1
|
Gunes YC, Cesur T, Çamur E. Bridging Innovation and Practice: Critical Perspectives on IR-GPT's Role in Interventional Radiology. Cardiovasc Intervent Radiol 2025:10.1007/s00270-025-04059-x. [PMID: 40375050 DOI: 10.1007/s00270-025-04059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Accepted: 04/23/2025] [Indexed: 05/18/2025]
Affiliation(s)
- Yasin Celal Gunes
- Department of Radiology, Kirikkale Yuksek Ihtisas Hospital, Bağlarbaşı, Ahmet Ay Caddesi, 71300, Merkez, Kırıkkale, Turkey.
| | - Turay Cesur
- Department of Radiology, Mamak State Hospital, Ankara, Turkey
| | - Eren Çamur
- Department of Radiology, Ankara 29 Mayıs State Hospital, Ankara, Turkey
| |
Collapse
|
2
|
Zhang Z, Hui X, Tao H, Fu Z, Cai Z, Zhou S, Yang K. Application of artificial intelligence in X-ray imaging analysis for knee arthroplasty: A systematic review. PLoS One 2025; 20:e0321104. [PMID: 40333699 PMCID: PMC12057988 DOI: 10.1371/journal.pone.0321104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/01/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Artificial intelligence (AI) is a promising and powerful technology with increasing use in orthopedics. The global morbidity of knee arthroplasty is expanding. This study investigated the use of AI algorithms to review radiographs of knee arthroplasty. METHODS The Ovid-Embase, Web of Science, Cochrane Library, PubMed, China National Knowledge Infrastructure (CNKI), WeiPu (VIP), WanFang, and China Biology Medicine (CBM) databases were systematically screened from inception to March 2024 (PROSPERO study protocol registration: CRD42024507549). The quality assessment of the diagnostic accuracy studies tool assessed the risk of bias. RESULTS A total of 21 studies were included in the analysis. Of these, 10 studies identified and classified implant brands, 6 measured implant size and component alignment, 3 detected implant loosening, and 2 diagnosed prosthetic joint infections (PJI). For classifying and identifying implant brands, 5 studies demonstrated near-perfect prediction with an area under the curve (AUC) ranging from 0.98 to 1.0, and 10 achieved accuracy (ACC) between 96-100%. Regarding implant measurement, one study showed an AUC of 0.62, and two others exhibited over 80% ACC in determining component sizes. Moreover, Artificial intelligence showed good to excellent reliability across all angles in three separate studies (Intraclass Correlation Coefficient > 0.78). In predicting PJI, one study achieved an AUC of 0.91 with a corresponding ACC of 90.5%, while another reported a positive predictive value ranging from 75% to 85%. For detecting implant loosening, the AUC was found to be at least as high as 0.976 with ACC ranging from 85.8% to 97.5%. CONCLUSIONS These studies show that AI is promising in recognizing implants in knee arthroplasty. Future research should follow a rigorous approach to AI development, with comprehensive and transparent reporting of methods and the creation of open-source software programs and commercial tools that can provide clinicians with objective clinical decisions.
Collapse
Affiliation(s)
- Zhihong Zhang
- Department of The First Clinical Medical College of Gansu, University of Chinese Medicine, Lanzhou, Gansu, China
- Department of Evidence-Based Medicine Centre, School of Basic Medical Science, Lanzhou University, Lanzhou, Gansu, China
| | - Xu Hui
- Department of Evidence-Based Medicine Centre, School of Basic Medical Science, Lanzhou University, Lanzhou, Gansu, China
- Department of Centre for Evidence-Based Social Science/Center for Health Technology Assessment, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
- Department of Gansu Key Laboratory of Evidence-Based Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Huimin Tao
- Department of The First Clinical Medical College of Gansu, University of Chinese Medicine, Lanzhou, Gansu, China
| | - Zhenjiang Fu
- Department of The First Clinical Medical College of Gansu, University of Chinese Medicine, Lanzhou, Gansu, China
| | - Zaili Cai
- Department of Radiology, Renhuai People’s Hospital, Zuiyi, Guizhou, China
| | - Sheng Zhou
- Department of The First Clinical Medical College of Gansu, University of Chinese Medicine, Lanzhou, Gansu, China
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Kehu Yang
- Department of Evidence-Based Medicine Centre, School of Basic Medical Science, Lanzhou University, Lanzhou, Gansu, China
- Department of Centre for Evidence-Based Social Science/Center for Health Technology Assessment, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
- Department of Gansu Key Laboratory of Evidence-Based Medicine, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Brenner JL, Anibal JT, Hazen LA, Song MJ, Huth HB, Xu D, Xu S, Wood BJ. IR-GPT: AI Foundation Models to Optimize Interventional Radiology. Cardiovasc Intervent Radiol 2025; 48:585-592. [PMID: 40140092 PMCID: PMC12052823 DOI: 10.1007/s00270-024-03945-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/12/2024] [Indexed: 03/28/2025]
Abstract
Foundation artificial intelligence (AI) models are capable of complex tasks that involve text, medical images, and many other types of data, but have not yet been customized for procedural medicine. This report reviews prior work in deep learning related to interventional radiology (IR), identifying barriers to generalization and deployment at scale. Moreover, this report outlines the potential design of an "IR-GPT" foundation model to provide a unified platform for AI in IR, including data collection, annotation, and training methods-while also contextualizing challenges and highlighting potential downstream applications.
Collapse
Affiliation(s)
- Jacqueline L Brenner
- Center for Interventional Oncology, NIH Clinical Center, National Institutes of Health (NIH), Bethesda, USA
| | - James T Anibal
- Center for Interventional Oncology, NIH Clinical Center, National Institutes of Health (NIH), Bethesda, USA.
- Computational Health Informatics Lab, Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK.
| | - Lindsey A Hazen
- Center for Interventional Oncology, NIH Clinical Center, National Institutes of Health (NIH), Bethesda, USA
| | - Miranda J Song
- Center for Interventional Oncology, NIH Clinical Center, National Institutes of Health (NIH), Bethesda, USA
| | - Hannah B Huth
- Center for Interventional Oncology, NIH Clinical Center, National Institutes of Health (NIH), Bethesda, USA
| | | | - Sheng Xu
- Center for Interventional Oncology, NIH Clinical Center, National Institutes of Health (NIH), Bethesda, USA
| | - Bradford J Wood
- Center for Interventional Oncology, NIH Clinical Center, National Institutes of Health (NIH), Bethesda, USA
| |
Collapse
|
4
|
Shen Q, Xiang C, Han Y, Li Y, Huang K. The value of multi-phase CT based intratumor and peritumoral radiomics models for evaluating capsular characteristics of parotid pleomorphic adenoma. Front Med (Lausanne) 2025; 12:1566555. [PMID: 40330775 PMCID: PMC12054526 DOI: 10.3389/fmed.2025.1566555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 04/03/2025] [Indexed: 05/08/2025] Open
Abstract
Objectives Computed tomography (CT) imaging of parotid pleomorphic adenoma (PA) has been widely reported, nonetheless few reports have estimated the capsule characteristics of PA at length. This study aimed to establish and validate CT-based intratumoral and peritumoral radiomics models to clarify the characteristics between parotid PA with and without complete capsule. Methods In total, data of 129 patients with PA were randomly assigned to a training and test set at a ratio of 7:3. Quantitative radiomics features of the intratumoral and peritumoral regions of 2 mm and 5 mm on CT images were extracted, and radiomics models of Tumor, External2, External5, Tumor+ External2, and Tumor+External5 were constructed and used to train six different machine learning algorithms. Meanwhile, the prediction performances of different radiomics models (Tumor, External2, External5, Tumor+External2, Tumor+External5) based on single phase (plain, arterial, and venous phase) and multiphase (three-phase combination) were compared. The receiver operating characteristic (ROC) curve analysis and the area under the curve (AUC) were used to evaluate the prediction performance of each model. Results Among all the established machine learning prediction radiomics models, the model based on a three-phase combination had better prediction performance, and the model using a combination of intratumoral and peritumoral radiomics features achieved a higher AUC than the model with only intratumoral or peritumoral radiomics features, and the Tumor+External2 model based on LR was the optimal model, the AUC of the test set was 0.817 (95% CI = 0.712, 0.847), and its prediction performance was significantly higher (p < 0.05, DeLong's test) than that with the Tumor model based on LDA (AUC of 0.772), the External2 model based on LR (AUC of 0.751), and the External5 model based on SVM (AUC of 0.667). And the Tumor+External2 model based on LR had a higher AUC than the Tumor+External5 model based on LDA (AUC = 0.817 vs. 0.796), but no statistically significant difference (P = 0.667). Conclusion The intratumoral and peritumoral radiomics model based on multiphasic CT images could accurately predict capsular characteristics of parotid of PA preoperatively, which may help in making treatment strategies before surgery, as well as avoid intraoperative tumor spillage and residuals.
Collapse
Affiliation(s)
- Qian Shen
- Department of Radiology, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
| | - Cong Xiang
- School of Artificial Intelligence, Chongqing University of Technology, Chongqing, China
| | - Yongliang Han
- Department of Radiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Kui Huang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
5
|
Dreizin D, Khatri G, Staziaki PV, Buch K, Unberath M, Mohammed M, Sodickson A, Khurana B, Agrawal A, Spann JS, Beckmann N, DelProposto Z, LeBedis CA, Davis M, Dickerson G, Lev M. Artificial intelligence in emergency and trauma radiology: ASER AI/ML expert panel Delphi consensus statement on research guidelines, practices, and priorities. Emerg Radiol 2025; 32:155-172. [PMID: 39714735 DOI: 10.1007/s10140-024-02306-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/06/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Emergency/trauma radiology artificial intelligence (AI) is maturing along all stages of technology readiness, with research and development (R&D) ranging from data curation and algorithm development to post-market monitoring and retraining. PURPOSE To develop an expert consensus document on best research practices and methodological priorities for emergency/trauma radiology AI. METHODS A Delphi consensus exercise was conducted by the ASER AI/ML expert panel between 2022-2024. In phase 1, a steering committee (7 panelists) established key themes- curation; validity; human factors; workflow; barriers; future avenues; and ethics- and generated an edited, collated long-list of statements. In phase 2, two Delphi rounds using anonymous RAND/UCLA Likert grading were conducted with web-based data capture (round 1) and a bespoke excel document with literature hyperlinks (round 2). Between rounds, editing and knowledge synthesis helped maximize consensus. Statements reaching ≥80% agreement were included in the final document. RESULTS Delphi rounds 1 and 2 consisted of 81 and 78 items, respectively.18/21 expert panelists (86%) responded to round 1, and 15 to round 2 (17% drop-out). Consensus was reached for 65 statements. Observations were summarized and contextualized. Statements with unanimous consensus centered around transparent methodologic reporting; testing for generalizability and robustness with external data; and benchmarking performance with appropriate metrics and baselines. A manuscript draft was circulated to panelists for editing and final approval. CONCLUSIONS The document is meant as a framework to foster best-practices and further discussion among researchers working on various aspects of emergency and trauma radiology AI.
Collapse
Affiliation(s)
- David Dreizin
- Emergency and Trauma Imaging, Department of Diagnostic Radiology and Nuclear Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Garvit Khatri
- Abdominal Imaging, Department of Radiology, University of Colorado, Denver, CO, USA
| | - Pedro V Staziaki
- Cardiothoracic imaging, Department of Radiology, University of Vermont, Larner College of Medicine, Burlington, USA
| | - Karen Buch
- Neuroradiology imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Mohammed Mohammed
- Abdominal imaging, Department of Radiology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Aaron Sodickson
- Mass General Brigham Enterprise Emergency Radiology, Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Bharti Khurana
- Trauma Imaging Research and innovation Center, Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Anjali Agrawal
- Department of Radiology, Teleradiology Solutions, Delhi, India
| | - James Stephen Spann
- Department of Radiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | | | - Zachary DelProposto
- Division of Emergency Radiology, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | | | - Melissa Davis
- Department of Radiology, Yale University, New Haven, CT, USA
| | | | - Michael Lev
- Emergency Radiology, Department of Radiology, Massachusetts General Hospial, Boston, USA
| |
Collapse
|
6
|
Azizoğlu F, Terzi B, Düzkaya DS. Bibliometric Analysis on Examining Triage and Digital Triage Results in Emergency Departments. J Emerg Nurs 2025; 51:282-293. [PMID: 39545886 DOI: 10.1016/j.jen.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/05/2024] [Accepted: 10/13/2024] [Indexed: 11/17/2024]
Abstract
INTRODUCTION New technologies developed for triage systems can have positive effects on health care professionals. The research was conducted to identify and visualize the studies conducted between 2001 and 2024 on triage and digital triage systems in emergency departments and reveals global trends on this subject. METHODS The data were obtained from the "Web of Science Core Collection" database on February 8th, 2024. Performance analysis, scientific mapping, and bibliometric analyses were performed using the VOSviewer (1.6.15) software program. Data from 236 publications were analyzed in the study. RESULTS The most publications were by Alcock J (n = 3), the most publications by country were published in the USA (n = 114), Harvard University (n = 19) was the institution that published the most, the United States Department of Health Human Services (n = 25) supported publications among the funding institutions, and the most publications were published in the Emergency Medicinal Journal (n = 8). DISCUSSION The results obtained from the study reveal the triage and digital triage systems used in emergency services, provide a general perspective on the subject, and guide future research on this subject.
Collapse
|
7
|
Olawade DB, Marinze S, Qureshi N, Weerasinghe K, Teke J. The impact of artificial intelligence and machine learning in organ retrieval and transplantation: A comprehensive review. Curr Res Transl Med 2025; 73:103493. [PMID: 39792149 DOI: 10.1016/j.retram.2025.103493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/11/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
This narrative review examines the transformative role of Artificial Intelligence (AI) and Machine Learning (ML) in organ retrieval and transplantation. AI and ML technologies enhance donor-recipient matching by integrating and analyzing complex datasets encompassing clinical, genetic, and demographic information, leading to more precise organ allocation and improved transplant success rates. In surgical planning, AI-driven image analysis automates organ segmentation, identifies critical anatomical features, and predicts surgical outcomes, aiding pre-operative planning and reducing intraoperative risks. Predictive analytics further enable personalized treatment plans by forecasting organ rejection, infection risks, and patient recovery trajectories, thereby supporting early intervention strategies and long-term patient management. AI also optimizes operational efficiency within transplant centers by predicting organ demand, scheduling surgeries efficiently, and managing inventory to minimize wastage, thus streamlining workflows and enhancing resource allocation. Despite these advancements, several challenges hinder the widespread adoption of AI and ML in organ transplantation. These include data privacy concerns, regulatory compliance issues, interoperability across healthcare systems, and the need for rigorous clinical validation of AI models. Addressing these challenges is essential to ensuring the reliable, safe, and ethical use of AI in clinical settings. Future directions for AI and ML in transplantation medicine include integrating genomic data for precision immunosuppression, advancing robotic surgery for minimally invasive procedures, and developing AI-driven remote monitoring systems for continuous post-transplantation care. Collaborative efforts among clinicians, researchers, and policymakers are crucial to harnessing the full potential of AI and ML, ultimately transforming transplantation medicine and improving patient outcomes while enhancing healthcare delivery efficiency.
Collapse
Affiliation(s)
- David B Olawade
- Department of Allied and Public Health, School of Health, Sport and Bioscience, University of East London, London, United Kingdom; Department of Research and Innovation, Medway NHS Foundation Trust, Gillingham ME7 5NY, United Kingdom; Department of Public Health, York St John University, London, United Kingdom; School of Health and Care Management, Arden University, Arden House, Middlemarch Park, Coventry CV3 4FJ, United Kingdom.
| | - Sheila Marinze
- Department of Surgery, Medway NHS Foundation Trust, Gillingham ME7 5NY, United Kingdom
| | - Nabeel Qureshi
- Department of Surgery, Medway NHS Foundation Trust, Gillingham ME7 5NY, United Kingdom
| | - Kusal Weerasinghe
- Department of Research and Innovation, Medway NHS Foundation Trust, Gillingham ME7 5NY, United Kingdom
| | - Jennifer Teke
- Department of Research and Innovation, Medway NHS Foundation Trust, Gillingham ME7 5NY, United Kingdom; Faculty of Medicine, Health and Social Care, Canterbury Christ Church University, United Kingdom
| |
Collapse
|
8
|
Jeon K, Park WY, Kahn CE, Nagy P, You SC, Yoon SH. Advancing Medical Imaging Research Through Standardization: The Path to Rapid Development, Rigorous Validation, and Robust Reproducibility. Invest Radiol 2025; 60:1-10. [PMID: 38985896 DOI: 10.1097/rli.0000000000001106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
ABSTRACT Artificial intelligence (AI) has made significant advances in radiology. Nonetheless, challenges in AI development, validation, and reproducibility persist, primarily due to the lack of high-quality, large-scale, standardized data across the world. Addressing these challenges requires comprehensive standardization of medical imaging data and seamless integration with structured medical data.Developed by the Observational Health Data Sciences and Informatics community, the OMOP Common Data Model enables large-scale international collaborations with structured medical data. It ensures syntactic and semantic interoperability, while supporting the privacy-protected distribution of research across borders. The recently proposed Medical Imaging Common Data Model is designed to encompass all DICOM-formatted medical imaging data and integrate imaging-derived features with clinical data, ensuring their provenance.The harmonization of medical imaging data and its seamless integration with structured clinical data at a global scale will pave the way for advanced AI research in radiology. This standardization will enable federated learning, ensuring privacy-preserving collaboration across institutions and promoting equitable AI through the inclusion of diverse patient populations. Moreover, it will facilitate the development of foundation models trained on large-scale, multimodal datasets, serving as powerful starting points for specialized AI applications. Objective and transparent algorithm validation on a standardized data infrastructure will enhance reproducibility and interoperability of AI systems, driving innovation and reliability in clinical applications.
Collapse
Affiliation(s)
- Kyulee Jeon
- From the Department of Biomedical Systems Informatics, Yonsei University, Seoul, South Korea (K.J., S.C.Y.); Institution for Innovation in Digital Healthcare, Yonsei University, Seoul, South Korea (K.J., S.C.Y.); Biomedical Informatics and Data Science, Johns Hopkins University, Baltimore, MD (W.Y.P., P.N.); Department of Radiology, University of Pennsylvania, Philadelphia, PA (C.E.K.); and Department of Radiology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea (S.H.Y.)
| | | | | | | | | | | |
Collapse
|
9
|
Uwimana A, Gnecco G, Riccaboni M. Artificial intelligence for breast cancer detection and its health technology assessment: A scoping review. Comput Biol Med 2025; 184:109391. [PMID: 39579663 DOI: 10.1016/j.compbiomed.2024.109391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/01/2024] [Accepted: 11/07/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Recent healthcare advancements highlight the potential of Artificial Intelligence (AI) - and especially, among its subfields, Machine Learning (ML) - in enhancing Breast Cancer (BC) clinical care, leading to improved patient outcomes and increased radiologists' efficiency. While medical imaging techniques have significantly contributed to BC detection and diagnosis, their synergy with AI algorithms has consistently demonstrated superior diagnostic accuracy, reduced False Positives (FPs), and enabled personalized treatment strategies. Despite the burgeoning enthusiasm for leveraging AI for early and effective BC clinical care, its widespread integration into clinical practice is yet to be realized, and the evaluation of AI-based health technologies in terms of health and economic outcomes remains an ongoing endeavor. OBJECTIVES This scoping review aims to investigate AI (and especially ML) applications that have been implemented and evaluated across diverse clinical tasks or decisions in breast imaging and to explore the current state of evidence concerning the assessment of AI-based technologies for BC clinical care within the context of Health Technology Assessment (HTA). METHODS We conducted a systematic literature search following the Preferred Reporting Items for Systematic review and Meta-Analysis Protocols (PRISMA-P) checklist in PubMed and Scopus to identify relevant studies on AI (and particularly ML) applications in BC detection and diagnosis. We limited our search to studies published from January 2015 to October 2023. The Minimum Information about CLinical Artificial Intelligence Modeling (MI-CLAIM) checklist was used to assess the quality of AI algorithms development, evaluation, and reporting quality in the reviewed articles. The HTA Core Model® was also used to analyze the comprehensiveness, robustness, and reliability of the reported results and evidence in AI-systems' evaluations to ensure rigorous assessment of AI systems' utility and cost-effectiveness in clinical practice. RESULTS Of the 1652 initially identified articles, 104 were deemed eligible for inclusion in the review. Most studies examined the clinical effectiveness of AI-based systems (78.84%, n= 82), with one study focusing on safety in clinical settings, and 13.46% (n=14) focusing on patients' benefits. Of the studies, 31.73% (n=33) were ethically approved to be carried out in clinical practice, whereas 25% (n=26) evaluated AI systems legally approved for clinical use. Notably, none of the studies addressed the organizational implications of AI systems in clinical practice. Of the 104 studies, only two of them focused on cost-effectiveness analysis, and were analyzed separately. The average percentage scores for the first 102 AI-based studies' quality assessment based on the MI-CLAIM checklist criteria were 84.12%, 83.92%, 83.98%, 74.51%, and 14.7% for study design, data and optimization, model performance, model examination, and reproducibility, respectively. Notably, 20.59% (n=21) of these studies relied on large-scale representative real-world breast screening datasets, with only 10.78% (n =11) studies demonstrating the robustness and generalizability of the evaluated AI systems. CONCLUSION In bridging the gap between cutting-edge developments and seamless integration of AI systems into clinical workflows, persistent challenges encompass data quality and availability, ethical and legal considerations, robustness and trustworthiness, scalability, and alignment with existing radiologists' workflow. These hurdles impede the synthesis of comprehensive, robust, and reliable evidence to substantiate these systems' clinical utility, relevance, and cost-effectiveness in real-world clinical workflows. Consequently, evaluating AI-based health technologies through established HTA methodologies becomes complicated. We also highlight potential significant influences on AI systems' effectiveness of various factors, such as operational dynamics, organizational structure, the application context of AI systems, and practices in breast screening or examination reading of AI support tools in radiology. Furthermore, we emphasize substantial reciprocal influences on decision-making processes between AI systems and radiologists. Thus, we advocate for an adapted assessment framework specifically designed to address these potential influences on AI systems' effectiveness, mainly addressing system-level transformative implications for AI systems rather than focusing solely on technical performance and task-level evaluations.
Collapse
Affiliation(s)
| | | | - Massimo Riccaboni
- IMT School for Advanced Studies, Lucca, Italy; IUSS University School for Advanced Studies, Pavia, Italy.
| |
Collapse
|
10
|
Bachnas MA, Andonotopo W, Dewantiningrum J, Adi Pramono MB, Stanojevic M, Kurjak A. The utilization of artificial intelligence in enhancing 3D/4D ultrasound analysis of fetal facial profiles. J Perinat Med 2024; 52:899-913. [PMID: 39383043 DOI: 10.1515/jpm-2024-0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/05/2024] [Indexed: 10/11/2024]
Abstract
Artificial intelligence (AI) has emerged as a transformative technology in the field of healthcare, offering significant advancements in various medical disciplines, including obstetrics. The integration of artificial intelligence into 3D/4D ultrasound analysis of fetal facial profiles presents numerous benefits. By leveraging machine learning and deep learning algorithms, AI can assist in the accurate and efficient interpretation of complex 3D/4D ultrasound data, enabling healthcare providers to make more informed decisions and deliver better prenatal care. One such innovation that has significantly improved the analysis of fetal facial profiles is the integration of AI in 3D/4D ultrasound imaging. In conclusion, the integration of artificial intelligence in the analysis of 3D/4D ultrasound data for fetal facial profiles offers numerous benefits, including improved accuracy, consistency, and efficiency in prenatal diagnosis and care.
Collapse
Affiliation(s)
- Muhammad Adrianes Bachnas
- Fetomaternal Division, Department of Obstetrics and Gynecology, Medical Faculty of Sebelas Maret University, Moewardi Hospital, Solo, Surakarta, Indonesia
| | - Wiku Andonotopo
- Fetomaternal Division, Department of Obstetrics and Gynecology, Ekahospital BSD City, Serpong, Tangerang, Banten, Indonesia
| | - Julian Dewantiningrum
- Fetomaternal Division, Department of Obstetrics and Gynecology, Medical Faculty of Diponegoro University, Dr. Kariadi Hospital, Semarang, Indonesia
| | - Mochammad Besari Adi Pramono
- Fetomaternal Division, Department of Obstetrics and Gynecology, Medical Faculty of Diponegoro University, Dr. Kariadi Hospital, Semarang, Indonesia
| | - Milan Stanojevic
- Department of Obstetrics and Gynecology, Medical School University of Zagreb, Zagreb, Croatia
| | - Asim Kurjak
- Department of Obstetrics and Gynecology, Medical School University of Zagreb, Zagreb, Croatia
| |
Collapse
|
11
|
Qian B, Sheng B, Chen H, Wang X, Li T, Jin Y, Guan Z, Jiang Z, Wu Y, Wang J, Chen T, Guo Z, Chen X, Yang D, Hou J, Feng R, Xiao F, Li Y, El Habib Daho M, Lu L, Ding Y, Liu D, Yang B, Zhu W, Wang Y, Kim H, Nam H, Li H, Wu WC, Wu Q, Dai R, Li H, Ang M, Ting DSW, Cheung CY, Wang X, Cheng CY, Tan GSW, Ohno-Matsui K, Jonas JB, Zheng Y, Tham YC, Wong TY, Wang YX. A Competition for the Diagnosis of Myopic Maculopathy by Artificial Intelligence Algorithms. JAMA Ophthalmol 2024; 142:1006-1015. [PMID: 39325442 PMCID: PMC11428027 DOI: 10.1001/jamaophthalmol.2024.3707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/11/2024] [Indexed: 09/27/2024]
Abstract
Importance Myopic maculopathy (MM) is a major cause of vision impairment globally. Artificial intelligence (AI) and deep learning (DL) algorithms for detecting MM from fundus images could potentially improve diagnosis and assist screening in a variety of health care settings. Objectives To evaluate DL algorithms for MM classification and segmentation and compare their performance with that of ophthalmologists. Design, Setting, and Participants The Myopic Maculopathy Analysis Challenge (MMAC) was an international competition to develop automated solutions for 3 tasks: (1) MM classification, (2) segmentation of MM plus lesions, and (3) spherical equivalent (SE) prediction. Participants were provided 3 subdatasets containing 2306, 294, and 2003 fundus images, respectively, with which to build algorithms. A group of 5 ophthalmologists evaluated the same test sets for tasks 1 and 2 to ascertain performance. Results from model ensembles, which combined outcomes from multiple algorithms submitted by MMAC participants, were compared with each individual submitted algorithm. This study was conducted from March 1, 2023, to March 30, 2024, and data were analyzed from January 15, 2024, to March 30, 2024. Exposure DL algorithms submitted as part of the MMAC competition or ophthalmologist interpretation. Main Outcomes and Measures MM classification was evaluated by quadratic-weighted κ (QWK), F1 score, sensitivity, and specificity. MM plus lesions segmentation was evaluated by dice similarity coefficient (DSC), and SE prediction was evaluated by R2 and mean absolute error (MAE). Results The 3 tasks were completed by 7, 4, and 4 teams, respectively. MM classification algorithms achieved a QWK range of 0.866 to 0.901, an F1 score range of 0.675 to 0.781, a sensitivity range of 0.667 to 0.778, and a specificity range of 0.931 to 0.945. MM plus lesions segmentation algorithms achieved a DSC range of 0.664 to 0.687 for lacquer cracks (LC), 0.579 to 0.673 for choroidal neovascularization, and 0.768 to 0.841 for Fuchs spot (FS). SE prediction algorithms achieved an R2 range of 0.791 to 0.874 and an MAE range of 0.708 to 0.943. Model ensemble results achieved the best performance compared to each submitted algorithms, and the model ensemble outperformed ophthalmologists at MM classification in sensitivity (0.801; 95% CI, 0.764-0.840 vs 0.727; 95% CI, 0.684-0.768; P = .006) and specificity (0.946; 95% CI, 0.939-0.954 vs 0.933; 95% CI, 0.925-0.941; P = .009), LC segmentation (DSC, 0.698; 95% CI, 0.649-0.745 vs DSC, 0.570; 95% CI, 0.515-0.625; P < .001), and FS segmentation (DSC, 0.863; 95% CI, 0.831-0.888 vs DSC, 0.790; 95% CI, 0.742-0.830; P < .001). Conclusions and Relevance In this diagnostic study, 15 AI models for MM classification and segmentation on a public dataset made available for the MMAC competition were validated and evaluated, with some models achieving better diagnostic performance than ophthalmologists.
Collapse
Affiliation(s)
- Bo Qian
- Shanghai Belt and Road International Joint Laboratory of Intelligent Prevention and Treatment for Metabolic Diseases, Department of Computer Science and Engineering, School of Electronic, Information, and Electrical Engineering, Shanghai Jiao Tong University, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai, China
- Ministry of Education Key Laboratory of Artificial Intelligence, School of Electronic, Information, and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Sheng
- Shanghai Belt and Road International Joint Laboratory of Intelligent Prevention and Treatment for Metabolic Diseases, Department of Computer Science and Engineering, School of Electronic, Information, and Electrical Engineering, Shanghai Jiao Tong University, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai, China
- Ministry of Education Key Laboratory of Artificial Intelligence, School of Electronic, Information, and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Chen
- Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiangning Wang
- Department of Ophthalmology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingyao Li
- Shanghai Belt and Road International Joint Laboratory of Intelligent Prevention and Treatment for Metabolic Diseases, Department of Computer Science and Engineering, School of Electronic, Information, and Electrical Engineering, Shanghai Jiao Tong University, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai, China
- Ministry of Education Key Laboratory of Artificial Intelligence, School of Electronic, Information, and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yixiao Jin
- School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, Beijing, China
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Zhouyu Guan
- Shanghai Belt and Road International Joint Laboratory of Intelligent Prevention and Treatment for Metabolic Diseases, Department of Computer Science and Engineering, School of Electronic, Information, and Electrical Engineering, Shanghai Jiao Tong University, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai, China
| | - Zehua Jiang
- School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, Beijing, China
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Yilan Wu
- School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Jinyuan Wang
- School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, Beijing, China
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Tingli Chen
- Department of Ophthalmology, Shanghai Health and Medical Center, Wuxi, China
| | - Zhengrui Guo
- Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiang Chen
- Shanghai Belt and Road International Joint Laboratory of Intelligent Prevention and Treatment for Metabolic Diseases, Department of Computer Science and Engineering, School of Electronic, Information, and Electrical Engineering, Shanghai Jiao Tong University, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai, China
- Ministry of Education Key Laboratory of Artificial Intelligence, School of Electronic, Information, and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Dawei Yang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Junlin Hou
- Shanghai Key Laboratory of Intelligent Information Processing, School of Computer Science, Fudan University, Shanghai, China
| | - Rui Feng
- Shanghai Key Laboratory of Intelligent Information Processing, School of Computer Science, Fudan University, Shanghai, China
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Fan Xiao
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Yihao Li
- Laboratoire de Traitement de l'Information Médicale UMR 1101, Inserm, Brest, France
- Université de Bretagne Occidentale, Brest, France
| | - Mostafa El Habib Daho
- Laboratoire de Traitement de l'Information Médicale UMR 1101, Inserm, Brest, France
- Université de Bretagne Occidentale, Brest, France
| | - Li Lu
- School of Computer Science and Technology, Dongguan University of Technology, Dongguan, China
| | - Ye Ding
- School of Computer Science and Technology, Dongguan University of Technology, Dongguan, China
| | - Di Liu
- AIFUTURE Laboratory, Beijing, China
- National Digital Health Center of China Top Think Tanks, Beijing Normal University, Beijing, China
- School of Journalism and Communication, Beijing Normal University, Beijing, China
| | - Bo Yang
- AIFUTURE Laboratory, Beijing, China
| | - Wenhui Zhu
- School of Computing and Augmented Intelligence, Arizona State University, Tempe
| | - Yalin Wang
- School of Computing and Augmented Intelligence, Arizona State University, Tempe
| | - Hyeonmin Kim
- Mediwhale, Seoul, South Korea
- Pohang University of Science and Technology, Pohang, South Korea
| | | | - Huayu Li
- Department of Electrical and Computer Engineering, University of Arizona, Tucson
| | - Wei-Chi Wu
- Department of Ophthalmology, Linkou Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Qiang Wu
- Department of Ophthalmology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rongping Dai
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Huating Li
- Shanghai Belt and Road International Joint Laboratory of Intelligent Prevention and Treatment for Metabolic Diseases, Department of Computer Science and Engineering, School of Electronic, Information, and Electrical Engineering, Shanghai Jiao Tong University, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai, China
| | - Marcus Ang
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | | | - Carol Y Cheung
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaofei Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Gavin Siew Wei Tan
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Kyoko Ohno-Matsui
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jost B Jonas
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Institut Français de Myopie, Rothschild Foundation Hospital, Paris, France
| | | | - Yih-Chung Tham
- Center for Innovation and Precision Eye Health, Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Ophthalmology and Visual Science Academic Clinical Program, Duke-National University of Singapore Medical School, Singapore
| | - Tien Yin Wong
- School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, Beijing, China
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Beijing, China
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Zhongshan Ophthalmic Center, Guangzhou, China
| | - Ya Xing Wang
- Beijing Institute of Ophthalmology, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Salimi Y, Mansouri Z, Amini M, Mainta I, Zaidi H. Explainable AI for automated respiratory misalignment detection in PET/CT imaging. Phys Med Biol 2024; 69:215036. [PMID: 39419113 DOI: 10.1088/1361-6560/ad8857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
Purpose.Positron emission tomography (PET) image quality can be affected by artifacts emanating from PET, computed tomography (CT), or artifacts due to misalignment between PET and CT images. Automated detection of misalignment artifacts can be helpful both in data curation and in facilitating clinical workflow. This study aimed to develop an explainable machine learning approach to detect misalignment artifacts in PET/CT imaging.Approach.This study included 1216 PET/CT images. All images were visualized and images with respiratory misalignment artifact (RMA) detected. Using previously trained models, four organs including the lungs, liver, spleen, and heart were delineated on PET and CT images separately. Data were randomly split into cross-validation (80%) and test set (20%), then two segmentations performed on PET and CT images were compared and the comparison metrics used as predictors for a random forest framework in a 10-fold scheme on cross-validation data. The trained models were tested on 20% test set data. The model's performance was calculated in terms of specificity, sensitivity, F1-Score and area under the curve (AUC).Main results.Sensitivity, specificity, and AUC of 0.82, 0.85, and 0.91 were achieved in ten-fold data split. F1_score, sensitivity, specificity, and AUC of 84.5 vs 82.3, 83.9 vs 83.8, 87.7 vs 83.5, and 93.2 vs 90.1 were achieved for cross-validation vs test set, respectively. The liver and lung were the most important organs selected after feature selection.Significance.We developed an automated pipeline to segment four organs from PET and CT images separately and used the match between these segmentations to decide about the presence of misalignment artifact. This methodology may follow the same logic as a reader detecting misalignment through comparing the contours of organs on PET and CT images. The proposed method can be used to clean large datasets or integrated into a clinical scanner to indicate artifactual cases.
Collapse
Affiliation(s)
- Yazdan Salimi
- Division of Nuclear medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Zahra Mansouri
- Division of Nuclear medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Mehdi Amini
- Division of Nuclear medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Ismini Mainta
- Division of Nuclear medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Habib Zaidi
- Division of Nuclear medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark
- University Research and Innovation Center, Óbuda University, Budapest, Hungary
| |
Collapse
|
13
|
Hesso I, Zacharias L, Kayyali R, Charalambous A, Lavdaniti M, Stalika E, Ajami T, Acampa W, Boban J, Nabhani-Gebara S. Artificial Intelligence for Optimizing Cancer Imaging: User Experience Study. JMIR Cancer 2024; 10:e52639. [PMID: 39388693 PMCID: PMC11502975 DOI: 10.2196/52639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/23/2024] [Accepted: 06/28/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND The need for increased clinical efficacy and efficiency has been the main force in developing artificial intelligence (AI) tools in medical imaging. The INCISIVE project is a European Union-funded initiative aiming to revolutionize cancer imaging methods using AI technology. It seeks to address limitations in imaging techniques by developing an AI-based toolbox that improves accuracy, specificity, sensitivity, interpretability, and cost-effectiveness. OBJECTIVE To ensure the successful implementation of the INCISIVE AI service, a study was conducted to understand the needs, challenges, and expectations of health care professionals (HCPs) regarding the proposed toolbox and any potential implementation barriers. METHODS A mixed methods study consisting of 2 phases was conducted. Phase 1 involved user experience (UX) design workshops with users of the INCISIVE AI toolbox. Phase 2 involved a Delphi study conducted through a series of sequential questionnaires. To recruit, a purposive sampling strategy based on the project's consortium network was used. In total, 16 HCPs from Serbia, Italy, Greece, Cyprus, Spain, and the United Kingdom participated in the UX design workshops and 12 completed the Delphi study. Descriptive statistics were performed using SPSS (IBM Corp), enabling the calculation of mean rank scores of the Delphi study's lists. The qualitative data collected via the UX design workshops was analyzed using NVivo (version 12; Lumivero) software. RESULTS The workshops facilitated brainstorming and identification of the INCISIVE AI toolbox's desired features and implementation barriers. Subsequently, the Delphi study was instrumental in ranking these features, showing a strong consensus among HCPs (W=0.741, P<.001). Additionally, this study also identified implementation barriers, revealing a strong consensus among HCPs (W=0.705, P<.001). Key findings indicated that the INCISIVE AI toolbox could assist in areas such as misdiagnosis, overdiagnosis, delays in diagnosis, detection of minor lesions, decision-making in disagreement, treatment allocation, disease prognosis, prediction, treatment response prediction, and care integration throughout the patient journey. Limited resources, lack of organizational and managerial support, and data entry variability were some of the identified barriers. HCPs also had an explicit interest in AI explainability, desiring feature relevance explanations or a combination of feature relevance and visual explanations within the toolbox. CONCLUSIONS The results provide a thorough examination of the INCISIVE AI toolbox's design elements as required by the end users and potential barriers to its implementation, thus guiding the design and implementation of the INCISIVE technology. The outcome offers information about the degree of AI explainability required of the INCISIVE AI toolbox across the three services: (1) initial diagnosis; (2) disease staging, differentiation, and characterization; and (3) treatment and follow-up indicated for the toolbox. By considering the perspective of end users, INCISIVE aims to develop a solution that effectively meets their needs and drives adoption.
Collapse
Affiliation(s)
- Iman Hesso
- Pharmacy Department, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston Upon Thames, United Kingdom
| | - Lithin Zacharias
- Pharmacy Department, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston Upon Thames, United Kingdom
| | - Reem Kayyali
- Pharmacy Department, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston Upon Thames, United Kingdom
| | | | - Maria Lavdaniti
- Department of Nursing, International Hellenic University, Thessaloniki, Greece
| | - Evangelia Stalika
- Department of Nursing, International Hellenic University, Thessaloniki, Greece
| | - Tarek Ajami
- Urology Department, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Wanda Acampa
- Department of Advanced Biomedical Science, University of Naples Federico II, Naples, Italy
| | - Jasmina Boban
- Department of Radiology, Faculty of Medicine, University of Novi Sad, Novi Sad,
| | - Shereen Nabhani-Gebara
- Pharmacy Department, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston Upon Thames, United Kingdom
| |
Collapse
|
14
|
Maniaci A, Lavalle S, Gagliano C, Lentini M, Masiello E, Parisi F, Iannella G, Cilia ND, Salerno V, Cusumano G, La Via L. The Integration of Radiomics and Artificial Intelligence in Modern Medicine. Life (Basel) 2024; 14:1248. [PMID: 39459547 PMCID: PMC11508875 DOI: 10.3390/life14101248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
With profound effects on patient care, the role of artificial intelligence (AI) in radiomics has become a disruptive force in contemporary medicine. Radiomics, the quantitative feature extraction and analysis from medical images, offers useful imaging biomarkers that can reveal important information about the nature of diseases, how well patients respond to treatment and patient outcomes. The use of AI techniques in radiomics, such as machine learning and deep learning, has made it possible to create sophisticated computer-aided diagnostic systems, predictive models, and decision support tools. The many uses of AI in radiomics are examined in this review, encompassing its involvement of quantitative feature extraction from medical images, the machine learning, deep learning and computer-aided diagnostic (CAD) systems approaches in radiomics, and the effect of radiomics and AI on improving workflow automation and efficiency, optimize clinical trials and patient stratification. This review also covers the predictive modeling improvement by machine learning in radiomics, the multimodal integration and enhanced deep learning architectures, and the regulatory and clinical adoption considerations for radiomics-based CAD. Particular emphasis is given to the enormous potential for enhancing diagnosis precision, treatment personalization, and overall patient outcomes.
Collapse
Affiliation(s)
- Antonino Maniaci
- Faculty of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (S.L.); (C.G.)
| | - Salvatore Lavalle
- Faculty of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (S.L.); (C.G.)
| | - Caterina Gagliano
- Faculty of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (S.L.); (C.G.)
| | - Mario Lentini
- ASP Ragusa, Hospital Giovanni Paolo II, 97100 Ragusa, Italy;
| | - Edoardo Masiello
- Radiology Unit, Department Clinical and Experimental, Experimental Imaging Center, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Federica Parisi
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, ENT Section, University of Catania, Via S. Sofia, 78, 95125 Catania, Italy;
| | - Giannicola Iannella
- Department of ‘Organi di Senso’, University “Sapienza”, Viale dell’Università, 33, 00185 Rome, Italy;
| | - Nicole Dalia Cilia
- Department of Computer Engineering, University of Enna “Kore”, 94100 Enna, Italy;
- Institute for Computing and Information Sciences, Radboud University Nijmegen, 6544 Nijmegen, The Netherlands
| | - Valerio Salerno
- Department of Engineering and Architecture, Kore University of Enna, 94100 Enna, Italy;
| | - Giacomo Cusumano
- University Hospital Policlinico “G. Rodolico—San Marco”, 95123 Catania, Italy;
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy
| | - Luigi La Via
- University Hospital Policlinico “G. Rodolico—San Marco”, 95123 Catania, Italy;
| |
Collapse
|
15
|
Harris L, Shankar LK, Hildebrandt C, Rubinstein WS, Langlais K, Rodriguez H, Berger A, Freymann J, Huang EP, Williams PM, Zenklusen JC, Ochs R, Tezak Z, Sahiner B. Resource requirements to accelerate clinical applications of next-generation sequencing and radiomics: workshop commentary and review. J Natl Cancer Inst 2024; 116:1562-1570. [PMID: 38867688 DOI: 10.1093/jnci/djae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/11/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024] Open
Abstract
The National Institutes of Health-US Food and Drug Administration Joint Leadership Council Next-Generation Sequencing and Radiomics Working Group was formed by the National Institutes of Health-Food and Drug Administration Joint Leadership Council to promote the development and validation of innovative next-generation sequencing tests, radiomic tools, and associated data analysis and interpretation enhanced by artificial intelligence and machine learning technologies. A 2-day workshop was held on September 29-30, 2021, to convene members of the scientific community to discuss how to overcome the "ground truth" gap that has frequently been acknowledged as 1 of the limiting factors impeding high-quality research, development, validation, and regulatory science in these fields. This report provides a summary of the resource gaps identified by the working group and attendees, highlights existing resources and the ways they can potentially be employed to accelerate growth in these fields, and presents opportunities to support next-generation sequencing and radiomic tool development and validation using technologies such as artificial intelligence and machine learning.
Collapse
Affiliation(s)
- Lyndsay Harris
- Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lalitha K Shankar
- Cancer Imaging Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Claire Hildebrandt
- Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wendy S Rubinstein
- Breast and Gynecologic Cancer Research Group, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kristofor Langlais
- Office of In Vitro Diagnostics (OHT7), Office of Product Evaluation and Quality, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Adam Berger
- Division of Clinical and Healthcare Research Policy, Office of Science Policy, National Institutes of Health, Bethesda, MD, USA
| | - John Freymann
- Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Cancer Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erich P Huang
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - P Mickey Williams
- Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jean Claude Zenklusen
- The Cancer Genome Atlas, Center for Cancer Genomics, Office of the Director, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Robert Ochs
- Office of Health Technology 8, Office of Product Evaluation and Quality, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA
| | - Zivana Tezak
- Office of In Vitro Diagnostics (OHT7), Office of Product Evaluation and Quality, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA
| | - Berkman Sahiner
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
16
|
Mahmood S, Teo C, Sim J, Zhang W, Muyun J, Bhuvana R, Teo K, Yeo TT, Lu J, Gulyas B, Guan C. The application of eXplainable artificial intelligence in studying cognition: A scoping review. IBRAIN 2024; 10:245-265. [PMID: 39346792 PMCID: PMC11427810 DOI: 10.1002/ibra.12174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 10/01/2024]
Abstract
The rapid advancement of artificial intelligence (AI) has sparked renewed discussions on its trustworthiness and the concept of eXplainable AI (XAI). Recent research in neuroscience has emphasized the relevance of XAI in studying cognition. This scoping review aims to identify and analyze various XAI methods used to study the mechanisms and features of cognitive function and dysfunction. In this study, the collected evidence is qualitatively assessed to develop an effective framework for approaching XAI in cognitive neuroscience. Based on the Joanna Briggs Institute and preferred reporting items for systematic reviews and meta-analyses extension for scoping review guidelines, we searched for peer-reviewed articles on MEDLINE, Embase, Web of Science, Cochrane Central Register of Controlled Trials, and Google Scholar. Two reviewers performed data screening, extraction, and thematic analysis in parallel. Twelve eligible experimental studies published in the past decade were included. The results showed that the majority (75%) focused on normal cognitive functions such as perception, social cognition, language, executive function, and memory, while others (25%) examined impaired cognition. The predominant XAI methods employed were intrinsic XAI (58.3%), followed by attribution-based (41.7%) and example-based (8.3%) post hoc methods. Explainability was applied at a local (66.7%) or global (33.3%) scope. The findings, predominantly correlational, were anatomical (83.3%) or nonanatomical (16.7%). In conclusion, while these XAI techniques were lauded for their predictive power, robustness, testability, and plausibility, limitations included oversimplification, confounding factors, and inconsistencies. The reviewed studies showcased the potential of XAI models while acknowledging current challenges in causality and oversimplification, particularly emphasizing the need for reproducibility.
Collapse
Affiliation(s)
- Shakran Mahmood
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
| | - Colin Teo
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
- Centre for Neuroimaging ResearchNanyang Technological UniversitySingaporeSingapore
- Division of Neurosurgery, Department of SurgeryNational University HospitalSingaporeSingapore
| | - Jeremy Sim
- Centre for Neuroimaging ResearchNanyang Technological UniversitySingaporeSingapore
| | - Wei Zhang
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
- Centre for Neuroimaging ResearchNanyang Technological UniversitySingaporeSingapore
| | - Jiang Muyun
- Centre for Neuroimaging ResearchNanyang Technological UniversitySingaporeSingapore
- School of Computer Science and EngineeringNanyang Technological UniversitySingaporeSingapore
| | - R. Bhuvana
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
- Centre for Neuroimaging ResearchNanyang Technological UniversitySingaporeSingapore
| | - Kejia Teo
- Division of Neurosurgery, Department of SurgeryNational University HospitalSingaporeSingapore
| | - Tseng Tsai Yeo
- Division of Neurosurgery, Department of SurgeryNational University HospitalSingaporeSingapore
| | - Jia Lu
- Defence Medical and Environmental Research InstituteDSO National LaboratoriesSingaporeSingapore
| | - Balazs Gulyas
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
- Centre for Neuroimaging ResearchNanyang Technological UniversitySingaporeSingapore
| | - Cuntai Guan
- Centre for Neuroimaging ResearchNanyang Technological UniversitySingaporeSingapore
- School of Computer Science and EngineeringNanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
17
|
Reza-Soltani S, Fakhare Alam L, Debellotte O, Monga TS, Coyalkar VR, Tarnate VCA, Ozoalor CU, Allam SR, Afzal M, Shah GK, Rai M. The Role of Artificial Intelligence and Machine Learning in Cardiovascular Imaging and Diagnosis. Cureus 2024; 16:e68472. [PMID: 39360044 PMCID: PMC11446464 DOI: 10.7759/cureus.68472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
Cardiovascular diseases remain the leading cause of global mortality, underscoring the critical need for accurate and timely diagnosis. This narrative review examines the current applications and future potential of artificial intelligence (AI) and machine learning (ML) in cardiovascular imaging. We discuss the integration of these technologies across various imaging modalities, including echocardiography, computed tomography, magnetic resonance imaging, and nuclear imaging techniques. The review explores AI-assisted diagnosis in key areas such as coronary artery disease detection, valve disorders assessment, cardiomyopathy classification, arrhythmia detection, and prediction of cardiovascular events. AI demonstrates promise in improving diagnostic accuracy, efficiency, and personalized care. However, significant challenges persist, including data quality standardization, model interpretability, regulatory considerations, and clinical workflow integration. We also address the limitations of current AI applications and the ethical implications of their implementation in clinical practice. Future directions point towards advanced AI architectures, multimodal imaging integration, and applications in precision medicine and population health management. The review emphasizes the need for ongoing collaboration between clinicians, data scientists, and policymakers to realize the full potential of AI in cardiovascular imaging while ensuring ethical and equitable implementation. As the field continues to evolve, addressing these challenges will be crucial for the successful integration of AI technologies into cardiovascular care, potentially revolutionizing diagnostic capabilities and improving patient outcomes.
Collapse
Affiliation(s)
- Setareh Reza-Soltani
- Advanced Diagnostic & Interventional Radiology Center (ADIR), Tehran University of Medical Sciences, Tehran, IRN
| | | | - Omofolarin Debellotte
- Internal Medicine, One Brooklyn Health-Brookdale Hospital Medical Center, Brooklyn, USA
| | - Tejbir S Monga
- Internal Medicine, Spartan Health Sciences University, Vieux Fort, LCA
| | | | | | | | | | - Maham Afzal
- Medicine, Fatima Jinnah Medical University, Lahore, PAK
| | | | - Manju Rai
- Biotechnology, Shri Venkateshwara University, Gajraula, IND
| |
Collapse
|
18
|
Dunenova G, Kalmataeva Z, Kaidarova D, Dauletbaev N, Semenova Y, Mansurova M, Grjibovski A, Kassymbekova F, Sarsembayev A, Semenov D, Glushkova N. The Performance and Clinical Applicability of HER2 Digital Image Analysis in Breast Cancer: A Systematic Review. Cancers (Basel) 2024; 16:2761. [PMID: 39123488 PMCID: PMC11311684 DOI: 10.3390/cancers16152761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
This systematic review aims to address the research gap in the performance of computational algorithms for the digital image analysis of HER2 images in clinical settings. While numerous studies have explored various aspects of these algorithms, there is a lack of comprehensive evaluation regarding their effectiveness in real-world clinical applications. We conducted a search of the Web of Science and PubMed databases for studies published from 31 December 2013 to 30 June 2024, focusing on performance effectiveness and components such as dataset size, diversity and source, ground truth, annotation, and validation methods. The study was registered with PROSPERO (CRD42024525404). Key questions guiding this review include the following: How effective are current computational algorithms at detecting HER2 status in digital images? What are the common validation methods and dataset characteristics used in these studies? Is there standardization of algorithm evaluations of clinical applications that can improve the clinical utility and reliability of computational tools for HER2 detection in digital image analysis? We identified 6833 publications, with 25 meeting the inclusion criteria. The accuracy rate with clinical datasets varied from 84.19% to 97.9%. The highest accuracy was achieved on the publicly available Warwick dataset at 98.8% in synthesized datasets. Only 12% of studies used separate datasets for external validation; 64% of studies used a combination of accuracy, precision, recall, and F1 as a set of performance measures. Despite the high accuracy rates reported in these studies, there is a notable absence of direct evidence supporting their clinical application. To facilitate the integration of these technologies into clinical practice, there is an urgent need to address real-world challenges and overreliance on internal validation. Standardizing study designs on real clinical datasets can enhance the reliability and clinical applicability of computational algorithms in improving the detection of HER2 cancer.
Collapse
Affiliation(s)
- Gauhar Dunenova
- Department of Epidemiology, Biostatistics and Evidence-Based Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Zhanna Kalmataeva
- Rector Office, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan;
| | - Dilyara Kaidarova
- Kazakh Research Institute of Oncology and Radiology, Almaty 050022, Kazakhstan;
| | - Nurlan Dauletbaev
- Department of Internal, Respiratory and Critical Care Medicine, Philipps University of Marburg, 35037 Marburg, Germany;
- Department of Pediatrics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
- Faculty of Medicine and Health Care, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Yuliya Semenova
- School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan;
| | - Madina Mansurova
- Department of Artificial Intelligence and Big Data, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| | - Andrej Grjibovski
- Central Scientific Research Laboratory, Northern State Medical University, Arkhangelsk 163000, Russia;
- Department of Epidemiology and Modern Vaccination Technologies, I.M. Sechenov First Moscow State Medical University, Moscow 105064, Russia
- Department of Biology, Ecology and Biotechnology, Northern (Arctic) Federal University, Arkhangelsk 163000, Russia
- Department of Health Policy and Management, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Fatima Kassymbekova
- Department of Public Health and Social Sciences, Kazakhstan Medical University “KSPH”, Almaty 050060, Kazakhstan;
| | - Aidos Sarsembayev
- School of Digital Technologies, Almaty Management University, Almaty 050060, Kazakhstan;
- Health Research Institute, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| | - Daniil Semenov
- Computer Science and Engineering Program, Astana IT University, Astana 020000, Kazakhstan;
| | - Natalya Glushkova
- Department of Epidemiology, Biostatistics and Evidence-Based Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
- Health Research Institute, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| |
Collapse
|
19
|
Chang JY, Makary MS. Evolving and Novel Applications of Artificial Intelligence in Thoracic Imaging. Diagnostics (Basel) 2024; 14:1456. [PMID: 39001346 PMCID: PMC11240935 DOI: 10.3390/diagnostics14131456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/16/2024] Open
Abstract
The advent of artificial intelligence (AI) is revolutionizing medicine, particularly radiology. With the development of newer models, AI applications are demonstrating improved performance and versatile utility in the clinical setting. Thoracic imaging is an area of profound interest, given the prevalence of chest imaging and the significant health implications of thoracic diseases. This review aims to highlight the promising applications of AI within thoracic imaging. It examines the role of AI, including its contributions to improving diagnostic evaluation and interpretation, enhancing workflow, and aiding in invasive procedures. Next, it further highlights the current challenges and limitations faced by AI, such as the necessity of 'big data', ethical and legal considerations, and bias in representation. Lastly, it explores the potential directions for the application of AI in thoracic radiology.
Collapse
Affiliation(s)
- Jin Y Chang
- Department of Radiology, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Mina S Makary
- Department of Radiology, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- Division of Vascular and Interventional Radiology, Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
20
|
Jang SJ, Rosenstadt J, Lee E, Kunze KN. Artificial Intelligence for Clinically Meaningful Outcome Prediction in Orthopedic Research: Current Applications and Limitations. Curr Rev Musculoskelet Med 2024; 17:185-206. [PMID: 38589721 DOI: 10.1007/s12178-024-09893-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 04/10/2024]
Abstract
PURPOSE OF REVIEW Patient-reported outcome measures (PROM) play a critical role in evaluating the success of treatment interventions for musculoskeletal conditions. However, predicting which patients will benefit from treatment interventions is complex and influenced by a multitude of factors. Artificial intelligence (AI) may better anticipate the propensity to achieve clinically meaningful outcomes through leveraging complex predictive analytics that allow for personalized medicine. This article provides a contemporary review of current applications of AI developed to predict clinically significant outcome (CSO) achievement after musculoskeletal treatment interventions. RECENT FINDINGS The highest volume of literature exists in the subspecialties of total joint arthroplasty, spine, and sports medicine, with only three studies identified in the remaining orthopedic subspecialties combined. Performance is widely variable across models, with most studies only reporting discrimination as a performance metric. Given the complexity inherent in predictive modeling for this task, including data availability, data handling, model architecture, and outcome selection, studies vary widely in their methodology and results. Importantly, the majority of studies have not been externally validated or demonstrate important methodological limitations, precluding their implementation into clinical settings. A substantial body of literature has accumulated demonstrating variable internal validity, limited scope, and low potential for clinical deployment. The majority of studies attempt to predict the MCID-the lowest bar of clinical achievement. Though a small proportion of models demonstrate promise and highlight the utility of AI, important methodological limitations need to be addressed moving forward to leverage AI-based applications for clinical deployment.
Collapse
Affiliation(s)
- Seong Jun Jang
- Department of Orthopedic Surgery, Hospital for Special Surgery, 535 East 70Th Street, New York, NY, 10021, USA
| | - Jake Rosenstadt
- Georgetown University School of Medicine, Washington, DC, USA
| | - Eugenia Lee
- Weill Cornell College of Medicine, New York, NY, USA
| | - Kyle N Kunze
- Department of Orthopedic Surgery, Hospital for Special Surgery, 535 East 70Th Street, New York, NY, 10021, USA.
| |
Collapse
|
21
|
Elfer K, Gardecki E, Garcia V, Ly A, Hytopoulos E, Wen S, Hanna MG, Peeters DJE, Saltz J, Ehinger A, Dudgeon SN, Li X, Blenman KRM, Chen W, Green U, Birmingham R, Pan T, Lennerz JK, Salgado R, Gallas BD. Reproducible Reporting of the Collection and Evaluation of Annotations for Artificial Intelligence Models. Mod Pathol 2024; 37:100439. [PMID: 38286221 DOI: 10.1016/j.modpat.2024.100439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/14/2023] [Accepted: 01/21/2024] [Indexed: 01/31/2024]
Abstract
This work puts forth and demonstrates the utility of a reporting framework for collecting and evaluating annotations of medical images used for training and testing artificial intelligence (AI) models in assisting detection and diagnosis. AI has unique reporting requirements, as shown by the AI extensions to the Consolidated Standards of Reporting Trials (CONSORT) and Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) checklists and the proposed AI extensions to the Standards for Reporting Diagnostic Accuracy (STARD) and Transparent Reporting of a Multivariable Prediction model for Individual Prognosis or Diagnosis (TRIPOD) checklists. AI for detection and/or diagnostic image analysis requires complete, reproducible, and transparent reporting of the annotations and metadata used in training and testing data sets. In an earlier work by other researchers, an annotation workflow and quality checklist for computational pathology annotations were proposed. In this manuscript, we operationalize this workflow into an evaluable quality checklist that applies to any reader-interpreted medical images, and we demonstrate its use for an annotation effort in digital pathology. We refer to this quality framework as the Collection and Evaluation of Annotations for Reproducible Reporting of Artificial Intelligence (CLEARR-AI).
Collapse
Affiliation(s)
- Katherine Elfer
- United States Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Imaging Diagnostics and Software Reliability, Silver Spring, Maryland; National Institutes of Health, National Cancer Institute, Division of Cancer Prevention, Cancer Prevention Fellowship Program, Bethesda, Maryland.
| | - Emma Gardecki
- United States Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Imaging Diagnostics and Software Reliability, Silver Spring, Maryland
| | - Victor Garcia
- United States Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Imaging Diagnostics and Software Reliability, Silver Spring, Maryland
| | - Amy Ly
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Si Wen
- United States Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Imaging Diagnostics and Software Reliability, Silver Spring, Maryland
| | - Matthew G Hanna
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Dieter J E Peeters
- Department of Pathology, University Hospital Antwerp/University of Antwerp, Antwerp, Belgium; Department of Pathology, Sint-Maarten Hospital, Mechelen, Belgium
| | - Joel Saltz
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, New York
| | - Anna Ehinger
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Laboratory Medicine, Lund University, Lund, Sweden
| | - Sarah N Dudgeon
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Xiaoxian Li
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Kim R M Blenman
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine and Yale Cancer Center, Yale University, New Haven, Connecticut; Department of Computer Science, School of Engineering and Applied Science, Yale University, New Haven, Connecticut
| | - Weijie Chen
- United States Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Imaging Diagnostics and Software Reliability, Silver Spring, Maryland
| | - Ursula Green
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia
| | - Ryan Birmingham
- United States Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Imaging Diagnostics and Software Reliability, Silver Spring, Maryland; Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia
| | - Tony Pan
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia
| | - Jochen K Lennerz
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Roberto Salgado
- Division of Research, Peter Mac Callum Cancer Centre, Melbourne, Australia; Department of Pathology, GZA-ZNA Hospitals, Antwerp, Belgium
| | - Brandon D Gallas
- United States Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Imaging Diagnostics and Software Reliability, Silver Spring, Maryland
| |
Collapse
|
22
|
Tieu A, Kroen E, Kadish Y, Liu Z, Patel N, Zhou A, Yilmaz A, Lee S, Deyer T. The Role of Artificial Intelligence in the Identification and Evaluation of Bone Fractures. Bioengineering (Basel) 2024; 11:338. [PMID: 38671760 PMCID: PMC11047896 DOI: 10.3390/bioengineering11040338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Artificial intelligence (AI), particularly deep learning, has made enormous strides in medical imaging analysis. In the field of musculoskeletal radiology, deep-learning models are actively being developed for the identification and evaluation of bone fractures. These methods provide numerous benefits to radiologists such as increased diagnostic accuracy and efficiency while also achieving standalone performances comparable or superior to clinician readers. Various algorithms are already commercially available for integration into clinical workflows, with the potential to improve healthcare delivery and shape the future practice of radiology. In this systematic review, we explore the performance of current AI methods in the identification and evaluation of fractures, particularly those in the ankle, wrist, hip, and ribs. We also discuss current commercially available products for fracture detection and provide an overview of the current limitations of this technology and future directions of the field.
Collapse
Affiliation(s)
- Andrew Tieu
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ezriel Kroen
- New York Medical College, Valhalla, NY 10595, USA
| | | | - Zelong Liu
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nikhil Patel
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexander Zhou
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | | | - Timothy Deyer
- East River Medical Imaging, New York, NY 10021, USA
- Department of Radiology, Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
23
|
C Pereira S, Mendonça AM, Campilho A, Sousa P, Teixeira Lopes C. Automated image label extraction from radiology reports - A review. Artif Intell Med 2024; 149:102814. [PMID: 38462277 DOI: 10.1016/j.artmed.2024.102814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/29/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024]
Abstract
Machine Learning models need large amounts of annotated data for training. In the field of medical imaging, labeled data is especially difficult to obtain because the annotations have to be performed by qualified physicians. Natural Language Processing (NLP) tools can be applied to radiology reports to extract labels for medical images automatically. Compared to manual labeling, this approach requires smaller annotation efforts and can therefore facilitate the creation of labeled medical image data sets. In this article, we summarize the literature on this topic spanning from 2013 to 2023, starting with a meta-analysis of the included articles, followed by a qualitative and quantitative systematization of the results. Overall, we found four types of studies on the extraction of labels from radiology reports: those describing systems based on symbolic NLP, statistical NLP, neural NLP, and those describing systems combining or comparing two or more of the latter. Despite the large variety of existing approaches, there is still room for further improvement. This work can contribute to the development of new techniques or the improvement of existing ones.
Collapse
Affiliation(s)
- Sofia C Pereira
- Institute for Systems and Computer Engineering, Technology and Science (INESC-TEC), Portugal; Faculty of Engineering of the University of Porto, Portugal.
| | - Ana Maria Mendonça
- Institute for Systems and Computer Engineering, Technology and Science (INESC-TEC), Portugal; Faculty of Engineering of the University of Porto, Portugal.
| | - Aurélio Campilho
- Institute for Systems and Computer Engineering, Technology and Science (INESC-TEC), Portugal; Faculty of Engineering of the University of Porto, Portugal.
| | - Pedro Sousa
- Hospital Center of Vila Nova de Gaia/Espinho, Portugal.
| | - Carla Teixeira Lopes
- Institute for Systems and Computer Engineering, Technology and Science (INESC-TEC), Portugal; Faculty of Engineering of the University of Porto, Portugal.
| |
Collapse
|
24
|
Yazdani E, Karamzadeh-Ziarati N, Cheshmi SS, Sadeghi M, Geramifar P, Vosoughi H, Jahromi MK, Kheradpisheh SR. Automated segmentation of lesions and organs at risk on [ 68Ga]Ga-PSMA-11 PET/CT images using self-supervised learning with Swin UNETR. Cancer Imaging 2024; 24:30. [PMID: 38424612 PMCID: PMC10903052 DOI: 10.1186/s40644-024-00675-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Prostate-specific membrane antigen (PSMA) PET/CT imaging is widely used for quantitative image analysis, especially in radioligand therapy (RLT) for metastatic castration-resistant prostate cancer (mCRPC). Unknown features influencing PSMA biodistribution can be explored by analyzing segmented organs at risk (OAR) and lesions. Manual segmentation is time-consuming and labor-intensive, so automated segmentation methods are desirable. Training deep-learning segmentation models is challenging due to the scarcity of high-quality annotated images. Addressing this, we developed shifted windows UNEt TRansformers (Swin UNETR) for fully automated segmentation. Within a self-supervised framework, the model's encoder was pre-trained on unlabeled data. The entire model was fine-tuned, including its decoder, using labeled data. METHODS In this work, 752 whole-body [68Ga]Ga-PSMA-11 PET/CT images were collected from two centers. For self-supervised model pre-training, 652 unlabeled images were employed. The remaining 100 images were manually labeled for supervised training. In the supervised training phase, 5-fold cross-validation was used with 64 images for model training and 16 for validation, from one center. For testing, 20 hold-out images, evenly distributed between two centers, were used. Image segmentation and quantification metrics were evaluated on the test set compared to the ground-truth segmentation conducted by a nuclear medicine physician. RESULTS The model generates high-quality OARs and lesion segmentation in lesion-positive cases, including mCRPC. The results show that self-supervised pre-training significantly improved the average dice similarity coefficient (DSC) for all classes by about 3%. Compared to nnU-Net, a well-established model in medical image segmentation, our approach outperformed with a 5% higher DSC. This improvement was attributed to our model's combined use of self-supervised pre-training and supervised fine-tuning, specifically when applied to PET/CT input. Our best model had the lowest DSC for lesions at 0.68 and the highest for liver at 0.95. CONCLUSIONS We developed a state-of-the-art neural network using self-supervised pre-training on whole-body [68Ga]Ga-PSMA-11 PET/CT images, followed by fine-tuning on a limited set of annotated images. The model generates high-quality OARs and lesion segmentation for PSMA image analysis. The generalizable model holds potential for various clinical applications, including enhanced RLT and patient-specific internal dosimetry.
Collapse
Affiliation(s)
- Elmira Yazdani
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, Tehran, 14155-6183, Iran
- Fintech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Seyyed Saeid Cheshmi
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran
| | - Mahdi Sadeghi
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, Tehran, 14155-6183, Iran.
- Fintech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Parham Geramifar
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Habibeh Vosoughi
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Nuclear Medicine and Molecular Imaging Department, Imam Reza International University, Razavi Hospital, Mashhad, Iran
| | - Mahmood Kazemi Jahromi
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, Tehran, 14155-6183, Iran
- Fintech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Reza Kheradpisheh
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
25
|
Hannoun S. Editorial for "A Survey of Publicly Available MRI Datasets for Potential Use in Artificial Intelligence Research". J Magn Reson Imaging 2024; 59:481-482. [PMID: 37889102 DOI: 10.1002/jmri.29100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/28/2023] Open
Affiliation(s)
- Salem Hannoun
- Medical Imaging Sciences Program, Division of Health Professions, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
26
|
Can S, Türk Ö, Ayral M, Kozan G, Arı H, Akdağ M, Baylan MY. Can deep learning replace histopathological examinations in the differential diagnosis of cervical lymphadenopathy? Eur Arch Otorhinolaryngol 2024; 281:359-367. [PMID: 37578497 DOI: 10.1007/s00405-023-08181-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
INTRODUCTION We aimed to develop a diagnostic deep learning model using contrast-enhanced CT images and to investigate whether cervical lymphadenopathies can be diagnosed with these deep learning methods without radiologist interpretations and histopathological examinations. MATERIAL METHOD A total of 400 patients who underwent surgery for lymphadenopathy in the neck between 2010 and 2022 were retrospectively analyzed. They were examined in four groups of 100 patients: the granulomatous diseases group, the lymphoma group, the squamous cell tumor group, and the reactive hyperplasia group. The diagnoses of the patients were confirmed histopathologically. Two CT images from all the patients in each group were used in the study. The CT images were classified using ResNet50, NASNetMobile, and DenseNet121 architecture input. RESULTS The classification accuracies obtained with ResNet50, DenseNet121, and NASNetMobile were 92.5%, 90.62, and 87.5, respectively. CONCLUSION Deep learning is a useful diagnostic tool in diagnosing cervical lymphadenopathy. In the near future, many diseases could be diagnosed with deep learning models without radiologist interpretations and invasive examinations such as histopathological examinations. However, further studies with much larger case series are needed to develop accurate deep-learning models.
Collapse
Affiliation(s)
- Sermin Can
- Department of Otorhinolaryngology and Head and Neck Surgery Clinic, Dicle University Faculty of Medicine, 21010, Diyarbakir, Turkey.
| | - Ömer Türk
- Department of Computer Programming, Mardin Artuklu University Vocational School, Mardin, Turkey
| | - Muhammed Ayral
- Department of Otorhinolaryngology and Head and Neck Surgery Clinic, Dicle University Faculty of Medicine, 21010, Diyarbakir, Turkey
| | - Günay Kozan
- Department of Otorhinolaryngology and Head and Neck Surgery Clinic, Dicle University Faculty of Medicine, 21010, Diyarbakir, Turkey
| | - Hamza Arı
- Department of Otorhinolaryngology and Head and Neck Surgery Clinic, Dicle University Faculty of Medicine, 21010, Diyarbakir, Turkey
| | - Mehmet Akdağ
- Department of Otorhinolaryngology and Head and Neck Surgery Clinic, Dicle University Faculty of Medicine, 21010, Diyarbakir, Turkey
| | - Müzeyyen Yıldırım Baylan
- Department of Otorhinolaryngology and Head and Neck Surgery Clinic, Dicle University Faculty of Medicine, 21010, Diyarbakir, Turkey
| |
Collapse
|
27
|
Panagiotidis E, Papachristou K, Makridou A, Zoglopitou LA, Paschali A, Kalathas T, Chatzimarkou M, Chatzipavlidou V. Review of artificial intelligence clinical applications in Nuclear Medicine. Nucl Med Commun 2024; 45:24-34. [PMID: 37901920 DOI: 10.1097/mnm.0000000000001786] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
This paper provides an in-depth analysis of the clinical applications of artificial intelligence (AI) in Nuclear Medicine, focusing on three key areas: neurology, cardiology, and oncology. Beginning with neurology, specifically Alzheimer's disease and Parkinson's disease, the paper examines reviews on diagnosis and treatment planning. The same pattern is followed in cardiology studies. In the final section on oncology, the paper explores the various AI applications in multiple cancer types, including lung, head and neck, lymphoma, and pancreatic cancer.
Collapse
Affiliation(s)
| | | | - Anna Makridou
- Medical Physics Department, Cancer Hospital of Thessaloniki 'Theagenio', Thessaloniki, Greece
| | | | - Anna Paschali
- Nuclear Medicine Department, Cancer Hospital of Thessaloniki 'Theagenio' and
| | - Theodoros Kalathas
- Nuclear Medicine Department, Cancer Hospital of Thessaloniki 'Theagenio' and
| | - Michael Chatzimarkou
- Medical Physics Department, Cancer Hospital of Thessaloniki 'Theagenio', Thessaloniki, Greece
| | | |
Collapse
|
28
|
Hellwig D, Hellwig NC, Boehner S, Fuchs T, Fischer R, Schmidt D. Artificial Intelligence and Deep Learning for Advancing PET Image Reconstruction: State-of-the-Art and Future Directions. Nuklearmedizin 2023; 62:334-342. [PMID: 37995706 PMCID: PMC10689088 DOI: 10.1055/a-2198-0358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/12/2023] [Indexed: 11/25/2023]
Abstract
Positron emission tomography (PET) is vital for diagnosing diseases and monitoring treatments. Conventional image reconstruction (IR) techniques like filtered backprojection and iterative algorithms are powerful but face limitations. PET IR can be seen as an image-to-image translation. Artificial intelligence (AI) and deep learning (DL) using multilayer neural networks enable a new approach to this computer vision task. This review aims to provide mutual understanding for nuclear medicine professionals and AI researchers. We outline fundamentals of PET imaging as well as state-of-the-art in AI-based PET IR with its typical algorithms and DL architectures. Advances improve resolution and contrast recovery, reduce noise, and remove artifacts via inferred attenuation and scatter correction, sinogram inpainting, denoising, and super-resolution refinement. Kernel-priors support list-mode reconstruction, motion correction, and parametric imaging. Hybrid approaches combine AI with conventional IR. Challenges of AI-assisted PET IR include availability of training data, cross-scanner compatibility, and the risk of hallucinated lesions. The need for rigorous evaluations, including quantitative phantom validation and visual comparison of diagnostic accuracy against conventional IR, is highlighted along with regulatory issues. First approved AI-based applications are clinically available, and its impact is foreseeable. Emerging trends, such as the integration of multimodal imaging and the use of data from previous imaging visits, highlight future potentials. Continued collaborative research promises significant improvements in image quality, quantitative accuracy, and diagnostic performance, ultimately leading to the integration of AI-based IR into routine PET imaging protocols.
Collapse
Affiliation(s)
- Dirk Hellwig
- Department of Nuclear Medicine, University Hospital Regensburg, Regensburg, Germany
- Partner Site Regensburg, Bavarian Center for Cancer Research (BZKF), Regensburg, Germany
- Medical Data Integration Center (MEDIZUKR), University Hospital Regensburg, Regensburg, Germany
| | - Nils Constantin Hellwig
- Department of Nuclear Medicine, University Hospital Regensburg, Regensburg, Germany
- Medical Data Integration Center (MEDIZUKR), University Hospital Regensburg, Regensburg, Germany
| | - Steven Boehner
- Department of Nuclear Medicine, University Hospital Regensburg, Regensburg, Germany
- Partner Site Regensburg, Bavarian Center for Cancer Research (BZKF), Regensburg, Germany
- Medical Data Integration Center (MEDIZUKR), University Hospital Regensburg, Regensburg, Germany
| | - Timo Fuchs
- Department of Nuclear Medicine, University Hospital Regensburg, Regensburg, Germany
- Partner Site Regensburg, Bavarian Center for Cancer Research (BZKF), Regensburg, Germany
- Medical Data Integration Center (MEDIZUKR), University Hospital Regensburg, Regensburg, Germany
| | - Regina Fischer
- Department of Nuclear Medicine, University Hospital Regensburg, Regensburg, Germany
- Partner Site Regensburg, Bavarian Center for Cancer Research (BZKF), Regensburg, Germany
- Medical Data Integration Center (MEDIZUKR), University Hospital Regensburg, Regensburg, Germany
| | - Daniel Schmidt
- Department of Nuclear Medicine, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
29
|
Sambyal AS, Niyaz U, Krishnan NC, Bathula DR. Understanding calibration of deep neural networks for medical image classification. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 242:107816. [PMID: 37778139 DOI: 10.1016/j.cmpb.2023.107816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/03/2023] [Accepted: 09/14/2023] [Indexed: 10/03/2023]
Abstract
Background and Objective - In the field of medical image analysis, achieving high accuracy is not enough; ensuring well-calibrated predictions is also crucial. Confidence scores of a deep neural network play a pivotal role in explainability by providing insights into the model's certainty, identifying cases that require attention, and establishing trust in its predictions. Consequently, the significance of a well-calibrated model becomes paramount in the medical imaging domain, where accurate and reliable predictions are of utmost importance. While there has been a significant effort towards training modern deep neural networks to achieve high accuracy on medical imaging tasks, model calibration and factors that affect it remain under-explored. Methods - To address this, we conducted a comprehensive empirical study that explores model performance and calibration under different training regimes. We considered fully supervised training, which is the prevailing approach in the community, as well as rotation-based self-supervised method with and without transfer learning, across various datasets and architecture sizes. Multiple calibration metrics were employed to gain a holistic understanding of model calibration. Results - Our study reveals that factors such as weight distributions and the similarity of learned representations correlate with the calibration trends observed in the models. Notably, models trained using rotation-based self-supervised pretrained regime exhibit significantly better calibration while achieving comparable or even superior performance compared to fully supervised models across different medical imaging datasets. Conclusion - These findings shed light on the importance of model calibration in medical image analysis and highlight the benefits of incorporating self-supervised learning approach to improve both performance and calibration.
Collapse
Affiliation(s)
- Abhishek Singh Sambyal
- Department of Computer Science and Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India.
| | - Usma Niyaz
- Department of Computer Science and Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India.
| | - Narayanan C Krishnan
- Department of Data Science, Indian Institute of Technology Palakkad, Palakkad, 678532, Kerala, India.
| | - Deepti R Bathula
- Department of Computer Science and Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India.
| |
Collapse
|
30
|
Candemir S, Moranville R, Wong KA, Campbell W, Bigelow MT, Prevedello LM, Makary MS. Detecting and Characterizing Inferior Vena Cava Filters on Abdominal Computed Tomography with Data-Driven Computational Frameworks. J Digit Imaging 2023; 36:2507-2518. [PMID: 37770730 PMCID: PMC10584764 DOI: 10.1007/s10278-023-00882-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 09/30/2023] Open
Abstract
Two data-driven algorithms were developed for detecting and characterizing Inferior Vena Cava (IVC) filters on abdominal computed tomography to assist healthcare providers with the appropriate management of these devices to decrease complications: one based on 2-dimensional data and transfer learning (2D + TL) and an augmented version of the same algorithm which accounts for the 3-dimensional information leveraging recurrent convolutional neural networks (3D + RCNN). The study contains 2048 abdominal computed tomography studies obtained from 439 patients who underwent IVC filter placement during the 10-year period from January 1st, 2009, to January 1st, 2019. Among these, 399 patients had retrievable filters, and 40 had non-retrievable filter types. The reference annotations for the filter location were obtained through a custom-developed interface. The ground truth annotations for the filter types were determined based on the electronic medical record and physician review of imaging. The initial stage of the framework returns a list of locations containing metallic objects based on the density of the structure. The second stage processes the candidate locations and determines which one contains an IVC filter. The final stage of the pipeline classifies the filter types as retrievable vs. non-retrievable. The computational models are trained using Tensorflow Keras API on an Nvidia Quadro GV100 system. We utilized a fine-tuning supervised training strategy to conduct our experiments. We find that the system achieves high sensitivity on detecting the filter locations with a high confidence value. The 2D + TL model achieved a sensitivity of 0.911 and a precision of 0.804, and the 3D + RCNN model achieved a sensitivity of 0.923 and a precision of 0.853 for filter detection. The system confidence for the IVC location predictions is high: 0.993 for 2D + TL and 0.996 for 3D + RCNN. The filter type prediction component of the system achieved 0.945 sensitivity, 0.882 specificity, and 0.97 AUC score with 2D + TL and 0. 940 sensitivity, 0.927 specificity, and 0.975 AUC score with 3D + RCNN. With the intent to create tools to improve patient outcomes, this study describes the initial phase of a computational framework to support healthcare providers in detecting patients with retained IVC filters, so an individualized decision can be made to remove these devices when appropriate, to decrease complications. To our knowledge, this is the first study that curates abdominal computed tomography (CT) scans and presents an algorithm for automated detection and characterization of IVC filters.
Collapse
Affiliation(s)
- Sema Candemir
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
- Laboratory for Augmented Intelligence in Imaging, The Ohio State University, Columbus, OH, 43210, USA.
| | - Robert Moranville
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Kelvin A Wong
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Laboratory for Augmented Intelligence in Imaging, The Ohio State University, Columbus, OH, 43210, USA
| | - Warren Campbell
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Matthew T Bigelow
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Laboratory for Augmented Intelligence in Imaging, The Ohio State University, Columbus, OH, 43210, USA
| | - Luciano M Prevedello
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Laboratory for Augmented Intelligence in Imaging, The Ohio State University, Columbus, OH, 43210, USA
| | - Mina S Makary
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| |
Collapse
|
31
|
Hanrahan CJ. Editorial for "The Impact of Fatty Infiltration on MRI Segmentation of Lower Limb Muscles in Neuromuscular Diseases: A Comparative Study of Deep Learning Approaches". J Magn Reson Imaging 2023; 58:1836-1837. [PMID: 37021719 DOI: 10.1002/jmri.28707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 04/07/2023] Open
Affiliation(s)
- Christopher J Hanrahan
- Department of Radiology and Imaging Sciences, Department of Internal Medicine, Division of Rheumatology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Diagnositic Radiology, Intermountain Healthcare, Salt Lake City, Utah, USA
| |
Collapse
|
32
|
Khanna NN, Singh M, Maindarkar M, Kumar A, Johri AM, Mentella L, Laird JR, Paraskevas KI, Ruzsa Z, Singh N, Kalra MK, Fernandes JFE, Chaturvedi S, Nicolaides A, Rathore V, Singh I, Teji JS, Al-Maini M, Isenovic ER, Viswanathan V, Khanna P, Fouda MM, Saba L, Suri JS. Polygenic Risk Score for Cardiovascular Diseases in Artificial Intelligence Paradigm: A Review. J Korean Med Sci 2023; 38:e395. [PMID: 38013648 PMCID: PMC10681845 DOI: 10.3346/jkms.2023.38.e395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/15/2023] [Indexed: 11/29/2023] Open
Abstract
Cardiovascular disease (CVD) related mortality and morbidity heavily strain society. The relationship between external risk factors and our genetics have not been well established. It is widely acknowledged that environmental influence and individual behaviours play a significant role in CVD vulnerability, leading to the development of polygenic risk scores (PRS). We employed the PRISMA search method to locate pertinent research and literature to extensively review artificial intelligence (AI)-based PRS models for CVD risk prediction. Furthermore, we analyzed and compared conventional vs. AI-based solutions for PRS. We summarized the recent advances in our understanding of the use of AI-based PRS for risk prediction of CVD. Our study proposes three hypotheses: i) Multiple genetic variations and risk factors can be incorporated into AI-based PRS to improve the accuracy of CVD risk predicting. ii) AI-based PRS for CVD circumvents the drawbacks of conventional PRS calculators by incorporating a larger variety of genetic and non-genetic components, allowing for more precise and individualised risk estimations. iii) Using AI approaches, it is possible to significantly reduce the dimensionality of huge genomic datasets, resulting in more accurate and effective disease risk prediction models. Our study highlighted that the AI-PRS model outperformed traditional PRS calculators in predicting CVD risk. Furthermore, using AI-based methods to calculate PRS may increase the precision of risk predictions for CVD and have significant ramifications for individualized prevention and treatment plans.
Collapse
Affiliation(s)
- Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
- Asia Pacific Vascular Society, New Delhi, India
| | - Manasvi Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
- Bennett University, Greater Noida, India
| | - Mahesh Maindarkar
- Asia Pacific Vascular Society, New Delhi, India
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
- School of Bioengineering Sciences and Research, Maharashtra Institute of Technology's Art, Design and Technology University, Pune, India
| | | | - Amer M Johri
- Department of Medicine, Division of Cardiology, Queen's University, Kingston, Canada
| | - Laura Mentella
- Department of Medicine, Division of Cardiology, University of Toronto, Toronto, Canada
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA, USA
| | | | - Zoltan Ruzsa
- Invasive Cardiology Division, University of Szeged, Szeged, Hungary
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | | | | | - Seemant Chaturvedi
- Department of Neurology & Stroke Program, University of Maryland, Baltimore, MD, USA
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, Cyprus
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA, USA
| | - Inder Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | - Jagjit S Teji
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Mostafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON, Canada
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, National Institute of The Republic of Serbia, University of Belgrade, Beograd, Serbia
| | | | - Puneet Khanna
- Department of Anaesthesiology, AIIMS, New Delhi, India
| | - Mostafa M Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, Cagliari, Italy
| | - Jasjit S Suri
- Asia Pacific Vascular Society, New Delhi, India
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
- Department of Computer Engineering, Graphic Era Deemed to be University, Dehradun, India.
| |
Collapse
|
33
|
Shah AK, Lavu MS, Hecht CJ, Burkhart RJ, Kamath AF. Understanding the use of artificial intelligence for implant analysis in total joint arthroplasty: a systematic review. ARTHROPLASTY 2023; 5:54. [PMID: 37919812 PMCID: PMC10623774 DOI: 10.1186/s42836-023-00209-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/01/2023] [Indexed: 11/04/2023] Open
Abstract
INTRODUCTION In recent years, there has been a significant increase in the development of artificial intelligence (AI) algorithms aimed at reviewing radiographs after total joint arthroplasty (TJA). This disruptive technology is particularly promising in the context of preoperative planning for revision TJA. Yet, the efficacy of AI algorithms regarding TJA implant analysis has not been examined comprehensively. METHODS PubMed, EBSCO, and Google Scholar electronic databases were utilized to identify all studies evaluating AI algorithms related to TJA implant analysis between 1 January 2000, and 27 February 2023 (PROSPERO study protocol registration: CRD42023403497). The mean methodological index for non-randomized studies score was 20.4 ± 0.6. We reported the accuracy, sensitivity, specificity, positive predictive value, and area under the curve (AUC) for the performance of each outcome measure. RESULTS Our initial search yielded 374 articles, and a total of 20 studies with three main use cases were included. Sixteen studies analyzed implant identification, two addressed implant failure, and two addressed implant measurements. Each use case had a median AUC and accuracy above 0.90 and 90%, respectively, indicative of a well-performing AI algorithm. Most studies failed to include explainability methods and conduct external validity testing. CONCLUSION These findings highlight the promising role of AI in recognizing implants in TJA. Preliminary studies have shown strong performance in implant identification, implant failure, and accurately measuring implant dimensions. Future research should follow a standardized guideline to develop and train models and place a strong emphasis on transparency and clarity in reporting results. LEVEL OF EVIDENCE Level III.
Collapse
Affiliation(s)
- Aakash K Shah
- Department of Orthopaedic Surgery, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Monish S Lavu
- Department of Orthopaedic Surgery, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Christian J Hecht
- Department of Orthopaedic Surgery, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Robert J Burkhart
- Department of Orthopaedic Surgery, University Hospitals, Cleveland, OH, 44106, USA
| | - Atul F Kamath
- Department of Orthopaedic Surgery, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA.
- Center for Hip Preservation, Orthopaedic and Rheumatologic Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Mail Code A41, Cleveland, OH, 44195, USA.
| |
Collapse
|
34
|
Saputra F, Suryanto ME, Audira G, Luong CT, Hung CH, Roldan MJ, Vasquez RD, Hsiao CD. Using DeepLabCut for markerless cardiac physiology and toxicity estimation in water fleas (Daphnia magna). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106676. [PMID: 37689033 DOI: 10.1016/j.aquatox.2023.106676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
Daphnia magna is one species of water flea that has been used for a long time for ecotoxicity studies. In addition, Daphnia has a myogenic heart that is very useful for cardiotoxicity studies. Previous attempts to calculate the cardiac parameter endpoints in Daphnia suffer from the drawback of tedious operation and high variation due to manual counting errors. Even the previous method that utilized deep learning to help the process suffer from either overestimation of parameters or the need for specialized equipment to perform the analysis. In this study, we utilized DeepLabCut software previously used for animal pose tracking and demonstrated that ResNet_152 was the best fit for training the network. The trained network also showed comparable results with ImageJ and Kymograph, which was mostly done manually. In addition to that, several macro scripts in either Excel or Python format were developed to help summarize the data for faster analysis. The trained network was then challenged to analyze the potential cardiotoxicity of imidacloprid and pendimethalin in D. magna, and it showed that both pesticides cause alteration in their cardiac performance. Overall, this method provides a simple and automatic method to analyze the cardiac performance of Daphnia by utilizing DeepLabCut. The method proposed in this paper can contribute greatly to scientists conducting fast and accurate cardiotoxicity measurements when using Daphnia as a model.
Collapse
Affiliation(s)
- Ferry Saputra
- Department of Chemistry, Chung Yuan Christian University, Taoyuan 320314, Taiwan; Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Michael Edbert Suryanto
- Department of Chemistry, Chung Yuan Christian University, Taoyuan 320314, Taiwan; Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Gilbert Audira
- Department of Chemistry, Chung Yuan Christian University, Taoyuan 320314, Taiwan; Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Cao Thang Luong
- Department of Chemical Engineering & Institute of Biotechnology and Chemical Engineering, I-Shou University, Da-Shu, Kaohsiung City 84001, Taiwan
| | - Chih-Hsin Hung
- Department of Chemical Engineering & Institute of Biotechnology and Chemical Engineering, I-Shou University, Da-Shu, Kaohsiung City 84001, Taiwan
| | - Marri Jmelou Roldan
- Department of Pharmacy, Faculty of Pharmacy, University of Santo Tomas, Manila 1015, Philippines; Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila 1015, Philippines
| | - Ross D Vasquez
- Department of Pharmacy, Faculty of Pharmacy, University of Santo Tomas, Manila 1015, Philippines; Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila 1015, Philippines; The Graduate School, University of Santo Tomas, Manila 1015, Philippines
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Taoyuan 320314, Taiwan; Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan; Center for Nanotechnology, Chung Yuan Christian University, Taoyuan 320314, Taiwan; Research Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Taoyuan 320314, Taiwan.
| |
Collapse
|
35
|
Canales-Fiscal MR, Tamez-Peña JG. Hybrid morphological-convolutional neural networks for computer-aided diagnosis. Front Artif Intell 2023; 6:1253183. [PMID: 37795497 PMCID: PMC10546173 DOI: 10.3389/frai.2023.1253183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/30/2023] [Indexed: 10/06/2023] Open
Abstract
Training deep Convolutional Neural Networks (CNNs) presents challenges in terms of memory requirements and computational resources, often resulting in issues such as model overfitting and lack of generalization. These challenges can only be mitigated by using an excessive number of training images. However, medical image datasets commonly suffer from data scarcity due to the complexities involved in their acquisition, preparation, and curation. To address this issue, we propose a compact and hybrid machine learning architecture based on the Morphological and Convolutional Neural Network (MCNN), followed by a Random Forest classifier. Unlike deep CNN architectures, the MCNN was specifically designed to achieve effective performance with medical image datasets limited to a few hundred samples. It incorporates various morphological operations into a single layer and uses independent neural networks to extract information from each signal channel. The final classification is obtained by utilizing a Random Forest classifier on the outputs of the last neural network layer. We compare the classification performance of our proposed method with three popular deep CNN architectures (ResNet-18, ShuffleNet-V2, and MobileNet-V2) using two training approaches: full training and transfer learning. The evaluation was conducted on two distinct medical image datasets: the ISIC dataset for melanoma classification and the ORIGA dataset for glaucoma classification. Results demonstrate that the MCNN method exhibits reliable performance in melanoma classification, achieving an AUC of 0.94 (95% CI: 0.91 to 0.97), outperforming the popular CNN architectures. For the glaucoma dataset, the MCNN achieved an AUC of 0.65 (95% CI: 0.53 to 0.74), which was similar to the performance of the popular CNN architectures. This study contributes to the understanding of mathematical morphology in shallow neural networks for medical image classification and highlights the potential of hybrid architectures in effectively learning from medical image datasets that are limited by a small number of case samples.
Collapse
|
36
|
Rich JM, Bhardwaj LN, Shah A, Gangal K, Rapaka MS, Oberai AA, Fields BKK, Matcuk GR, Duddalwar VA. Deep learning image segmentation approaches for malignant bone lesions: a systematic review and meta-analysis. FRONTIERS IN RADIOLOGY 2023; 3:1241651. [PMID: 37614529 PMCID: PMC10442705 DOI: 10.3389/fradi.2023.1241651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023]
Abstract
Introduction Image segmentation is an important process for quantifying characteristics of malignant bone lesions, but this task is challenging and laborious for radiologists. Deep learning has shown promise in automating image segmentation in radiology, including for malignant bone lesions. The purpose of this review is to investigate deep learning-based image segmentation methods for malignant bone lesions on Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and Positron-Emission Tomography/CT (PET/CT). Method The literature search of deep learning-based image segmentation of malignant bony lesions on CT and MRI was conducted in PubMed, Embase, Web of Science, and Scopus electronic databases following the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). A total of 41 original articles published between February 2017 and March 2023 were included in the review. Results The majority of papers studied MRI, followed by CT, PET/CT, and PET/MRI. There was relatively even distribution of papers studying primary vs. secondary malignancies, as well as utilizing 3-dimensional vs. 2-dimensional data. Many papers utilize custom built models as a modification or variation of U-Net. The most common metric for evaluation was the dice similarity coefficient (DSC). Most models achieved a DSC above 0.6, with medians for all imaging modalities between 0.85-0.9. Discussion Deep learning methods show promising ability to segment malignant osseous lesions on CT, MRI, and PET/CT. Some strategies which are commonly applied to help improve performance include data augmentation, utilization of large public datasets, preprocessing including denoising and cropping, and U-Net architecture modification. Future directions include overcoming dataset and annotation homogeneity and generalizing for clinical applicability.
Collapse
Affiliation(s)
- Joseph M. Rich
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lokesh N. Bhardwaj
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Aman Shah
- Department of Applied Biostatistics and Epidemiology, University of Southern California, Los Angeles, CA, United States
| | - Krish Gangal
- Bridge UnderGrad Science Summer Research Program, Irvington High School, Fremont, CA, United States
| | - Mohitha S. Rapaka
- Department of Biology, University of Texas at Austin, Austin, TX, United States
| | - Assad A. Oberai
- Department of Aerospace and Mechanical Engineering Department, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Brandon K. K. Fields
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - George R. Matcuk
- Department of Radiology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Vinay A. Duddalwar
- Department of Radiology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
- Department of Radiology, USC Radiomics Laboratory, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
37
|
Klontzas ME, Koltsakis E, Kalarakis G, Trpkov K, Papathomas T, Sun N, Walch A, Karantanas AH, Tzortzakakis A. A pilot radiometabolomics integration study for the characterization of renal oncocytic neoplasia. Sci Rep 2023; 13:12594. [PMID: 37537362 PMCID: PMC10400617 DOI: 10.1038/s41598-023-39809-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Differentiating benign renal oncocytic tumors and malignant renal cell carcinoma (RCC) on imaging and histopathology is a critical problem that presents an everyday clinical challenge. This manuscript aims to demonstrate a novel methodology integrating metabolomics with radiomics features (RF) to differentiate between benign oncocytic neoplasia and malignant renal tumors. For this purpose, thirty-three renal tumors (14 renal oncocytic tumors and 19 RCC) were prospectively collected and histopathologically characterised. Matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) was used to extract metabolomics data, while RF were extracted from CT scans of the same tumors. Statistical integration was used to generate multilevel network communities of -omics features. Metabolites and RF critical for the differentiation between the two groups (delta centrality > 0.1) were used for pathway enrichment analysis and machine learning classifier (XGboost) development. Receiver operating characteristics (ROC) curves and areas under the curve (AUC) were used to assess classifier performance. Radiometabolomics analysis demonstrated differential network node configuration between benign and malignant renal tumors. Fourteen nodes (6 RF and 8 metabolites) were crucial in distinguishing between the two groups. The combined radiometabolomics model achieved an AUC of 86.4%, whereas metabolomics-only and radiomics-only classifiers achieved AUC of 72.7% and 68.2%, respectively. Analysis of significant metabolite nodes identified three distinct tumour clusters (malignant, benign, and mixed) and differentially enriched metabolic pathways. In conclusion, radiometabolomics integration has been presented as an approach to evaluate disease entities. In our case study, the method identified RF and metabolites important in differentiating between benign oncocytic neoplasia and malignant renal tumors, highlighting pathways differentially expressed between the two groups. Key metabolites and RF identified by radiometabolomics can be used to improve the identification and differentiation between renal neoplasms.
Collapse
Affiliation(s)
- Michail E Klontzas
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Heraklion, Greece
- Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology (FORTH), Crete, Heraklion, Greece
- Department of Radiology, School of Medicine, University of Crete, Voutes Campus, Heraklion, Greece
- Division of Radiology, Department for Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Emmanouil Koltsakis
- Department of Diagnostic Radiology, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Georgios Kalarakis
- Division of Radiology, Department for Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
- Department of Diagnostic Radiology, Karolinska University Hospital, Huddinge, Stockholm, Sweden
- University of Crete, School of Medicine, 71500, Heraklion, Greece
| | - Kiril Trpkov
- Department of Pathology and Laboratory Medicine, Alberta Precision Labs, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Thomas Papathomas
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Department of Clinical Pathology, Vestre Viken Hospital Trust, Drammen, Norway
| | - Na Sun
- Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Apostolos H Karantanas
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Heraklion, Greece
- Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology (FORTH), Crete, Heraklion, Greece
- Department of Radiology, School of Medicine, University of Crete, Voutes Campus, Heraklion, Greece
| | - Antonios Tzortzakakis
- Division of Radiology, Department for Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden.
- Medical Radiation Physics and Nuclear Medicine, Section for Nuclear Medicine, Karolinska University Hospital, Huddinge, C2:74, 14 186, Stockholm, Sweden.
| |
Collapse
|
38
|
Sato J, Suzuki Y, Wataya T, Nishigaki D, Kita K, Yamagata K, Tomiyama N, Kido S. Anatomy-aware self-supervised learning for anomaly detection in chest radiographs. iScience 2023; 26:107086. [PMID: 37434699 PMCID: PMC10331430 DOI: 10.1016/j.isci.2023.107086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/17/2023] [Accepted: 06/06/2023] [Indexed: 07/13/2023] Open
Abstract
In this study, we present a self-supervised learning (SSL)-based model that enables anatomical structure-based unsupervised anomaly detection (UAD). The model employs an anatomy-aware pasting (AnatPaste) augmentation tool that uses a threshold-based lung segmentation pretext task to create anomalies in normal chest radiographs used for model pretraining. These anomalies are similar to real anomalies and help the model recognize them. We evaluate our model using three open-source chest radiograph datasets. Our model exhibits area under curves of 92.1%, 78.7%, and 81.9%, which are the highest among those of existing UAD models. To the best of our knowledge, this is the first SSL model to employ anatomical information from segmentation as a pretext task. The performance of AnatPaste shows that incorporating anatomical information into SSL can effectively improve accuracy.
Collapse
Affiliation(s)
- Junya Sato
- Department of Artificial Intelligence Diagnostic Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
- Graduate School of Information Science and Technology, Osaka University, Yamadaoka, 1-5 Suita, Osaka 565-0871, Japan
| | - Yuki Suzuki
- Department of Artificial Intelligence Diagnostic Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tomohiro Wataya
- Department of Artificial Intelligence Diagnostic Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Daiki Nishigaki
- Department of Artificial Intelligence Diagnostic Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kosuke Kita
- Department of Artificial Intelligence Diagnostic Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuki Yamagata
- Department of Artificial Intelligence Diagnostic Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Noriyuki Tomiyama
- Department of Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shoji Kido
- Department of Artificial Intelligence Diagnostic Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
39
|
Dreizin D, Zhang L, Sarkar N, Bodanapally UK, Li G, Hu J, Chen H, Khedr M, Khetan U, Campbell P, Unberath M. Accelerating voxelwise annotation of cross-sectional imaging through AI collaborative labeling with quality assurance and bias mitigation. FRONTIERS IN RADIOLOGY 2023; 3:1202412. [PMID: 37485306 PMCID: PMC10362988 DOI: 10.3389/fradi.2023.1202412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023]
Abstract
Background precision-medicine quantitative tools for cross-sectional imaging require painstaking labeling of targets that vary considerably in volume, prohibiting scaling of data annotation efforts and supervised training to large datasets for robust and generalizable clinical performance. A straight-forward time-saving strategy involves manual editing of AI-generated labels, which we call AI-collaborative labeling (AICL). Factors affecting the efficacy and utility of such an approach are unknown. Reduction in time effort is not well documented. Further, edited AI labels may be prone to automation bias. Purpose In this pilot, using a cohort of CTs with intracavitary hemorrhage, we evaluate both time savings and AICL label quality and propose criteria that must be met for using AICL annotations as a high-throughput, high-quality ground truth. Methods 57 CT scans of patients with traumatic intracavitary hemorrhage were included. No participant recruited for this study had previously interpreted the scans. nnU-net models trained on small existing datasets for each feature (hemothorax/hemoperitoneum/pelvic hematoma; n = 77-253) were used in inference. Two common scenarios served as baseline comparison- de novo expert manual labeling, and expert edits of trained staff labels. Parameters included time effort and image quality graded by a blinded independent expert using a 9-point scale. The observer also attempted to discriminate AICL and expert labels in a random subset (n = 18). Data were compared with ANOVA and post-hoc paired signed rank tests with Bonferroni correction. Results AICL reduced time effort 2.8-fold compared to staff label editing, and 8.7-fold compared to expert labeling (corrected p < 0.0006). Mean Likert grades for AICL (8.4, SD:0.6) were significantly higher than for expert labels (7.8, SD:0.9) and edited staff labels (7.7, SD:0.8) (corrected p < 0.0006). The independent observer failed to correctly discriminate AI and human labels. Conclusion For our use case and annotators, AICL facilitates rapid large-scale curation of high-quality ground truth. The proposed quality control regime can be employed by other investigators prior to embarking on AICL for segmentation tasks in large datasets.
Collapse
Affiliation(s)
- David Dreizin
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Lei Zhang
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Nathan Sarkar
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Uttam K. Bodanapally
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Guang Li
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Jiazhen Hu
- Johns Hopkins University, Baltimore, MD, United States
| | - Haomin Chen
- Johns Hopkins University, Baltimore, MD, United States
| | - Mustafa Khedr
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Udit Khetan
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Peter Campbell
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, United States
| | | |
Collapse
|
40
|
Zhang J, Mazurowski MA, Allen BC, Wildman-Tobriner B. Multistep Automated Data Labelling Procedure (MADLaP) for thyroid nodules on ultrasound: An artificial intelligence approach for automating image annotation. Artif Intell Med 2023; 141:102553. [PMID: 37295897 DOI: 10.1016/j.artmed.2023.102553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 02/14/2023] [Accepted: 04/11/2023] [Indexed: 06/12/2023]
Abstract
Machine learning (ML) for diagnosis of thyroid nodules on ultrasound is an active area of research. However, ML tools require large, well-labeled datasets, the curation of which is time-consuming and labor-intensive. The purpose of our study was to develop and test a deep-learning-based tool to facilitate and automate the data annotation process for thyroid nodules; we named our tool Multistep Automated Data Labelling Procedure (MADLaP). MADLaP was designed to take multiple inputs including pathology reports, ultrasound images, and radiology reports. Using multiple step-wise 'modules' including rule-based natural language processing, deep-learning-based imaging segmentation, and optical character recognition, MADLaP automatically identified images of a specific thyroid nodule and correctly assigned a pathology label. The model was developed using a training set of 378 patients across our health system and tested on a separate set of 93 patients. Ground truths for both sets were selected by an experienced radiologist. Performance metrics including yield (how many labeled images the model produced) and accuracy (percentage correct) were measured using the test set. MADLaP achieved a yield of 63 % and an accuracy of 83 %. The yield progressively increased as the input data moved through each module, while accuracy peaked part way through. Error analysis showed that inputs from certain examination sites had lower accuracy (40 %) than the other sites (90 %, 100 %). MADLaP successfully created curated datasets of labeled ultrasound images of thyroid nodules. While accurate, the relatively suboptimal yield of MADLaP exposed some challenges when trying to automatically label radiology images from heterogeneous sources. The complex task of image curation and annotation could be automated, allowing for enrichment of larger datasets for use in machine learning development.
Collapse
Affiliation(s)
- Jikai Zhang
- Department of Electrical and Computer Engineering, Duke University, Room 10070, 2424 Erwin Rd, Durham, NC 27705, United States.
| | - Maciej A Mazurowski
- Department of Radiology, Duke University Medical Center, Durham, NC, United States; Department of Electrical and Computer Engineering, Department of Biostatistics and Bioinformatics, Department of Computer Science, Duke University, Room 9044, 2424 Erwin Rd, Durham, NC 27705, United States
| | - Brian C Allen
- Department of Radiology, Duke University Medical Center, Duke University, Dept of Radiology, Box 3808, Durham, NC 27710, United States
| | - Benjamin Wildman-Tobriner
- Department of Radiology, Duke University Medical Center, Duke University, Dept of Radiology, Box 3808, Durham, NC 27710, United States
| |
Collapse
|
41
|
Perchik JD, Smith AD, Elkassem AA, Park JM, Rothenberg SA, Tanwar M, Yi PH, Sturdivant A, Tridandapani S, Sotoudeh H. Artificial Intelligence Literacy: Developing a Multi-institutional Infrastructure for AI Education. Acad Radiol 2023; 30:1472-1480. [PMID: 36323613 DOI: 10.1016/j.acra.2022.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/23/2022] [Accepted: 10/01/2022] [Indexed: 11/17/2022]
Abstract
RATIONALE AND OBJECTIVES To evaluate the effectiveness of an artificial intelligence (AI) in radiology literacy course on participants from nine radiology residency programs in the Southeast and Mid-Atlantic United States. MATERIALS AND METHODS A week-long AI in radiology course was developed and included participants from nine radiology residency programs in the Southeast and Mid-Atlantic United States. Ten 30 minutes lectures utilizing a remote learning format covered basic AI terms and methods, clinical applications of AI in radiology by four different subspecialties, and special topics lectures on the economics of AI, ethics of AI, algorithm bias, and medicolegal implications of AI in medicine. A proctored hands-on clinical AI session allowed participants to directly use an FDA cleared AI-assisted viewer and reporting system for advanced cancer. Pre- and post-course electronic surveys were distributed to assess participants' knowledge of AI terminology and applications and interest in AI education. RESULTS There were an average of 75 participants each day of the course (range: 50-120). Nearly all participants reported a lack of sufficient exposure to AI in their radiology training (96.7%, 90/93). Mean participant score on the pre-course AI knowledge evaluation was 8.3/15, with a statistically significant increase to 10.1/15 on the post-course evaluation (p= 0.04). A majority of participants reported an interest in continued AI in radiology education in the future (78.6%, 22/28). CONCLUSION A multi-institutional AI in radiology literacy course successfully improved AI education of participants, with the majority of participants reporting a continued interest in AI in radiology education in the future.
Collapse
Affiliation(s)
- J D Perchik
- Department of Diagnostic Radiology, University of Alabama at Birmingham, Birmingham, Alabama.
| | - A D Smith
- Department of Diagnostic Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - A A Elkassem
- Department of Diagnostic Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - J M Park
- Department of Diagnostic Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - S A Rothenberg
- Department of Diagnostic Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - M Tanwar
- Department of Diagnostic Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - P H Yi
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Medical Intelligent Imaging Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - A Sturdivant
- University of Alabama at Birmingham Heersink School of Medicine
| | - S Tridandapani
- Department of Diagnostic Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - H Sotoudeh
- Department of Diagnostic Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
42
|
Bigolin Lanfredi R, Schroeder JD, Tasdizen T. Localization supervision of chest x-ray classifiers using label-specific eye-tracking annotation. FRONTIERS IN RADIOLOGY 2023; 3:1088068. [PMID: 37492389 PMCID: PMC10365091 DOI: 10.3389/fradi.2023.1088068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 06/05/2023] [Indexed: 07/27/2023]
Abstract
Convolutional neural networks (CNNs) have been successfully applied to chest x-ray (CXR) images. Moreover, annotated bounding boxes have been shown to improve the interpretability of a CNN in terms of localizing abnormalities. However, only a few relatively small CXR datasets containing bounding boxes are available, and collecting them is very costly. Opportunely, eye-tracking (ET) data can be collected during the clinical workflow of a radiologist. We use ET data recorded from radiologists while dictating CXR reports to train CNNs. We extract snippets from the ET data by associating them with the dictation of keywords and use them to supervise the localization of specific abnormalities. We show that this method can improve a model's interpretability without impacting its image-level classification.
Collapse
Affiliation(s)
- Ricardo Bigolin Lanfredi
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
| | - Joyce D. Schroeder
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, United States
| | - Tolga Tasdizen
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
43
|
Agrawal A, Khatri GD, Khurana B, Sodickson AD, Liang Y, Dreizin D. A survey of ASER members on artificial intelligence in emergency radiology: trends, perceptions, and expectations. Emerg Radiol 2023; 30:267-277. [PMID: 36913061 PMCID: PMC10362990 DOI: 10.1007/s10140-023-02121-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 02/28/2023] [Indexed: 03/14/2023]
Abstract
PURPOSE There is a growing body of diagnostic performance studies for emergency radiology-related artificial intelligence/machine learning (AI/ML) tools; however, little is known about user preferences, concerns, experiences, expectations, and the degree of penetration of AI tools in emergency radiology. Our aim is to conduct a survey of the current trends, perceptions, and expectations regarding AI among American Society of Emergency Radiology (ASER) members. METHODS An anonymous and voluntary online survey questionnaire was e-mailed to all ASER members, followed by two reminder e-mails. A descriptive analysis of the data was conducted, and results summarized. RESULTS A total of 113 members responded (response rate 12%). The majority were attending radiologists (90%) with greater than 10 years' experience (80%) and from an academic practice (65%). Most (55%) reported use of commercial AI CAD tools in their practice. Workflow prioritization based on pathology detection, injury or disease severity grading and classification, quantitative visualization, and auto-population of structured reports were identified as high-value tasks. Respondents overwhelmingly indicated a need for explainable and verifiable tools (87%) and the need for transparency in the development process (80%). Most respondents did not feel that AI would reduce the need for emergency radiologists in the next two decades (72%) or diminish interest in fellowship programs (58%). Negative perceptions pertained to potential for automation bias (23%), over-diagnosis (16%), poor generalizability (15%), negative impact on training (11%), and impediments to workflow (10%). CONCLUSION ASER member respondents are in general optimistic about the impact of AI in the practice of emergency radiology and its impact on the popularity of emergency radiology as a subspecialty. The majority expect to see transparent and explainable AI models with the radiologist as the decision-maker.
Collapse
Affiliation(s)
- Anjali Agrawal
- New Delhi operations, Teleradiology Solutions, Delhi, India
| | - Garvit D Khatri
- Nuclear Medicine, Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Bharti Khurana
- Emergency Radiology, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Aaron D Sodickson
- Emergency Radiology, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yuanyuan Liang
- Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David Dreizin
- Trauma and Emergency Radiology, Department of Diagnostic Radiology and Nuclear Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
44
|
Dreizin D. The American Society of Emergency Radiology (ASER) AI/ML expert panel: inception, mandate, work products, and goals. Emerg Radiol 2023; 30:279-283. [PMID: 37071272 DOI: 10.1007/s10140-023-02135-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Affiliation(s)
- David Dreizin
- Emergency and Trauma Imaging, Department of Diagnostic Radiology and Nuclear Medicine, R Adams Cowley Shock Trauma , Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
45
|
Aldughayfiq B, Ashfaq F, Jhanjhi NZ, Humayun M. Explainable AI for Retinoblastoma Diagnosis: Interpreting Deep Learning Models with LIME and SHAP. Diagnostics (Basel) 2023; 13:1932. [PMID: 37296784 PMCID: PMC10253103 DOI: 10.3390/diagnostics13111932] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Retinoblastoma is a rare and aggressive form of childhood eye cancer that requires prompt diagnosis and treatment to prevent vision loss and even death. Deep learning models have shown promising results in detecting retinoblastoma from fundus images, but their decision-making process is often considered a "black box" that lacks transparency and interpretability. In this project, we explore the use of LIME and SHAP, two popular explainable AI techniques, to generate local and global explanations for a deep learning model based on InceptionV3 architecture trained on retinoblastoma and non-retinoblastoma fundus images. We collected and labeled a dataset of 400 retinoblastoma and 400 non-retinoblastoma images, split it into training, validation, and test sets, and trained the model using transfer learning from the pre-trained InceptionV3 model. We then applied LIME and SHAP to generate explanations for the model's predictions on the validation and test sets. Our results demonstrate that LIME and SHAP can effectively identify the regions and features in the input images that contribute the most to the model's predictions, providing valuable insights into the decision-making process of the deep learning model. In addition, the use of InceptionV3 architecture with spatial attention mechanism achieved high accuracy of 97% on the test set, indicating the potential of combining deep learning and explainable AI for improving retinoblastoma diagnosis and treatment.
Collapse
Affiliation(s)
- Bader Aldughayfiq
- Department of Information Systems, College of Computer and Information Sciences, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Farzeen Ashfaq
- School of Computer Science, SCS, Taylor’s University, Subang Jaya 47500, Malaysia; (F.A.); (N.Z.J.)
| | - N. Z. Jhanjhi
- School of Computer Science, SCS, Taylor’s University, Subang Jaya 47500, Malaysia; (F.A.); (N.Z.J.)
| | - Mamoona Humayun
- Department of Information Systems, College of Computer and Information Sciences, Jouf University, Sakaka 72388, Saudi Arabia;
| |
Collapse
|
46
|
Dreizin D, Staziaki PV, Khatri GD, Beckmann NM, Feng Z, Liang Y, Delproposto ZS, Klug M, Spann JS, Sarkar N, Fu Y. Artificial intelligence CAD tools in trauma imaging: a scoping review from the American Society of Emergency Radiology (ASER) AI/ML Expert Panel. Emerg Radiol 2023; 30:251-265. [PMID: 36917287 PMCID: PMC10640925 DOI: 10.1007/s10140-023-02120-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/27/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND AI/ML CAD tools can potentially improve outcomes in the high-stakes, high-volume model of trauma radiology. No prior scoping review has been undertaken to comprehensively assess tools in this subspecialty. PURPOSE To map the evolution and current state of trauma radiology CAD tools along key dimensions of technology readiness. METHODS Following a search of databases, abstract screening, and full-text document review, CAD tool maturity was charted using elements of data curation, performance validation, outcomes research, explainability, user acceptance, and funding patterns. Descriptive statistics were used to illustrate key trends. RESULTS A total of 4052 records were screened, and 233 full-text articles were selected for content analysis. Twenty-one papers described FDA-approved commercial tools, and 212 reported algorithm prototypes. Works ranged from foundational research to multi-reader multi-case trials with heterogeneous external data. Scalable convolutional neural network-based implementations increased steeply after 2016 and were used in all commercial products; however, options for explainability were narrow. Of FDA-approved tools, 9/10 performed detection tasks. Dataset sizes ranged from < 100 to > 500,000 patients, and commercialization coincided with public dataset availability. Cross-sectional torso datasets were uniformly small. Data curation methods with ground truth labeling by independent readers were uncommon. No papers assessed user acceptance, and no method included human-computer interaction. The USA and China had the highest research output and frequency of research funding. CONCLUSIONS Trauma imaging CAD tools are likely to improve patient care but are currently in an early stage of maturity, with few FDA-approved products for a limited number of uses. The scarcity of high-quality annotated data remains a major barrier.
Collapse
Affiliation(s)
- David Dreizin
- Department of Diagnostic Radiology and Nuclear Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Pedro V Staziaki
- Cardiothoracic Imaging, Department of Radiology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Garvit D Khatri
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Nicholas M Beckmann
- Memorial Hermann Orthopedic & Spine Hospital, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Zhaoyong Feng
- Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yuanyuan Liang
- Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zachary S Delproposto
- Division of Emergency Radiology, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | | | - J Stephen Spann
- Department of Radiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Nathan Sarkar
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yunting Fu
- Health Sciences and Human Services Library, University of Maryland, Baltimore, Baltimore, MD, USA
| |
Collapse
|
47
|
Paudyal R, Shah AD, Akin O, Do RKG, Konar AS, Hatzoglou V, Mahmood U, Lee N, Wong RJ, Banerjee S, Shin J, Veeraraghavan H, Shukla-Dave A. Artificial Intelligence in CT and MR Imaging for Oncological Applications. Cancers (Basel) 2023; 15:cancers15092573. [PMID: 37174039 PMCID: PMC10177423 DOI: 10.3390/cancers15092573] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer care increasingly relies on imaging for patient management. The two most common cross-sectional imaging modalities in oncology are computed tomography (CT) and magnetic resonance imaging (MRI), which provide high-resolution anatomic and physiological imaging. Herewith is a summary of recent applications of rapidly advancing artificial intelligence (AI) in CT and MRI oncological imaging that addresses the benefits and challenges of the resultant opportunities with examples. Major challenges remain, such as how best to integrate AI developments into clinical radiology practice, the vigorous assessment of quantitative CT and MR imaging data accuracy, and reliability for clinical utility and research integrity in oncology. Such challenges necessitate an evaluation of the robustness of imaging biomarkers to be included in AI developments, a culture of data sharing, and the cooperation of knowledgeable academics with vendor scientists and companies operating in radiology and oncology fields. Herein, we will illustrate a few challenges and solutions of these efforts using novel methods for synthesizing different contrast modality images, auto-segmentation, and image reconstruction with examples from lung CT as well as abdome, pelvis, and head and neck MRI. The imaging community must embrace the need for quantitative CT and MRI metrics beyond lesion size measurement. AI methods for the extraction and longitudinal tracking of imaging metrics from registered lesions and understanding the tumor environment will be invaluable for interpreting disease status and treatment efficacy. This is an exciting time to work together to move the imaging field forward with narrow AI-specific tasks. New AI developments using CT and MRI datasets will be used to improve the personalized management of cancer patients.
Collapse
Affiliation(s)
- Ramesh Paudyal
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Akash D Shah
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Oguz Akin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Richard K G Do
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Amaresha Shridhar Konar
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Vaios Hatzoglou
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Usman Mahmood
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Nancy Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Richard J Wong
- Head and Neck Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | | | | | - Harini Veeraraghavan
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Amita Shukla-Dave
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| |
Collapse
|
48
|
Alfeo AL, Zippo AG, Catrambone V, Cimino MGCA, Toschi N, Valenza G. From local counterfactuals to global feature importance: efficient, robust, and model-agnostic explanations for brain connectivity networks. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 236:107550. [PMID: 37086584 DOI: 10.1016/j.cmpb.2023.107550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Explainable artificial intelligence (XAI) is a technology that can enhance trust in mental state classifications by providing explanations for the reasoning behind artificial intelligence (AI) models outputs, especially for high-dimensional and highly-correlated brain signals. Feature importance and counterfactual explanations are two common approaches to generate these explanations, but both have drawbacks. While feature importance methods, such as shapley additive explanations (SHAP), can be computationally expensive and sensitive to feature correlation, counterfactual explanations only explain a single outcome instead of the entire model. METHODS To overcome these limitations, we propose a new procedure for computing global feature importance that involves aggregating local counterfactual explanations. This approach is specifically tailored to fMRI signals and is based on the hypothesis that instances close to the decision boundary and their counterfactuals mainly differ in the features identified as most important for the downstream classification task. We refer to this proposed feature importance measure as Boundary Crossing Solo Ratio (BoCSoR), since it quantifies the frequency with which a change in each feature in isolation leads to a change in classification outcome, i.e., the crossing of the model's decision boundary. RESULTS AND CONCLUSIONS Experimental results on synthetic data and real publicly available fMRI data from the Human Connect project show that the proposed BoCSoR measure is more robust to feature correlation and less computationally expensive than state-of-the-art methods. Additionally, it is equally effective in providing an explanation for the behavior of any AI model for brain signals. These properties are crucial for medical decision support systems, where many different features are often extracted from the same physiological measures and a gold standard is absent. Consequently, computing feature importance may become computationally expensive, and there may be a high probability of mutual correlation among features, leading to unreliable results from state-of-the-art XAI methods.
Collapse
Affiliation(s)
- Antonio Luca Alfeo
- Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino, 1, Pisa, 56126, Italy; Bioengineering & Robotics Research Center E. Piaggio, University of Pisa, Largo Lucio Lazzarino, 1, Pisa, 56126, Italy.
| | - Antonio G Zippo
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Via Raoul Follereau, 3, Vedano al Lambro (MB), 20854, Italy
| | - Vincenzo Catrambone
- Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino, 1, Pisa, 56126, Italy; Bioengineering & Robotics Research Center E. Piaggio, University of Pisa, Largo Lucio Lazzarino, 1, Pisa, 56126, Italy
| | - Mario G C A Cimino
- Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino, 1, Pisa, 56126, Italy; Bioengineering & Robotics Research Center E. Piaggio, University of Pisa, Largo Lucio Lazzarino, 1, Pisa, 56126, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, Roma, 00133, Italy
| | - Gaetano Valenza
- Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino, 1, Pisa, 56126, Italy; Bioengineering & Robotics Research Center E. Piaggio, University of Pisa, Largo Lucio Lazzarino, 1, Pisa, 56126, Italy
| |
Collapse
|
49
|
Nazir S, Dickson DM, Akram MU. Survey of explainable artificial intelligence techniques for biomedical imaging with deep neural networks. Comput Biol Med 2023; 156:106668. [PMID: 36863192 DOI: 10.1016/j.compbiomed.2023.106668] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 01/12/2023] [Accepted: 02/10/2023] [Indexed: 02/21/2023]
Abstract
Artificial Intelligence (AI) techniques of deep learning have revolutionized the disease diagnosis with their outstanding image classification performance. In spite of the outstanding results, the widespread adoption of these techniques in clinical practice is still taking place at a moderate pace. One of the major hindrance is that a trained Deep Neural Networks (DNN) model provides a prediction, but questions about why and how that prediction was made remain unanswered. This linkage is of utmost importance for the regulated healthcare domain to increase the trust in the automated diagnosis system by the practitioners, patients and other stakeholders. The application of deep learning for medical imaging has to be interpreted with caution due to the health and safety concerns similar to blame attribution in the case of an accident involving autonomous cars. The consequences of both a false positive and false negative cases are far reaching for patients' welfare and cannot be ignored. This is exacerbated by the fact that the state-of-the-art deep learning algorithms comprise of complex interconnected structures, millions of parameters, and a 'black box' nature, offering little understanding of their inner working unlike the traditional machine learning algorithms. Explainable AI (XAI) techniques help to understand model predictions which help develop trust in the system, accelerate the disease diagnosis, and meet adherence to regulatory requirements. This survey provides a comprehensive review of the promising field of XAI for biomedical imaging diagnostics. We also provide a categorization of the XAI techniques, discuss the open challenges, and provide future directions for XAI which would be of interest to clinicians, regulators and model developers.
Collapse
Affiliation(s)
- Sajid Nazir
- Department of Computing, Glasgow Caledonian University, Glasgow, UK.
| | - Diane M Dickson
- Department of Podiatry and Radiography, Research Centre for Health, Glasgow Caledonian University, Glasgow, UK
| | - Muhammad Usman Akram
- Computer and Software Engineering Department, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
50
|
Mukhtorov D, Rakhmonova M, Muksimova S, Cho YI. Endoscopic Image Classification Based on Explainable Deep Learning. SENSORS (BASEL, SWITZERLAND) 2023; 23:3176. [PMID: 36991887 PMCID: PMC10058443 DOI: 10.3390/s23063176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Deep learning has achieved remarkably positive results and impacts on medical diagnostics in recent years. Due to its use in several proposals, deep learning has reached sufficient accuracy to implement; however, the algorithms are black boxes that are hard to understand, and model decisions are often made without reason or explanation. To reduce this gap, explainable artificial intelligence (XAI) offers a huge opportunity to receive informed decision support from deep learning models and opens the black box of the method. We conducted an explainable deep learning method based on ResNet152 combined with Grad-CAM for endoscopy image classification. We used an open-source KVASIR dataset that consisted of a total of 8000 wireless capsule images. The heat map of the classification results and an efficient augmentation method achieved a high positive result with 98.28% training and 93.46% validation accuracy in terms of medical image classification.
Collapse
|