreatic lesions, achieving an AUC of 0.974 (95% CI 0.967-0.980) in the training set, 0.935 (95% CI 0.915-0.954) in the internal testing set, and 0.924 (95% CI 0.902-0.945) in the external validation set, outperforming traditional models and other deep learning models (P < 0.05). Radiologists aided by the MVIT-MLKA model showed significant improvements in diagnostic accuracy and sensitivity compared to those without model assistance (P < 0.05). Grad-CAM visualization enhanced model interpretability by effectively highlighting key lesion areas. CONCLUSION The MVIT-MLKA model efficiently differentiates between benign and malignant pancreatic lesions, surpassing traditional methods and significantly improving radiologists' diagnostic performance. The integration of this advanced deep learning model into clinical practice has the potential to reduce diagnostic errors and optimize treatment strategies.
Collapse
Affiliation(s)
- Hongfan Liao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Cheng Huang
- College of Computer and Information Science, Southwest University, Chongqing, 400715, China
| | - Chunhua Liu
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jiao Zhang
- Department of Radiology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fengming Tao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Haotian Liu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hongwei Liang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoli Hu
- Department of Radiology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Li
- Department of Radiology, The Third People's Hospital of Chengdu, Chengdu, China
| | - Shanxiong Chen
- College of Computer and Information Science, Southwest University, Chongqing, 400715, China.
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
2
|
Modi N, Kumar Y. Machine Learning Based Approaches to diagnosis and detection of cancerous and non-pancreatic cancerous conditions. 2024 OPJU INTERNATIONAL TECHNOLOGY CONFERENCE (OTCON) ON SMART COMPUTING FOR INNOVATION AND ADVANCEMENT IN INDUSTRY 4.0 2024:1-5. [DOI: 10.1109/otcon60325.2024.10687862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Affiliation(s)
- Nandini Modi
- Pandit Deendayal Energy University,School of Technology,Department of CSE,Gandhinagar,India
| | - Yogesh Kumar
- Pandit Deendayal Energy University,School of Technology,Department of CSE,Gandhinagar,India
| |
Collapse
|
3
|
Mao KZ, Ma C, Song B. Radiomics advances in the evaluation of pancreatic cystic neoplasms. Heliyon 2024; 10:e25535. [PMID: 38333791 PMCID: PMC10850586 DOI: 10.1016/j.heliyon.2024.e25535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
With the development of medical imaging, the detection rate of pancreatic cystic neoplasms (PCNs) has increased greatly. Serous cystic neoplasm, solid pseudopapillary neoplasm, intraductal papillary mucinous neoplasm and mucinous cystic neoplasm are the main subtypes of PCN, and their treatment options vary greatly due to the different biological behaviours of the tumours. Different from conventional qualitative imaging evaluation, radiomics is a promising noninvasive approach for the diagnosis, classification, and risk stratification of diseases involving high-throughput extraction of medical image features. We present a review of radiomics in the diagnosis of serous cystic neoplasm and mucinous cystic neoplasm, risk classification of intraductal papillary mucinous neoplasm and prediction of solid pseudopapillary neoplasm invasiveness compared to conventional imaging diagnosis. Radiomics is a promising tool in the field of medical imaging, providing a noninvasive, high-performance model for preoperative diagnosis and risk stratification of PCNs and improving prospects regarding management of these diseases. Further studies are warranted to investigate MRI image radiomics in connection with PCNs to improve the diagnosis and treatment strategies in the management of PCN patients.
Collapse
Affiliation(s)
- Kuan-Zheng Mao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Department of Pancreatic Surgery, Changhai Hospital of Shanghai, Naval Medical University, Shanghai, 200433, China
| | - Chao Ma
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Shanghai, 200433, China
- College of Electronic and Information Engineering, Tongji University, Shanghai, 201804, China
| | - Bin Song
- Department of Pancreatic Surgery, Changhai Hospital of Shanghai, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
4
|
Ma J, Wang X, Tang M, Zhang C. Preoperative prediction of pancreatic neuroendocrine tumor grade based on 68Ga-DOTATATE PET/CT. Endocrine 2024; 83:502-510. [PMID: 37715934 PMCID: PMC10850018 DOI: 10.1007/s12020-023-03515-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/29/2023] [Indexed: 09/18/2023]
Abstract
OBJECTIVE To establish a prediction model for preoperatively predicting grade 1 and grade 2/3 tumors in patients with pancreatic neuroendocrine tumors (PNETs) based on 68Ga-DOTATATE PET/CT. METHODS Clinical data of 41 patients with PNETs were included in this study. According to the pathological results, they were divided into grade 1 and grade 2/3. 68Ga-DOTATATE PET/CT images were collected within one month before surgery. The clinical risk factors and significant radiological features were filtered, and a clinical predictive model based on these clinical and radiological features was established. 3D slicer was used to extracted 107 radiomic features from the region of interest (ROI) of 68Ga-dotata PET/CT images. The Pearson correlation coefficient (PCC), recursive feature elimination (REF) based five-fold cross validation were adopted for the radiomic feature selection, and a radiomic score was computed subsequently. The comprehensive model combining the clinical risk factors and the rad-score was established as well as the nomogram. The performance of above clinical model and comprehensive model were evaluated and compared. RESULTS Adjacent organ invasion, N staging, and M staging were the risk factors for PNET grading (p < 0.05). 12 optimal radiomic features (3 PET radiomic features, 9 CT radiomic features) were screen out. The clinical predictive model achieved an area under the curve (AUC) of 0.785. The comprehensive model has better predictive performance (AUC = 0.953). CONCLUSION We proposed a comprehensive nomogram model based on 68Ga-DOTATATE PET/CT to predict grade 1 and grade 2/3 of PNETs and assist personalized clinical diagnosis and treatment plans for patients with PNETs.
Collapse
Affiliation(s)
- Jiao Ma
- Department of Nuclear Medicine, The Affilliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, PR China
| | - Xiaoyong Wang
- Department of Radiology, The Affilliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, PR China
| | - Mingsong Tang
- Department of Radiology, The Affilliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, PR China
| | - Chunyin Zhang
- Department of Nuclear Medicine, The Affilliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, PR China.
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, PR China.
- Academician (expert) Workstation of Sichuan Province, Luzhou, 646000, Sichuan, PR China.
| |
Collapse
|
5
|
Rawlani P, Ghosh NK, Kumar A. Role of artificial intelligence in the characterization of indeterminate pancreatic head mass and its usefulness in preoperative diagnosis. Artif Intell Gastroenterol 2023; 4:48-63. [DOI: 10.35712/aig.v4.i3.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 10/08/2023] [Indexed: 12/07/2023] Open
Abstract
Artificial intelligence (AI) has been used in various fields of day-to-day life and its role in medicine is immense. Understanding of oncology has been improved with the introduction of AI which helps in diagnosis, treatment planning, management, prognosis, and follow-up. It also helps to identify high-risk groups who can be subjected to timely screening for early detection of malignant conditions. It is more important in pancreatic cancer as it is one of the major causes of cancer-related deaths worldwide and there are no specific early features (clinical and radiological) for diagnosis. With improvement in imaging modalities (computed tomography, magnetic resonance imaging, endoscopic ultrasound), most often clinicians were being challenged with lesions that were difficult to diagnose with human competence. AI has been used in various other branches of medicine to differentiate such indeterminate lesions including the thyroid gland, breast, lungs, liver, adrenal gland, kidney, etc. In the case of pancreatic cancer, the role of AI has been explored and is still ongoing. This review article will focus on how AI can be used to diagnose pancreatic cancer early or differentiate it from benign pancreatic lesions, therefore, management can be planned at an earlier stage.
Collapse
Affiliation(s)
- Palash Rawlani
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Nalini Kanta Ghosh
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Ashok Kumar
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| |
Collapse
|
6
|
Zhang Y, Wu J, He J, Xu S. Preoperative differentiation of pancreatic cystic neoplasm subtypes on computed tomography radiomics. Quant Imaging Med Surg 2023; 13:6395-6411. [PMID: 37869288 PMCID: PMC10585572 DOI: 10.21037/qims-22-1192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 07/28/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Serous cystic neoplasm (SCN), mucinous cystic neoplasm (MCN), and intraductal papillary mucinous neoplasm (IPMN) comprise a large proportion of pancreatic cystic neoplasms (PCNs). Patients with MCN and IPMN require surgery due to the potential of malignant transformation, whereas those with SCN require periodic surveillance. However, the differential diagnosis of patients with PCNs before treatment remains a great challenge for all surgeons. Therefore, the establishment of a reliable diagnostic tool is urgently required for the improvement of precision diagnostics. METHODS Between February 2015 and December 2020, 143 consecutive patients with PCNs who were confirmed by postoperative pathology were retrospectively included in the study cohort, then randomized into development and test cohorts at a ratio of 7:3. The predictors of preoperative clinical-radiologic parameters were evaluated by univariate and multivariable logistic regression analyses. A total of 1,218 radiomics features were computationally extracted from the enhanced computed tomography (CT) scans of the tumor region, and a radiomics signature was established by the random forest algorithm. In the development cohort, multi- and binary-class radiomics models integrating preoperative variables and radiomics features were constructed to distinguish between the 3 types of PCNs. The receiver operating characteristic (ROC) curve and the area under the curve (AUC) were used to evaluate the predictive efficiency of the model. An independent internal test cohort was applied to validate the classification models. RESULTS All preoperative prediction models were built by integrating the radiomics signature with 13 diagnosis-related radiomics features and 3 important clinical-radiologic parameters: age, sex, and tumor diameter. The multiclass prediction model presented an overall accuracy of 0.804 in the development cohort and 0.707 in the test cohort. The binary-class prediction models displayed higher overall accuracies of 0.853, 0.866, and 0.928 in the development dataset and 0.750, 0.839, and 0.889 in the test dataset. In the test cohort, the binary-class radiomics models showed better predictive performances {AUC =0.914 [95% confidence interval (CI): 0.786 to 1.000], 0.863 (95% CI: 0.714 to 0.941), and 0.926 (95% CI: 0.824 to 1.000)} than the multiclass radiomics model [AUC =0.850 (95% CI: 0.696 to 1.000)], with a large net benefit in the decision curve analysis (DCA). The radiomics-based nomogram provided the correct predicted probability for the diagnosis of PCNs. CONCLUSIONS The proposed radiomics models with clinical-radiologic parameters and radiomics features help to predict the accurate diagnosis among PCNs to advance personalized medicine.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of PET/CT Center, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, China
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jin Wu
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jian He
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Shanshan Xu
- Department of PET/CT Center, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
7
|
Huang C, Chopra S, Bolan CW, Chandarana H, Harfouch N, Hecht EM, Lo GC, Megibow AJ. Pancreatic Cystic Lesions: Next Generation of Radiologic Assessment. Gastrointest Endosc Clin N Am 2023; 33:533-546. [PMID: 37245934 DOI: 10.1016/j.giec.2023.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Pancreatic cystic lesions are frequently identified on cross-sectional imaging. As many of these are presumed branch-duct intraductal papillary mucinous neoplasms, these lesions generate much anxiety for the patients and clinicians, often necessitating long-term follow-up imaging and even unnecessary surgical resections. However, the incidence of pancreatic cancer is overall low for patients with incidental pancreatic cystic lesions. Radiomics and deep learning are advanced tools of imaging analysis that have attracted much attention in addressing this unmet need, however, current publications on this topic show limited success and large-scale research is needed.
Collapse
Affiliation(s)
- Chenchan Huang
- Department of Radiology, NYU Grossman School of Medicine, 660 1st Avenue, 3F, New York, NY 10016, USA.
| | - Sumit Chopra
- Department of Radiology, NYU Grossman School of Medicine, 650 First Avenue, 4th Floor, New York, NY 10016, USA
| | - Candice W Bolan
- Department of Radiology, Mayo Clinic in Florida, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| | - Hersh Chandarana
- Department of Radiology, NYU Grossman School of Medicine, 660 1st Avenue, 3F, New York, NY 10016, USA
| | - Nassier Harfouch
- Department of Radiology, NYU Grossman School of Medicine, 660 1st Avenue, 3F, New York, NY 10016, USA
| | - Elizabeth M Hecht
- Department of Radiology, New York Presbyterian - Weill Cornell Medicine, 520 East 70th Street, Starr 8a, New York, NY 10021, USA
| | - Grace C Lo
- Department of Radiology, New York Presbyterian - Weill Cornell Medicine, 520 East 70th Street, Starr 7a, New York, NY 10021, USA
| | - Alec J Megibow
- Department of Radiology, NYU Grossman School of Medicine, 660 1st Avenue, 3F, New York, NY 10016, USA
| |
Collapse
|
8
|
Granata V, Fusco R, Setola SV, Galdiero R, Maggialetti N, Silvestro L, De Bellis M, Di Girolamo E, Grazzini G, Chiti G, Brunese MC, Belli A, Patrone R, Palaia R, Avallone A, Petrillo A, Izzo F. Risk Assessment and Pancreatic Cancer: Diagnostic Management and Artificial Intelligence. Cancers (Basel) 2023; 15:351. [PMID: 36672301 PMCID: PMC9857317 DOI: 10.3390/cancers15020351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Pancreatic cancer (PC) is one of the deadliest cancers, and it is responsible for a number of deaths almost equal to its incidence. The high mortality rate is correlated with several explanations; the main one is the late disease stage at which the majority of patients are diagnosed. Since surgical resection has been recognised as the only curative treatment, a PC diagnosis at the initial stage is believed the main tool to improve survival. Therefore, patient stratification according to familial and genetic risk and the creation of screening protocol by using minimally invasive diagnostic tools would be appropriate. Pancreatic cystic neoplasms (PCNs) are subsets of lesions which deserve special management to avoid overtreatment. The current PC screening programs are based on the annual employment of magnetic resonance imaging with cholangiopancreatography sequences (MR/MRCP) and/or endoscopic ultrasonography (EUS). For patients unfit for MRI, computed tomography (CT) could be proposed, although CT results in lower detection rates, compared to MRI, for small lesions. The actual major limit is the incapacity to detect and characterize the pancreatic intraepithelial neoplasia (PanIN) by EUS and MR/MRCP. The possibility of utilizing artificial intelligence models to evaluate higher-risk patients could favour the diagnosis of these entities, although more data are needed to support the real utility of these applications in the field of screening. For these motives, it would be appropriate to realize screening programs in research settings.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 41012 Napoli, Italy
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, 20122 Milan, Italy
| | - Sergio Venanzio Setola
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Roberta Galdiero
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Nicola Maggialetti
- Department of Medical Science, Neuroscience and Sensory Organs (DSMBNOS), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Lucrezia Silvestro
- Division of Clinical Experimental Oncology Abdomen, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Mario De Bellis
- Division of Gastroenterology and Digestive Endoscopy, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Elena Di Girolamo
- Division of Gastroenterology and Digestive Endoscopy, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Giulia Grazzini
- Department of Emergency Radiology, University Hospital Careggi, Largo Brambilla 3, 50134 Florence, Italy
| | - Giuditta Chiti
- Department of Emergency Radiology, University Hospital Careggi, Largo Brambilla 3, 50134 Florence, Italy
| | - Maria Chiara Brunese
- Diagnostic Imaging Section, Department of Medical and Surgical Sciences & Neurosciences, University of Molise, 86100 Campobasso, Italy
| | - Andrea Belli
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Renato Patrone
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Raffaele Palaia
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Antonio Avallone
- Division of Clinical Experimental Oncology Abdomen, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Antonella Petrillo
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Francesco Izzo
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| |
Collapse
|
9
|
Liao J, Li X, Gan Y, Han S, Rong P, Wang W, Li W, Zhou L. Artificial intelligence assists precision medicine in cancer treatment. Front Oncol 2023; 12:998222. [PMID: 36686757 PMCID: PMC9846804 DOI: 10.3389/fonc.2022.998222] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/22/2022] [Indexed: 01/06/2023] Open
Abstract
Cancer is a major medical problem worldwide. Due to its high heterogeneity, the use of the same drugs or surgical methods in patients with the same tumor may have different curative effects, leading to the need for more accurate treatment methods for tumors and personalized treatments for patients. The precise treatment of tumors is essential, which renders obtaining an in-depth understanding of the changes that tumors undergo urgent, including changes in their genes, proteins and cancer cell phenotypes, in order to develop targeted treatment strategies for patients. Artificial intelligence (AI) based on big data can extract the hidden patterns, important information, and corresponding knowledge behind the enormous amount of data. For example, the ML and deep learning of subsets of AI can be used to mine the deep-level information in genomics, transcriptomics, proteomics, radiomics, digital pathological images, and other data, which can make clinicians synthetically and comprehensively understand tumors. In addition, AI can find new biomarkers from data to assist tumor screening, detection, diagnosis, treatment and prognosis prediction, so as to providing the best treatment for individual patients and improving their clinical outcomes.
Collapse
Affiliation(s)
- Jinzhuang Liao
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoying Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yu Gan
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shuangze Han
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Pengfei Rong
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Zhou
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, The Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Li J, Yin W, Wang Y. CT classification model of pancreatic serous cystic neoplasm and mucinous cystic neoplasm based on deep transfer learning. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2023; 31:167-180. [PMID: 36404568 DOI: 10.3233/xst-221281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
BACKGROUND Pancreatic cancer is a highly lethal disease. The preoperative distinction between pancreatic serous cystic neoplasm (SCN) and mucinous cystic neoplasm (MCN) remains a clinical challenge. OBJECTIVE The goal of this study is to provide clinicians with supportive advice and avoid overtreatment by constructing a convolutional neural network (CNN) classifier to automatically identify pancreatic cancer using computed tomography (CT) images. METHODS We construct a CNN model using a dataset of 6,173 CT images obtained from 107 pathologically confirmed pancreatic cancer patients at Shanghai Changhai Hospital from January 2017 to February 2022. We divide CT slices into three categories namely, SCN, MCN, and no tumor, to train the DenseNet201-based CNN model with multi-head spatial attention mechanism (MSAM-DenseNet201). The attention module enhances the network's attention to local features and effectively improves the network performance. The trained model is applied to process all CT image slices and finally realize the two categories classification of MCN and SCN patients through a joint voting strategy. RESULTS Using a 10-fold cross validation method, this new MSAM-DenseNet201 model achieves a classification accuracy of 92.52%, a precision of 92.16%, a sensitivity of 92.16%, and a specificity of 92.86%, respectively. CONCLUSIONS This study demonstrates the feasibility of using a deep learning network or classification model to help diagnose MCN and SCN cases. This, the new method has great potential for developing new computer-aided diagnosis systems and applying in future clinical practice.
Collapse
Affiliation(s)
- Jin Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wei Yin
- Department of Radiology, Changhai Hospital, The Naval Military Medical University, Shanghai, China
| | - Yuanjun Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
11
|
Jiang ZY, Qi LS, Li JT, Cui N, Li W, Liu W, Wang KZ. Radiomics: Status quo and future challenges. Artif Intell Med Imaging 2022; 3:87-96. [DOI: 10.35711/aimi.v3.i4.87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Noninvasive imaging (computed tomography, magnetic resonance imaging, endoscopic ultrasonography, and positron emission tomography) as an important part of the clinical workflow in the clinic, but it still provides limited information for diagnosis, treatment effect evaluation and prognosis prediction. In addition, judgment and diagnoses made by experts are usually based on multiple years of experience and subjective impression which lead to variable results in the same case. With accumulation of medical imaging data, radiomics emerges as a relatively new approach for analysis. Via artificial intelligence techniques, high-throughput quantitative data which is invisible to the naked eyes extracted from original images can be used in the process of patients’ management. Several studies have evaluated radiomics combined with clinical factors, pathological, or genetic information would assist in the diagnosis, particularly in the prediction of biological characteristics, risk of recurrence, and survival with encouraging results. In various clinical settings, there are limitations and challenges needing to be overcome before transformation. Therefore, we summarize the concepts and method of radiomics including image acquisition, region of interest segmentation, feature extraction and model development. We also set forth the current applications of radiomics in clinical routine. At last, the limitations and related deficiencies of radiomics are pointed out to direct the future opportunities and development.
Collapse
Affiliation(s)
- Zhi-Yun Jiang
- Department of Positron Emission Tomography-Computed Tomography/Magnetic Resonance Imaging, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| | - Li-Shuang Qi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Jia-Tong Li
- Department of Positron Emission Tomography-Computed Tomography/Magnetic Resonance Imaging, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| | - Nan Cui
- Department of Positron Emission Tomography-Computed Tomography/Magnetic Resonance Imaging, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| | - Wei Li
- Department of Positron Emission Tomography-Computed Tomography/Magnetic Resonance Imaging, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
- Department of Interventional Vascular Surgery, The 4th Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Wei Liu
- Department of Positron Emission Tomography-Computed Tomography/Magnetic Resonance Imaging, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| | - Ke-Zheng Wang
- Department of Positron Emission Tomography-Computed Tomography/Magnetic Resonance Imaging, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| |
Collapse
|
12
|
Liang W, Tian W, Wang Y, Wang P, Wang Y, Zhang H, Ruan S, Shao J, Zhang X, Huang D, Ding Y, Bai X. Classification prediction of pancreatic cystic neoplasms based on radiomics deep learning models. BMC Cancer 2022; 22:1237. [PMID: 36447168 PMCID: PMC9710154 DOI: 10.1186/s12885-022-10273-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/02/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Preoperative prediction of pancreatic cystic neoplasm (PCN) differentiation has significant value for the implementation of personalized diagnosis and treatment plans. This study aimed to build radiomics deep learning (DL) models using computed tomography (CT) data for the preoperative differential diagnosis of common cystic tumors of the pancreas. METHODS Clinical and CT data of 193 patients with PCN were collected for this study. Among these patients, 99 were pathologically diagnosed with pancreatic serous cystadenoma (SCA), 55 were diagnosed with mucinous cystadenoma (MCA) and 39 were diagnosed with intraductal papillary mucinous neoplasm (IPMN). The regions of interest (ROIs) were obtained based on manual image segmentation of CT slices. The radiomics and radiomics-DL models were constructed using support vector machines (SVMs). Moreover, based on the fusion of clinical and radiological features, the best combined feature set was obtained according to the Akaike information criterion (AIC) analysis. Then the fused model was constructed using logistic regression. RESULTS For the SCA differential diagnosis, the fused model performed the best and obtained an average area under the curve (AUC) of 0.916. It had a best feature set including position, polycystic features (≥6), cystic wall calcification, pancreatic duct dilatation and radiomics-DL score. For the MCA and IPMN differential diagnosis, the fused model with AUC of 0.973 had a best feature set including age, communication with the pancreatic duct and radiomics score. CONCLUSIONS The radiomics, radiomics-DL and fused models based on CT images have a favorable differential diagnostic performance for SCA, MCA and IPMN. These findings may be beneficial for the exploration of individualized management strategies.
Collapse
Affiliation(s)
- Wenjie Liang
- grid.13402.340000 0004 1759 700XDepartment of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou China
| | - Wuwei Tian
- grid.13402.340000 0004 1759 700XCollege of Information Science & Electronic Engineering, School of Micro-Nano Electronics, Zhejiang University, Zheda Road, Zhejiang, Hangzhou China
| | - Yifan Wang
- grid.13402.340000 0004 1759 700XCollege of Information Science & Electronic Engineering, School of Micro-Nano Electronics, Zhejiang University, Zheda Road, Zhejiang, Hangzhou China
| | - Pan Wang
- grid.13402.340000 0004 1759 700XDepartment of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou China
| | - Yubizhuo Wang
- grid.13402.340000 0004 1759 700XDepartment of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou China
| | - Hongbin Zhang
- grid.513202.7Department of Radiology, Yiwu Central Hospital, Yiwu, Zhejiang, China
| | - Shijian Ruan
- grid.13402.340000 0004 1759 700XCollege of Information Science & Electronic Engineering, Zhejiang University, Zhejiang, Hangzhou China
| | - Jiayuan Shao
- grid.13402.340000 0004 1759 700XPolytechnic Institute, Zhejiang University, Zhejiang, Hangzhou China
| | - Xiuming Zhang
- grid.13402.340000 0004 1759 700XDepartment of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou China
| | - Danjiang Huang
- grid.469601.cDepartment of Radiology, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Yong Ding
- grid.13402.340000 0004 1759 700XCollege of Information Science & Electronic Engineering, School of Micro-Nano Electronics, Zhejiang University, Zheda Road, Zhejiang, Hangzhou China
| | - Xueli Bai
- grid.452661.20000 0004 1803 6319Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun Road, Zhejiang, Hangzhou China ,grid.452661.20000 0004 1803 6319Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou China
| |
Collapse
|
13
|
Huang B, Huang H, Zhang S, Zhang D, Shi Q, Liu J, Guo J. Artificial intelligence in pancreatic cancer. Theranostics 2022; 12:6931-6954. [PMID: 36276650 PMCID: PMC9576619 DOI: 10.7150/thno.77949] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/24/2022] [Indexed: 11/30/2022] Open
Abstract
Pancreatic cancer is the deadliest disease, with a five-year overall survival rate of just 11%. The pancreatic cancer patients diagnosed with early screening have a median overall survival of nearly ten years, compared with 1.5 years for those not diagnosed with early screening. Therefore, early diagnosis and early treatment of pancreatic cancer are particularly critical. However, as a rare disease, the general screening cost of pancreatic cancer is high, the accuracy of existing tumor markers is not enough, and the efficacy of treatment methods is not exact. In terms of early diagnosis, artificial intelligence technology can quickly locate high-risk groups through medical images, pathological examination, biomarkers, and other aspects, then screening pancreatic cancer lesions early. At the same time, the artificial intelligence algorithm can also be used to predict the survival time, recurrence risk, metastasis, and therapy response which could affect the prognosis. In addition, artificial intelligence is widely used in pancreatic cancer health records, estimating medical imaging parameters, developing computer-aided diagnosis systems, etc. Advances in AI applications for pancreatic cancer will require a concerted effort among clinicians, basic scientists, statisticians, and engineers. Although it has some limitations, it will play an essential role in overcoming pancreatic cancer in the foreseeable future due to its mighty computing power.
Collapse
Affiliation(s)
- Bowen Huang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Haoran Huang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Shuting Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Dingyue Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Qingya Shi
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Jianzhou Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Junchao Guo
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
14
|
Keczer B, Benke M, Marjai T, Horváth M, Miheller P, Szücs Á, Harsányi L, Szijártó A, Hritz I. Quantitative Software Analysis of Endoscopic Ultrasound Images of Pancreatic Cystic Lesions. Diagnostics (Basel) 2022; 12:2105. [PMID: 36140506 PMCID: PMC9498186 DOI: 10.3390/diagnostics12092105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/13/2022] [Accepted: 08/26/2022] [Indexed: 11/28/2022] Open
Abstract
Endoscopic ultrasonography (EUS) is the most accurate imaging modality for the evaluation of different types of pancreatic cystic lesions. Our aim was to analyze EUS images of pancreatic cystic lesions using an image processing software. We specified the echogenicity of the lesions by measuring the gray value of pixels inside the selected areas. The images were divided into groups (serous cystic neoplasm /SCN/, intraductal papillary mucinous neoplasms and mucinous cystic neoplasms /Non-SCN/ and Pseudocyst) according to the pathology results of the lesions. Overall, 170 images were processed by the software: 81 in Non-SCN, 30 in SCN and 59 in Pseudocyst group. The mean gray value of the entire lesion in the Non-SCN group was significantly higher than in the SCN group (27.8 vs. 18.8; p < 0.0005). The area ratio in the SCN, Non-SCN and Pseudocyst groups was 57%, 39% and 61%, respectively; significantly lower in the Non-SCN group than in the SCN or Pseudocyst groups (p < 0.0005 and p < 0.0005, respectively). The lesion density was also significantly higher in the Non-SCN group compared to the SCN or Pseudocyst groups (4186.6/mm2 vs. 2833.8/mm2 vs. 2981.6/mm2; p < 0.0005 and p < 0.0005, respectively). The EUS image analysis process may have the potential to be a diagnostic tool for the evaluation and differentiation of pancreatic cystic lesions.
Collapse
Affiliation(s)
- Bánk Keczer
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, 1082 Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Deep Learning Algorithm for Fully Automated Detection of Small (≤4 cm) Renal Cell Carcinoma in Contrast-Enhanced Computed Tomography Using a Multicenter Database. Invest Radiol 2022; 57:327-333. [PMID: 34935652 DOI: 10.1097/rli.0000000000000842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVES Renal cell carcinoma (RCC) is often found incidentally in asymptomatic individuals undergoing abdominal computed tomography (CT) examinations. The purpose of our study is to develop a deep learning-based algorithm for fully automated detection of small (≤4 cm) RCCs in contrast-enhanced CT images using a multicenter database and to evaluate its performance. MATERIALS AND METHODS For the algorithmic detection of RCC, we retrospectively selected contrast-enhanced CT images of patients with histologically confirmed single RCC with a tumor diameter of 4 cm or less between January 2005 and May 2020 from 7 centers in the Japan Medical Image Database. A total of 453 patients from 6 centers were selected as dataset A, and 132 patients from 1 center were selected as dataset B. Dataset A was used for training and internal validation. Dataset B was used only for external validation. Nephrogenic phase images of multiphase CT or single-phase postcontrast CT images were used. Our algorithm consisted of 2-step segmentation models, kidney segmentation and tumor segmentation. For internal validation with dataset A, 10-fold cross-validation was applied. For external validation, the models trained with dataset A were tested on dataset B. The detection performance of the models was evaluated using accuracy, sensitivity, specificity, and the area under the curve (AUC). RESULTS The mean ± SD diameters of RCCs in dataset A and dataset B were 2.67 ± 0.77 cm and 2.64 ± 0.78 cm, respectively. Our algorithm yielded an accuracy, sensitivity, and specificity of 88.3%, 84.3%, and 92.3%, respectively, with dataset A and 87.5%, 84.8%, and 90.2%, respectively, with dataset B. The AUC of the algorithm with dataset A and dataset B was 0.930 and 0.933, respectively. CONCLUSIONS The proposed deep learning-based algorithm achieved high accuracy, sensitivity, specificity, and AUC for the detection of small RCCs with both internal and external validations, suggesting that this algorithm could contribute to the early detection of small RCCs.
Collapse
|
16
|
Preuss K, Thach N, Liang X, Baine M, Chen J, Zhang C, Du H, Yu H, Lin C, Hollingsworth MA, Zheng D. Using Quantitative Imaging for Personalized Medicine in Pancreatic Cancer: A Review of Radiomics and Deep Learning Applications. Cancers (Basel) 2022; 14:cancers14071654. [PMID: 35406426 PMCID: PMC8997008 DOI: 10.3390/cancers14071654] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary With a five-year survival rate of only 3% for the majority of patients, pancreatic cancer is a global healthcare challenge. Radiomics and deep learning, two novel quantitative imaging methods that treat medical images as minable data instead of just pictures, have shown promise in advancing personalized management of pancreatic cancer through diagnosing precursor diseases, early detection, accurate diagnosis, and treatment personalization. Radiomics and deep learning methods aim to collect hidden information in medical images that is missed by conventional radiology practices through expanding the data search and comparing information across different patients. Both methods have been studied and applied in pancreatic cancer. In this review, we focus on the current progress of these two methods in pancreatic cancer and provide a comprehensive narrative review on the topic. With better regulation, enhanced workflow, and larger prospective patient datasets, radiomics and deep learning methods could show real hope in the battle against pancreatic cancer through personalized precision medicine. Abstract As the most lethal major cancer, pancreatic cancer is a global healthcare challenge. Personalized medicine utilizing cutting-edge multi-omics data holds potential for major breakthroughs in tackling this critical problem. Radiomics and deep learning, two trendy quantitative imaging methods that take advantage of data science and modern medical imaging, have shown increasing promise in advancing the precision management of pancreatic cancer via diagnosing of precursor diseases, early detection, accurate diagnosis, and treatment personalization and optimization. Radiomics employs manually-crafted features, while deep learning applies computer-generated automatic features. These two methods aim to mine hidden information in medical images that is missed by conventional radiology and gain insights by systematically comparing the quantitative image information across different patients in order to characterize unique imaging phenotypes. Both methods have been studied and applied in various pancreatic cancer clinical applications. In this review, we begin with an introduction to the clinical problems and the technology. After providing technical overviews of the two methods, this review focuses on the current progress of clinical applications in precancerous lesion diagnosis, pancreatic cancer detection and diagnosis, prognosis prediction, treatment stratification, and radiogenomics. The limitations of current studies and methods are discussed, along with future directions. With better standardization and optimization of the workflow from image acquisition to analysis and with larger and especially prospective high-quality datasets, radiomics and deep learning methods could show real hope in the battle against pancreatic cancer through big data-based high-precision personalization.
Collapse
Affiliation(s)
- Kiersten Preuss
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
- Department of Nutrition and Health Sciences, University of Nebraska Lincoln, Lincoln, NE 68588, USA
| | - Nate Thach
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
- Department of Computer Science, University of Nebraska Lincoln, Lincoln, NE 68588, USA;
| | - Xiaoying Liang
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Michael Baine
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
| | - Justin Chen
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
- Naperville North High School, Naperville, IL 60563, USA
| | - Chi Zhang
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, NE 68588, USA;
| | - Huijing Du
- Department of Mathematics, University of Nebraska Lincoln, Lincoln, NE 68588, USA;
| | - Hongfeng Yu
- Department of Computer Science, University of Nebraska Lincoln, Lincoln, NE 68588, USA;
| | - Chi Lin
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
| | - Michael A. Hollingsworth
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Dandan Zheng
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
- Department of Radiation Oncology, University of Rochester, Rochester, NY 14626, USA
- Correspondence: ; Tel.: +1-(585)-276-3255
| |
Collapse
|
17
|
Kong J, Zheng J, Wu J, Wu S, Cai J, Diao X, Xie W, Chen X, Yu H, Huang L, Fang H, Fan X, Qin H, Li Y, Wu Z, Huang J, Lin T. Development of a radiomics model to diagnose pheochromocytoma preoperatively: a multicenter study with prospective validation. J Transl Med 2022; 20:31. [PMID: 35033104 PMCID: PMC8760711 DOI: 10.1186/s12967-022-03233-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/05/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Preoperative diagnosis of pheochromocytoma (PHEO) accurately impacts preoperative preparation and surgical outcome in PHEO patients. Highly reliable model to diagnose PHEO is lacking. We aimed to develop a magnetic resonance imaging (MRI)-based radiomic-clinical model to distinguish PHEO from adrenal lesions. METHODS In total, 305 patients with 309 adrenal lesions were included and divided into different sets. The least absolute shrinkage and selection operator (LASSO) regression model was used for data dimension reduction, feature selection, and radiomics signature building. In addition, a nomogram incorporating the obtained radiomics signature and selected clinical predictors was developed by using multivariable logistic regression analysis. The performance of the radiomic-clinical model was assessed with respect to its discrimination, calibration, and clinical usefulness. RESULTS Seven radiomics features were selected among the 1301 features obtained as they could differentiate PHEOs from other adrenal lesions in the training (area under the curve [AUC], 0.887), internal validation (AUC, 0.880), and external validation cohorts (AUC, 0.807). Predictors contained in the individualized prediction nomogram included the radiomics signature and symptom number (symptoms include headache, palpitation, and diaphoresis). The training set yielded an AUC of 0.893 for the nomogram, which was confirmed in the internal and external validation sets with AUCs of 0.906 and 0.844, respectively. Decision curve analyses indicated the nomogram was clinically useful. In addition, 25 patients with 25 lesions were recruited for prospective validation, which yielded an AUC of 0.917 for the nomogram. CONCLUSION We propose a radiomic-based nomogram incorporating clinically useful signatures as an easy-to-use, predictive and individualized tool for PHEO diagnosis.
Collapse
Affiliation(s)
- Jianqiu Kong
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Junjiong Zheng
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Jieying Wu
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Shaoxu Wu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Jinhua Cai
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Xiayao Diao
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Weibin Xie
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Xiong Chen
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Hao Yu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Lifang Huang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Hongpeng Fang
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Xinxiang Fan
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Haide Qin
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Yong Li
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Zhuo Wu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Jian Huang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China.
- State Key Laboratory of Oncology in South China, Guangzhou, 510120, Guangdong, People's Republic of China.
| | - Tianxin Lin
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China.
- State Key Laboratory of Oncology in South China, Guangzhou, 510120, Guangdong, People's Republic of China.
| |
Collapse
|