1
|
Ding Z, Zhang C, Xia C, Yao Q, Wei Y, Zhang X, Zhao N, Wang X, Shi S. DCE-MRI based deep learning analysis of intratumoral subregion for predicting Ki-67 expression level in breast cancer. Magn Reson Imaging 2025; 119:110370. [PMID: 40089082 DOI: 10.1016/j.mri.2025.110370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/19/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025]
Abstract
OBJECTIVE To evaluate whether deep learning (DL) analysis of intratumor subregion based on dynamic contrast-enhanced MRI (DCE-MRI) can help predict Ki-67 expression level in breast cancer. MATERIALS AND METHODS A total of 290 breast cancer patients from two hospitals were retrospectively collected. A k-means clustering algorithm confirmed subregions of tumor. DL features of whole tumor and subregions were extracted from DCE-MRI images based on 3D ResNet18 pre-trained model. The logistic regression model was constructed after dimension reduction. Model performance was assessed using the area under the curve (AUC), and clinical value was demonstrated through decision curve analysis (DCA). RESULTS The k-means clustering method clustered the tumor into two subregions (habitat 1 and habitat 2) based on voxel values. Both the habitat 1 model (validation set: AUC = 0.771, 95 %CI: 0.642-0.900 and external test set: AUC = 0.794, 95 %CI: 0.696-0.891) and the habitat 2 model (AUC = 0.734, 95 %CI: 0.605-0.862 and AUC = 0.756, 95 %CI: 0.646-0.866) showed better predictive capabilities for Ki-67 expression level than the whole tumor model (AUC = 0.686, 95 %CI: 0.550-0.823 and AUC = 0.680, 95 %CI: 0.555-0.804). The combined model based on the two subregions further enhanced the predictive capability (AUC = 0.808, 95 %CI: 0.696-0.921 and AUC = 0.842, 95 %CI: 0.758-0.926), and it demonstrated higher clinical value than other models in DCA. CONCLUSIONS The deep learning model derived from subregion of tumor showed better performance for predicting Ki-67 expression level in breast cancer patients. Additionally, the model that integrated two subregions further enhanced the predictive performance.
Collapse
Affiliation(s)
- Zhimin Ding
- Department of Radiology, The First Affiliated Hospital of Wannan Medical College, No. 2 Zheshan West Road, Wuhu 241000, China
| | - Chengmeng Zhang
- Department of Radiology, Huzhou Central Hospital, No. 1558 Third Ring North Road, Huzhou 313000, China
| | - Cong Xia
- Department of Radiology, Jiangsu Cancer Hospital, No. 42 BaiziTing Road, Xuanwu District, Nanjing 210000, China
| | - Qi Yao
- Department of Radiology, The First Affiliated Hospital of Wannan Medical College, No. 2 Zheshan West Road, Wuhu 241000, China
| | - Yi Wei
- Department of Radiology, The First Affiliated Hospital of Wannan Medical College, No. 2 Zheshan West Road, Wuhu 241000, China
| | - Xia Zhang
- Department of Medical Imaging, The First Affiliated Hospital of Wannan Medical College, No. 2 Zheshan West Road, Wuhu 241000, China
| | - Nannan Zhao
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical University, No. 801 Zhihuai Road, Bengbu 233004, China
| | - Xiaoming Wang
- Clinical Institute of Wannan Medical College, No. 2 Zheshan West Road, Wuhu 241000, China.
| | - Suhua Shi
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Wannan Medical College, No. 2 Zheshan West Road, Wuhu 241000, China.
| |
Collapse
|
2
|
Zhu G, Dong Y, Zhu R, Tan Y, Liu X, Tao J, Chen D. Dynamic contrast-enhanced magnetic resonance imaging parameters combined with diffusion-weighted imaging for discriminating malignant lesions, molecular subtypes, and pathological grades in invasive ductal carcinoma patients. PLoS One 2025; 20:e0320240. [PMID: 40233046 PMCID: PMC11999158 DOI: 10.1371/journal.pone.0320240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 02/15/2025] [Indexed: 04/17/2025] Open
Abstract
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) parameters or diffusion-weighted imaging (DWI) findings provide prognostic information on breast cancer. However, the accuracy of a single MRI technique is unsatisfactory. This study intended to explore the combination of DWI and DCE-MRI parameters in discriminating molecular subtypes in invasive ductal carcinoma (IDC) patients. Eighty-two IDC patients who underwent breast DWI and DCE-MRI examinations were retrospectively analyzed. Eighty-six patients with benign masses were retrieved as benign controls. The combination of ADC value, Ktrans, Kep, Ve, and iAUC had a good ability to discriminate IDC patients (vs. benign controls) with an area under the curve (AUC) [95% confidence interval (CI)] of 0.961 (0.935-0.987). A nomogram-based prediction model with the above combination showed a good predictive value for IDC probability. The combination of ADC value, Ktrans, Kep, and iAUC also had a certain ability to discriminate pathological grade III (vs. I or II) [AUC (95% CI): 0.698 (0.572-0.825)] in IDC patients. Notably, ADC value (P=0.010) and Kep (P=0.043) differed in IDC patients with different molecular subtypes. Besides, ADC value was increased (P<0.001), but Ktrans (P=0.037) and Kep (P=0.004) were decreased in IDC patients with Lumina A (vs. other molecular subtypes). The combination of ADC value, Ktrans, Kep, had an acceptable ability to discriminate Luminal A (vs. other molecular subtypes) [AUC (95% CI): 0.845 (0.748-0.941)] in IDC patients. DWI combined with DCE-MRI parameters discriminates IDC from benign masses; it also identifies Luminal A and pathological grade III in IDC patients.
Collapse
Affiliation(s)
- Gangming Zhu
- Department of radiology, Dongguan TungWah hospital, Dongguan, Guangdong, China
| | - Yongde Dong
- Department of radiology, Dongguan Songshan Lake TungWah hospital, Dongguan, Guangdong, China
| | - Ruiting Zhu
- Department of radiology, Dongguan Songshan Lake TungWah hospital, Dongguan, Guangdong, China
| | - Yuanman Tan
- Department of radiology, Dongguan Songshan Lake TungWah hospital, Dongguan, Guangdong, China
| | - Xiao Liu
- Department of radiology, Dongguan TungWah hospital, Dongguan, Guangdong, China
| | - Juan Tao
- Department of radiology, Dongguan TungWah hospital, Dongguan, Guangdong, China
| | - Decheng Chen
- Department of radiology, Dongguan Songshan Lake TungWah hospital, Dongguan, Guangdong, China
| |
Collapse
|
3
|
Zheng Y, Zhang H, Chen H, Song Y, Lu P, Ma M, Lin M, He M. Combined morphology and radiomics of intravoxel incoherent movement as a predictive model for the pathologic complete response before neoadjuvant chemotherapy in patients with breast cancer. Front Oncol 2025; 15:1452128. [PMID: 40007999 PMCID: PMC11850367 DOI: 10.3389/fonc.2025.1452128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 01/13/2025] [Indexed: 02/27/2025] Open
Abstract
Background To develop a predictive model using baseline imaging of morphology and radiomics derived from intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) to determine the pathologic complete response (pCR) to neoadjuvant chemotherapy (NACT) in breast cancer patients. Methods A total of 265 patients who underwent 3.0 T MRI scans before NACT were examined. Among them, 113 female patients with stage II-III breast cancer were included. The training data set consisted of 79 patients (31/48=pCR/Non-PCR, npCR), while the remaining 34 cases formed the validation cohort (13/21=pCR/npCR). Radiomics and conventional magnetic resonance imaging features analysis were performed. To build a nomogram model that integrates the radiomics signature and conventional imaging, a logistic regression method was employed. The performance evaluation of the nomogram involved the area under the receiver operating characteristic curve (AUC), a decision curve analysis, and the calibration slope. Results In an assessment for predicting pCR, the radiomics model displayed an AUC of 0.778 and 0.703 for the training and testing cohorts, respectively. Conversely, the morphology model exhibited an AUC of 0.721 and 0.795 for the training and testing cohorts, respectively. The nomogram displayed superior predictive discrimination with an AUC of 0.862 for the training cohort and 0.861 for the testing cohort. Decision curve analyses indicated that the nomogram provided the highest clinical net benefit. Conclusion Performing a nomogram consisting of integrated morphology and radiomics assessment using IVIM-DWI before NACT enables effective prediction of pCR in breast cancer. This predictive model therefore can facilitate medical professionals in making individualized treatment decisions.
Collapse
Affiliation(s)
- Yunyan Zheng
- Shengli Clinical College of Fujian Medical University & Department of Radiology, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Hui Zhang
- Shengli Clinical College of Fujian Medical University & Department of Breast Surgery, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Huijian Chen
- Shengli Clinical College of Fujian Medical University & Department of Radiology, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Yang Song
- MR Research Collaboration Team, Siemens Healthineers Ltd., Shanghai, China
| | - Ping Lu
- School of Medical Imaging, Fujian Medical University, Fuzhou, China
| | - Mingping Ma
- Shengli Clinical College of Fujian Medical University & Department of Radiology, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Mengbo Lin
- Shengli Clinical College of Fujian Medical University & Department of Breast Surgery, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Muzhen He
- Shengli Clinical College of Fujian Medical University & Department of Radiology, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| |
Collapse
|
4
|
Yang L, Yu L, Shi G, Yang L, Wang Y, Han R, Huang F, Qian Y, Duan X. Radiomic features of dynamic contrast-enhanced MRI can predict Ki-67 status in head and neck squamous cell carcinoma. Magn Reson Imaging 2025; 116:110276. [PMID: 39571922 DOI: 10.1016/j.mri.2024.110276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
PURPOSE This study aimed to investigate the potential of radiomic features derived from dynamic contrast-enhanced MRI (DCE-MRI) in predicting Ki-67 and p16 status in head and neck squamous cell carcinoma (HNSCC). MATERIALS AND METHODS A cohort of 124 HNSCC patients who underwent pre-surgery DCE-MRI were included and divided into training and test set (7:3), further subgroup analysis was performed for 104 cases with oral squamous cell carcinoma (OSCC). Radiomics features were extracted from DCE images. The least absolute shrinkage and selection operator (LASSO) was used for radiomics features selection, and receiver operating characteristics analysis for predictive performance assessment. The nomogram's performance was evaluated using decision curve analysis (DCA). RESULTS Ten DCE-MRI features were identified to build the predictive model of HNSCC, demonstrating excellent predictive value for Ki-67 status in both the training set (AUC of 0.943) and test set (AUC of 0.801). The nomograms based on the predictive model showed good fit in the calibration curves (p > 0.05), and DCA indicated its high clinical usefulness. In subgroup analysis of OSCC, fourteen features were selected to build the predictive model for Ki-67 status with an AUC of 0.960 in training set and 0.817 in test set. No features could be included to establish a model to predict p16 status. CONCLUSION The radiomics model utilizing DCE-MRI features could effectively predict Ki-67 status in HNSCC patients, offering potential for noninvasive preoperative prediction of Ki-67 status.
Collapse
Affiliation(s)
- Lu Yang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, Guangdong, China
| | - Longwu Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui Province, China
| | - Guangzi Shi
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Lingjie Yang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, Guangdong, China
| | - Yu Wang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, Guangdong, China
| | - Riyu Han
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, Guangdong, China
| | - Fengqiong Huang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, Guangdong, China
| | - Yinfeng Qian
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui Province, China.
| | - Xiaohui Duan
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China.
| |
Collapse
|
5
|
Ferro A, Bottosso M, Dieci MV, Scagliori E, Miglietta F, Aldegheri V, Bonanno L, Caumo F, Guarneri V, Griguolo G, Pasello G. Clinical applications of radiomics and deep learning in breast and lung cancer: A narrative literature review on current evidence and future perspectives. Crit Rev Oncol Hematol 2024; 203:104479. [PMID: 39151838 DOI: 10.1016/j.critrevonc.2024.104479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/22/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024] Open
Abstract
Radiomics, analysing quantitative features from medical imaging, has rapidly become an emerging field in translational oncology. Radiomics has been investigated in several neoplastic malignancies as it might allow for a non-invasive tumour characterization and for the identification of predictive and prognostic biomarkers. Over the last few years, evidence has been accumulating regarding potential clinical applications of machine learning in many crucial moments of cancer patients' history. However, the incorporation of radiomics in clinical decision-making process is still limited by low data reproducibility and study variability. Moreover, the need for prospective validations and standardizations is emerging. In this narrative review, we summarize current evidence regarding radiomic applications in high-incidence cancers (breast and lung) for screening, diagnosis, staging, treatment choice, response, and clinical outcome evaluation. We also discuss pro and cons of the radiomic approach, suggesting possible solutions to critical issues which might invalidate radiomics studies and propose future perspectives.
Collapse
Affiliation(s)
- Alessandra Ferro
- Division of Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, via Gattamelata 64, Padua 35128, Italy
| | - Michele Bottosso
- Division of Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, via Gattamelata 64, Padua 35128, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, via Giustiniani 2, Padova 35128, Italy
| | - Maria Vittoria Dieci
- Division of Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, via Gattamelata 64, Padua 35128, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, via Giustiniani 2, Padova 35128, Italy.
| | - Elena Scagliori
- Radiology Unit, Veneto Institute of Oncology IOV - IRCCS, via Gattamelata 64, Padua 35128, Italy
| | - Federica Miglietta
- Division of Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, via Gattamelata 64, Padua 35128, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, via Giustiniani 2, Padova 35128, Italy
| | - Vittoria Aldegheri
- Radiology Unit, Veneto Institute of Oncology IOV - IRCCS, via Gattamelata 64, Padua 35128, Italy
| | - Laura Bonanno
- Division of Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, via Gattamelata 64, Padua 35128, Italy
| | - Francesca Caumo
- Unit of Breast Radiology, Veneto Institute of Oncology IOV - IRCCS, via Gattamelata 64, Padua 35128, Italy
| | - Valentina Guarneri
- Division of Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, via Gattamelata 64, Padua 35128, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, via Giustiniani 2, Padova 35128, Italy
| | - Gaia Griguolo
- Division of Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, via Gattamelata 64, Padua 35128, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, via Giustiniani 2, Padova 35128, Italy
| | - Giulia Pasello
- Division of Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, via Gattamelata 64, Padua 35128, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, via Giustiniani 2, Padova 35128, Italy
| |
Collapse
|
6
|
Lai B, Yi Y, Yang X, Li X, Xu L, Yan Z, Yang L, Han R, Hu H, Duan X. Dynamic contrast-enhanced and diffusion-weighted MRI of cervical carcinoma: Correlations with Ki-67 proliferation status. Magn Reson Imaging 2024; 112:136-143. [PMID: 39029603 DOI: 10.1016/j.mri.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/15/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
OBJECTIVES To investigate the association of quantitative parameter (apparent diffusion coefficient [ADC]) from diffusion-weighted imaging (DWI) and various quantitative and semiquantitative parameters from dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) with Ki-67 proliferation index (PI) in cervical carcinoma (CC). METHODS A total of 102 individuals with CC who received 3.0 T MRI examination (DWI and DCE MRI) between October 2016 and December 2022 were enrolled in our investigation. Two radiologists separately assessed the ADC parameter and various quantitative and semiquantitative parameters including (volume transfer constant [Ktrans], rate constant [kep], extravascular extracellular space volume fraction [ve], volume fraction of plasma [vp], time to peak [TTP], maximum concentration [MaxCon], maximal slope [MaxSlope] and area under curve [AUC]) for each tumor. Their association with Ki-67 PI was analyzed by Spearman association analysis. The discrepancy between low-proliferation and high-proliferation groups was subsequently analyzed. The receiver operating characteristic (ROC) curve analysis utilized to identify optimal cut-off points for significant parameters. RESULTS Both ADC (ρ = -0.457, p < 0.001) and Ktrans (ρ = -0.467, p < 0.001) indicated a strong negative association with Ki-67 PI. Ki-67 PI showed positive correlations with TTP, MaxCon, MaxSlope and AUC (ρ = 0.202, 0.231, 0.309, 0.235, respectively; all p values<0.05). Compared with the low-proliferation group, high-Ki-67 group presented a significantly lower ADC (0.869 ± 0.125 × 10-3 mm2/s vs. 1.149 ± 0.318 × 10-3 mm2/s; p < 0.001) and Ktrans (1.314 ± 1.162 min-1vs. 0.391 ± 0.390 min-1; p < 0.001), also significantly higher MaxCon values (0.756 ± 0.959 vs. 0.422 ± 0.341; p < 0.05) and AUC values (2.373 ± 3.012 vs. 1.273 ± 1.000; p < 0.05). The cut-offs of ADC, Ktrans, MaxCon and AUC for discrimating low- and high-Ki-67 groups were 0.920 × 10-3 mm2/s, 0.304 min-1, 0.209 and 1.918, respectively. CONCLUSIONS ADC, Ktrans, TTP, MaxCon, MaxSlope and AUC are associated with Ki-67 PI. ADC and Ktrans exhibited high performance to discriminate low and high Ki-67 status of CC.
Collapse
Affiliation(s)
- Bingjia Lai
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yongju Yi
- Information Technology Department, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Xiaojun Yang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, Guangdong, China
| | - Xiumei Li
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, Guangdong, China
| | - Longjiahui Xu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, Guangdong, China
| | - Zhuoheng Yan
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, Guangdong, China
| | - Lu Yang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, Guangdong, China
| | - Riyu Han
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, Guangdong, China
| | - Huijun Hu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, Guangdong, China.
| | - Xiaohui Duan
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
7
|
Zheng B, Zhao Z, Zheng P, Liu Q, Li S, Jiang X, Huang X, Ye Y, Wang H. The current state of MRI-based radiomics in pituitary adenoma: promising but challenging. Front Endocrinol (Lausanne) 2024; 15:1426781. [PMID: 39371931 PMCID: PMC11449739 DOI: 10.3389/fendo.2024.1426781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/30/2024] [Indexed: 10/08/2024] Open
Abstract
In the clinical diagnosis and treatment of pituitary adenomas, MRI plays a crucial role. However, traditional manual interpretations are plagued by inter-observer variability and limitations in recognizing details. Radiomics, based on MRI, facilitates quantitative analysis by extracting high-throughput data from images. This approach elucidates correlations between imaging features and pituitary tumor characteristics, thereby establishing imaging biomarkers. Recent studies have demonstrated the extensive application of radiomics in differential diagnosis, subtype identification, consistency evaluation, invasiveness assessment, and treatment response in pituitary adenomas. This review succinctly presents the general workflow of radiomics, reviews pertinent literature with a summary table, and provides a comparative analysis with traditional methods. We further elucidate the connections between radiological features and biological findings in the field of pituitary adenoma. While promising, the clinical application of radiomics still has a considerable distance to traverse, considering the issues with reproducibility of imaging features and the significant heterogeneity in pituitary adenoma patients.
Collapse
Affiliation(s)
- Baoping Zheng
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pingping Zheng
- Department of Neurosurgery, People’s Hospital of Biyang County, Zhumadian, China
| | - Qiang Liu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Li
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Huang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Youfan Ye
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haijun Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Balaji R, Al Sukaiti R. Editorial for "Radiomics Nomogram Based on Dual-Sequence MRI for Assessing Ki-67 Expression in Breast Cancer". J Magn Reson Imaging 2024; 60:1213-1214. [PMID: 38102918 DOI: 10.1002/jmri.29180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Affiliation(s)
- Ravikanth Balaji
- Department of Radiology and Nuclear Medicine, Sultan Qaboos Comprehensive Cancer Care and Research Centre (SQCCCRC), SQU Street, Al Khoud, MUSCAT, SULTANATE OF OMAN
| | - Rashid Al Sukaiti
- Department of Radiology and Nuclear Medicine, Sultan Qaboos Comprehensive Cancer Care and Research Centre (SQCCCRC), SQU Street, Al Khoud, MUSCAT, SULTANATE OF OMAN
| |
Collapse
|
9
|
Zhang L, Shen M, Zhang D, He X, Du Q, Liu N, Huang X. Radiomics Nomogram Based on Dual-Sequence MRI for Assessing Ki-67 Expression in Breast Cancer. J Magn Reson Imaging 2024; 60:1203-1212. [PMID: 38088478 DOI: 10.1002/jmri.29149] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Radiomics has been extensively applied in predicting Ki-67 in breast cancer (BC). However, this is often confined to the exploration of a single sequence, without considering the varying sensitivity and specificity among different sequences. PURPOSE To develop a nomogram based on dual-sequence MRI derived radiomic features combined with clinical characteristics for assessing Ki-67 expression in BC. STUDY TYPE Retrospective. POPULATION 227 females (average age, 51 years) with 233 lesions and pathologically confirmed BC, which were divided into the training set (n = 163) and test set (n = 70). FIELD STRENGTH/SEQUENCE 3.0-T, T1-weighted dynamic contrast-enhanced MRI (DCE-MRI) and apparent diffusion coefficient (ADC) maps from diffusion-weighted MRI (EPI sequence). ASSESSMENT The regions of interest were manually delineated on ADC and DCE-MRI sequences. Three radiomics models of ADC, DCE-MRI, and dsMRI (combined ADC and DCE-MRI sequences) were constructed by logistic regression and the radiomics score (Radscore) of the best model was calculated. The correlation between Ki-67 expression and clinical characteristics such as receptor status, axillary lymph node (ALN) metastasis status, ADC value, and time signal intensity curve was analyzed, and the clinical model was established. The Radscore was combined with clinical predictors to construct a nomogram. STATISTICAL TESTS The independent sample t-test, Mann-Whitney U test, Chi-squared test, Interclass correlation coefficients (ICCs), single factor analysis, least absolute shrinkage and selection operator (LASSO), logistic regression, receiver operating characteristics, Delong test, Hosmer_Lemeshow test, calibration curve, decision curve. A P-value <0.05 was considered statistically significant. RESULTS In the test set, the prediction efficiency of the dsMRI model (AUC = 0.862) was higher than ADC model (AUC = 0.797) and DCE-MRI model (AUC = 0.755). With the inclusion of estrogen receptor (ER) and ALN metastasis, the nomogram displayed quality improvement (AUC = 0.876), which was superior to the clinical model (AUC = 0.787) and radiomics model. DATA CONCLUSION The nomogram based on dsMRI radiomic features and clinical characteristics may be able to assess Ki-67 expression in BC. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Li Zhang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Mengyi Shen
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Dingyi Zhang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xin He
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Qinglin Du
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Nian Liu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiaohua Huang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
10
|
Lin JY, Ye JY, Chen JG, Lin ST, Lin S, Cai SQ. Prediction of Receptor Status in Radiomics: Recent Advances in Breast Cancer Research. Acad Radiol 2024; 31:3004-3014. [PMID: 38151383 DOI: 10.1016/j.acra.2023.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023]
Abstract
Breast cancer is a multifactorial heterogeneous disease and the leading cause of cancer-related deaths in women; its diagnosis and treatment require clinical sensitivity and a comprehensive disciplinary research approach. The expression of different receptors on tumor cells not only provides the basis for molecular typing of breast cancer but also has a decisive role in the diagnosis, treatment, and prognosis of breast cancer. To date, immunohistochemistry (IHC), which uses invasive histological sampling, has been extensively used in clinical practice to analyze the status of receptors and to make an accurate diagnosis of breast cancer. As an invasive assay, IHC can provide important biological information on tumors at a single point in time, but cannot predict future changes (due to treatment or tumor mutations) without additional invasive procedures. These issues highlight the need to develop a non-invasive method for predicting receptor status. The emerging field of radiomics may offer a non-invasive approach to identification of receptor status without requiring biopsy. In this paper, we present a review of the latest research results in radiomics for predicting the status of breast cancer receptors, with potential important clinical applications.
Collapse
Affiliation(s)
- Jun-Yuan Lin
- Department of Radiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China (J.Y.L., S.Q.C.)
| | - Jia-Yi Ye
- Department of Radiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China (J.Y.L., S.Q.C.)
| | - Jin-Guo Chen
- Department of Radiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China (J.Y.L., S.Q.C.)
| | - Shu-Ting Lin
- Department of Radiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China (J.Y.L., S.Q.C.)
| | - Shu Lin
- Center of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China (J.Y.Y., J.G.C., S.T.L., S.L.); Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia (S.L.)
| | - Si-Qing Cai
- Department of Radiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China (J.Y.L., S.Q.C.).
| |
Collapse
|
11
|
Zhang C, Ma L, Zhao Y, Zhang Z, Zhang Q, Li X, Qin J, Ren Y, Hu Z, Zhao Q, Shen W, Cheng Y. Estimating pathological prognostic factors in epithelial ovarian cancers using apparent diffusion coefficients of functional tumor volume. Eur J Radiol 2024; 176:111514. [PMID: 38776804 DOI: 10.1016/j.ejrad.2024.111514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE To assess the utility of apparent diffusion coefficients (ADCs) of whole tumor volume (WTV) and functional tumor volume (FTV) in determining the pathologicalprognostic factors in epithelial ovarian cancers (EOCs). METHODS A total of 155 consecutive patients who were diagnosed with EOC between January 2017 and August 2022 and underwent both conventional magnetic resonance imaging and diffusion-weighted imaging were assessed in this study. The maximum, minimum, and mean ADC values of the whole tumor (ADCwmax, ADCwmin, and ADCwmean, respectively) and functional tumor (ADCfmax, ADCfmin, and ADCfmean, respectively) as well as the WTV and FTV were derived from the ADC maps. The univariate and multivariate logistic regression analyses and receiver operating characteristic curve (ROC) analysis were used to assess the correlation between these ADC values and the pathological prognostic factors, namely subtypes, lymph node metastasis (LNM), Ki-67 index, and p53 expression. RESULTS The ADCfmean value was significantly lower in type II EOC, LNM-positive, and high-Ki-67 index groups compared to the type I EOC, LNM-negative, and low-Ki-67 index groups (p ≤ 0.001). Similarly, the ADCwmean and ADCfmean values were lower in the mutant-p53 group compared to the wild-type-p53 group (p ≤ 0.001). Additionally, the ADCfmean showed the highest area under the ROC curve (AUC) for evaluating type II EOC (0.725), LNM-positive (0.782), and high-Ki-67 index (0.688) samples among the given ROC curves, while both ADCwmean and ADCfmean showed high AUCs for assessing p53 expression (0.694 and 0.678, respectively). CONCLUSION The FTV-derived ADC values, especially ADCfmean, can be used to assess preoperative prognostic factors in EOCs.
Collapse
Affiliation(s)
- Cheng Zhang
- The First Central Clinical School, Tianjin Medical University, Tianjin, China.
| | - Luyang Ma
- The First Central Clinical School, Tianjin Medical University, Tianjin, China.
| | - Yujiao Zhao
- Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China.
| | - Zhijing Zhang
- School of Medicine, Nankai University, Tianjin, China.
| | - Qi Zhang
- The First Central Clinical School, Tianjin Medical University, Tianjin, China.
| | - Xiaotian Li
- School of Medicine, Nankai University, Tianjin, China.
| | - Jiaming Qin
- School of Medicine, Nankai University, Tianjin, China.
| | - Yan Ren
- Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China.
| | - Zhandong Hu
- Department of Pathology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China.
| | - Qian Zhao
- Department of Gynecology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China.
| | - Wen Shen
- Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China.
| | - Yue Cheng
- Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
12
|
Yoon S, Kim YJ, Jeon JS, Ahn SJ, Choi SJ. Radiomics and machine learning analysis of liver magnetic resonance imaging for prediction and early detection of tumor response in colorectal liver metastases. KOREAN JOURNAL OF CLINICAL ONCOLOGY 2024; 20:27-35. [PMID: 38988016 PMCID: PMC11261177 DOI: 10.14216/kjco.24005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/31/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024]
Abstract
PURPOSE The aim of this study was to demonstrate the effectiveness of a machine learning-based radiomics model for distinguishing tumor response and overall survival in patients with unresectable colorectal liver metastases (CRLM) treated with targeted biological therapy. METHODS We prospectively recruited 17 patients with unresectable liver metastases of colorectal cancer, who had been given targeted biological therapy as the first line of treatment. All patients underwent liver magnetic resonance imaging (MRI) three times up until 8 weeks after chemotherapy. We evaluated the diagnostic performance of machine learning-based radiomics model in tumor response of liver MRI compared with the guidelines for the Response Evaluation Criteria in Solid Tumors. Overall survival was evaluated using the Kaplan-Meier analysis and compared to the Cox proportional hazard ratios following univariate and multivariate analyses. RESULTS Performance measurement of the trained model through metrics showed the accuracy of the machine learning model to be 76.5%, and the area under the receiver operating characteristic curve was 0.857 (95% confidence interval [CI], 0.605-0.976; P < 0.001). For the patients classified as non-progressing or progressing by the radiomics model, the median overall survival was 17.5 months (95% CI, 12.8-22.2), and 14.8 months (95% CI, 14.2-15.4), respectively (P = 0.431, log-rank test). CONCLUSION Machine learning-based radiomics models could have the potential to predict tumor response in patients with unresectable CRLM treated with biologic therapy.
Collapse
Affiliation(s)
- Sungjin Yoon
- Department of Radiology, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon,
Korea
| | - Young Jae Kim
- Biomedical Engineering, Gachon University College of Medicine, Incheon,
Korea
| | - Ji Soo Jeon
- Biomedical Engineering, Gachon University College of Medicine, Incheon,
Korea
| | - Su Joa Ahn
- Department of Radiology, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon,
Korea
| | - Seung Joon Choi
- Department of Radiology, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon,
Korea
| |
Collapse
|
13
|
Tabnak P, HajiEsmailPoor Z, Baradaran B, Pashazadeh F, Aghebati Maleki L. MRI-Based Radiomics Methods for Predicting Ki-67 Expression in Breast Cancer: A Systematic Review and Meta-analysis. Acad Radiol 2024; 31:763-787. [PMID: 37925343 DOI: 10.1016/j.acra.2023.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 11/06/2023]
Abstract
RATIONALE AND OBJECTIVES The purpose of this systematic review and meta-analysis was to assess the quality and diagnostic accuracy of MRI-based radiomics for predicting Ki-67 expression in breast cancer. MATERIALS AND METHODS A systematic literature search was performed to find relevant studies published in different databases, including PubMed, Web of Science, and Embase up until March 10, 2023. All papers were independently evaluated for eligibility by two reviewers. Studies that matched research questions and provided sufficient data for quantitative synthesis were included in the systematic review and meta-analysis, respectively. The quality of the articles was assessed using Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) and Radiomics Quality Score (RQS) tools. The predictive value of MRI-based radiomics for Ki-67 antigen in patients with breast cancer was assessed using pooled sensitivity (SEN), specificity, and area under the curve (AUC). Meta-regression was performed to explore the cause of heterogeneity. Different covariates were used for subgroup analysis. RESULTS 31 studies were included in the systematic review; among them, 21 reported sufficient data for meta-analysis. 20 training cohorts and five validation cohorts were pooled separately. The pooled sensitivity, specificity, and AUC of MRI-based radiomics for predicting Ki-67 expression in training cohorts were 0.80 [95% CI, 0.73-0.86], 0.82 [95% CI, 0.78-0.86], and 0.88 [95%CI, 0.85-0.91], respectively. The corresponding values for validation cohorts were 0.81 [95% CI, 0.72-0.87], 0.73 [95% CI, 0.62-0.82], and 0.84 [95%CI, 0.80-0.87], respectively. Based on QUADAS-2, some risks of bias were detected for reference standard and flow and timing domains. However, the quality of the included article was acceptable. The mean RQS score of the included articles was close to 6, corresponding to 16.6% of the maximum possible score. Significant heterogeneity was observed in pooled sensitivity and specificity of training cohorts (I2 > 75%). We found that using deep learning radiomic methods, magnetic field strength (3 T vs. 1.5 T), scanner manufacturer, region of interest structure (2D vs. 3D), route of tissue sampling, Ki-67 cut-off, logistic regression for model construction, and LASSO for feature reduction as well as PyRadiomics software for feature extraction had a great impact on heterogeneity according to our joint model analysis. Diagnostic performance in studies that used deep learning-based radiomics and multiple MRI sequences (e.g., DWI+DCE) was slightly higher. In addition, radiomic features derived from DWI sequences performed better than contrast-enhanced sequences in terms of specificity and sensitivity. No publication bias was found based on Deeks' funnel plot. Sensitivity analysis showed that eliminating every study one by one does not impact overall results. CONCLUSION This meta-analysis showed that MRI-based radiomics has a good diagnostic accuracy in differentiating breast cancer patients with high Ki-67 expression from low-expressing groups. However, the sensitivity and specificity of these methods still do not surpass 90%, restricting them from being used as a supplement to current pathological assessments (e.g., biopsy or surgery) to predict Ki-67 expression accurately.
Collapse
Affiliation(s)
- Peyman Tabnak
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (P.T., Z.H.); Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran (P.T., Z.H., B.B., L.A.M.); Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (P.T., Z.H., B.B., L.A.M.)
| | - Zanyar HajiEsmailPoor
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (P.T., Z.H.); Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran (P.T., Z.H., B.B., L.A.M.); Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (P.T., Z.H., B.B., L.A.M.)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran (P.T., Z.H., B.B., L.A.M.); Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (P.T., Z.H., B.B., L.A.M.)
| | - Fariba Pashazadeh
- Research Center for Evidence-Based Medicine, Iranian Evidence-Based Medicine (EBM) Centre: A Joanna Briggs Institute (JBI) Centre of Excellence, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (F.P.)
| | - Leili Aghebati Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran (P.T., Z.H., B.B., L.A.M.); Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (P.T., Z.H., B.B., L.A.M.).
| |
Collapse
|
14
|
Zhang W, Wang S, Wang Y, Sun J, Wei H, Xue W, Dong X, Wang X. Ultrasound-based radiomics nomogram for predicting axillary lymph node metastasis in early-stage breast cancer. LA RADIOLOGIA MEDICA 2024; 129:211-221. [PMID: 38280058 DOI: 10.1007/s11547-024-01768-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/03/2024] [Indexed: 01/29/2024]
Abstract
PURPOSE We aimed at assessing the predictive ability of ultrasound-based radiomics combined with clinical characteristics for axillary lymph node (ALN) status in early-stage breast cancer patients and to compare performance in different peritumoral regions. MATERIALS AND METHODS A total of 755 patients (527 in the primary cohort and 228 in the external validation cohort) were enrolled in this study. Ultrasound images for all patients were acquired and radiomics analysis performed for intratumoral and different peritumoral regions. The MRMR and LASSO regression analyses were performed on extracted features from the primary cohort to construct a radiomics signature formula combined with clinical characteristics. Pearson's coefficient and the variance inflation factor (VIF) were performed to check the correlation and the multicollinearity among the final predictors. The best performing model was selected to develop a nomogram, which was established by performing binary logistic regression and acquiring cut-off values based on the corresponding nomogram scores of the masses. RESULTS Among all the radiomics models, the "Mass + Margin3mm" model exhibited the best performance. The areas under the curves (AUC) of the nomogram in the primary and external validation cohorts were 0.906 (95% confidence intervals [CI] 0.882-0.930) and 0.922 (95% CI 0.894-0.960), respectively. They both showed good calibrations. The nomogram exhibited a good ability to discriminate between positive and negative lymph nodes (AUC: 0.853 (95% CI 0.816-0.889) in primary cohort, 0.870 (95% CI 0.818-0.922) in validation cohort), and between low-volume and high-volume lymph nodes (AUC: 0.832 (95% CI 0.781-0.884) in primary cohort, 0.911 (95% CI 0.858-0.964) in validation cohort). CONCLUSIONS The established nomogram is a prospective clinical prediction tool for non-invasive assessment of ALN status. It has the ability to enhance the accuracy of early-stage breast cancer treatment.
Collapse
Affiliation(s)
- Wuyue Zhang
- In-Patient Ultrasound Department, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, NanGang District, Harbin, 150086, China
| | - Siying Wang
- In-Patient Ultrasound Department, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, NanGang District, Harbin, 150086, China
| | - Yichun Wang
- In-Patient Ultrasound Department, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, NanGang District, Harbin, 150086, China
| | - Jiawei Sun
- In-Patient Ultrasound Department, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, NanGang District, Harbin, 150086, China
| | - Hong Wei
- In-Patient Ultrasound Department, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, NanGang District, Harbin, 150086, China
| | - Weili Xue
- In-Patient Ultrasound Department, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, NanGang District, Harbin, 150086, China
| | - Xueying Dong
- In-Patient Ultrasound Department, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, NanGang District, Harbin, 150086, China
| | - Xiaolei Wang
- In-Patient Ultrasound Department, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, NanGang District, Harbin, 150086, China.
| |
Collapse
|
15
|
Yang H, Wang W, Cheng Z, Zheng T, Cheng C, Cheng M, Wang Z. Radiomic Machine Learning in Invasive Ductal Breast Cancer: Prediction of Ki-67 Expression Level Based on Radiomics of DCE-MRI. Technol Cancer Res Treat 2024; 23:15330338241288751. [PMID: 39431304 PMCID: PMC11504335 DOI: 10.1177/15330338241288751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
PURPOSE Our study aimed to investigate the potential of radiomics with DCE-MRI for predicting Ki-67 expression in invasive ductal breast cancer. METHOD We conducted a retrospective study including 223 patients diagnosed with invasive ductal breast cancer. Radiomics features were extracted from DCE-MRI using 3D-Slicer software. Two Ki-67 expression cutoff values (20% and 29%) were examined. Patients were divided into training (70%) and test (30%) sets. The Elastic Net method selected relevant features, and five machine-learning models were established. Radiomics models were created from intratumoral, peritumoral, and combined regions. Performance was assessed using ROC curves, accuracy, sensitivity, and specificity. RESULT For a Ki-67 cutoff value of 20%, the combined model exhibited the highest performance, with area under the curve (AUC) values of 0.838 (95% confidence interval (CI): 0.774-0.897) for the training set and 0.863 (95% CI: 0.764-0.949) for the test set. The AUC values for the tumor model were 0.816 (95% CI: 0.745-0.880) and 0.830 (95% CI: 0.724-0.916), and for the peritumor model were 0.790 (95% CI: 0.711-0.857) and 0.808 (95% CI: 0.682-0.910). When the Ki-67 cutoff value was set at 29%, the combined model also demonstrated superior predictive ability in both training set (AUC: 0.796; 95% CI: 0.724-0.862) and the test set (AUC: 0.823; 95% CI: 0.723-0.911). The AUC values for the tumor model were 0.785 (95% CI: 0.708-0.861) and 0.784 (95% CI: 0.663-0.882), and for the peritumor model were 0.773 (95% CI: 0.690-0.844) and 0.729 (95% CI: 0.603-0.847). CONCLUSION Radiomics with DCE-MRI can predict Ki-67 expression in invasive ductal breast cancer. Integrating radiomics features from intratumoral and peritumoral regions yields a dependable prognostic model, facilitating pre-surgical detection and treatment decisions. This holds potential for commercial diagnostic tools.
Collapse
Affiliation(s)
- Huan Yang
- Department of Emergency, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Wenxi Wang
- Department of Magnetic Resonance Imaging, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Zhiyong Cheng
- Department of Education, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Tao Zheng
- Department of Magnetic Resonance Imaging, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Cheng Cheng
- Department of Emergency, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Mengyu Cheng
- Department of Magnetic Resonance Imaging, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Zhanqiu Wang
- Department of Magnetic Resonance Imaging, First Hospital of Qinhuangdao, Qinhuangdao, China
| |
Collapse
|
16
|
Wu Y, Ma Q, Fan L, Wu S, Wang J. An Automated Breast Volume Scanner-Based Intra- and Peritumoral Radiomics Nomogram for the Preoperative Prediction of Expression of Ki-67 in Breast Malignancy. Acad Radiol 2024; 31:93-103. [PMID: 37544789 DOI: 10.1016/j.acra.2023.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023]
Abstract
RATIONALE AND OBJECTIVES This study aimed to create and verify a nomogram for preoperative prediction of Ki-67 expression in breast malignancy to assist in the development of personalized treatment strategies. MATERIALS AND METHODS This retrospective study received approval from the institutional review board and included a cohort of 197 patients with breast malignancy who were admitted to our hospital. Ki-67 expression was divided into two groups based on a 14% threshold: low and high. A radiomics signature was built utilizing 1702 radiomics features based on an intra- and peritumoral (10 mm) regions of interest. Using multivariate logistic regression, radiomics signature, and ultrasound (US) characteristics, the nomogram was developed. To evaluate the model's calibration, clinical application, and predictive ability, decision curve analysis (DCA), the calibration curve, and the receiver operating characteristic curve were used, respectively. RESULTS The final nomogram included three independent predictors: tumor size (P = .037), radiomics signature (P < .001), and US-reported lymph node status (P = .018). The nomogram exhibited satisfactory performance in the training cohort, demonstrating a specificity of 0.944, a sensitivity of 0.745, and an area under the curve (AUC) of 0.905. The validation cohort recorded a specificity of 0.909, a sensitivity of 0.727, and an AUC of 0.882. The DCA showed the nomogram's clinical utility, and the calibration curve revealed a high consistency among the expected and detected values. CONCLUSION The nomogram used in this investigation can accurately predict Ki-67 expression in people with malignant breast tumors, helping to develop personalized treatment approaches.
Collapse
Affiliation(s)
- Yimin Wu
- Department of Ultrasound, WuHu Hospital, East China Normal University (The Second People's Hospital, WuHu), Wuhu, Anhui, PR China (Y.W., J.W.)
| | - Qianqing Ma
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China (Q.M.)
| | - Lifang Fan
- Department of Medical Imaging, Wannan Medical College, Wuhu, Anhui, PR China (L.F.)
| | - Shujian Wu
- Yijishan Hospital Affiliated to Wannan Medical College, Wuhu, Anhui, PR China (S.W.)
| | - Junli Wang
- Department of Ultrasound, WuHu Hospital, East China Normal University (The Second People's Hospital, WuHu), Wuhu, Anhui, PR China (Y.W., J.W.).
| |
Collapse
|
17
|
Gullo RL, Partridge SC, Shin HJ, Thakur SB, Pinker K. Update on DWI for Breast Cancer Diagnosis and Treatment Monitoring. AJR Am J Roentgenol 2024; 222:e2329933. [PMID: 37850579 PMCID: PMC11196747 DOI: 10.2214/ajr.23.29933] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
DWI is a noncontrast MRI technique that measures the diffusion of water molecules within biologic tissue. DWI is increasingly incorporated into routine breast MRI examinations. Currently, the main applications of DWI are breast cancer detection and characterization, prognostication, and prediction of treatment response to neoadjuvant chemotherapy. In addition, DWI is promising as a noncontrast MRI alternative for breast cancer screening. Problems with suboptimal resolution and image quality have restricted the mainstream use of DWI for breast imaging, but these shortcomings are being addressed through several technologic advancements. In this review, we present an up-to-date assessment of the use of DWI for breast cancer imaging, including a summary of the clinical literature and recommendations for future use.
Collapse
Affiliation(s)
- Roberto Lo Gullo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Savannah C Partridge
- Department of Radiology, University of Washington School of Medicine, University of Washington, Seattle, WA, USA 98109, USA
| | - Hee Jung Shin
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Sunitha B Thakur
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Katja Pinker
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
18
|
Campana A, Gandomkar Z, Giannotti N, Reed W. The use of radiomics in magnetic resonance imaging for the pre-treatment characterisation of breast cancers: A scoping review. J Med Radiat Sci 2023; 70:462-478. [PMID: 37534540 PMCID: PMC10715343 DOI: 10.1002/jmrs.709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/16/2023] [Indexed: 08/04/2023] Open
Abstract
Radiomics is an emerging field that aims to extract and analyse a comprehensive set of quantitative features from medical images. This scoping review is focused on MRI-based radiomic features for the molecular profiling of breast tumours and the implications of this work for predicting patient outcomes. A thorough systematic literature search and outcome extraction were performed to identify relevant studies published in MEDLINE/PubMed (National Centre for Biotechnology Information), EMBASE and Scopus from 2015 onwards. The following information was retrieved from each article: study purpose, study design, extracted radiomic features, machine learning technique(s), sample size/characteristics, statistical result(s) and implications on patient outcomes. Based on the study purpose, four key themes were identified in the included 63 studies: tumour subtype classification (n = 35), pathologically complete response (pCR) prediction (n = 15), lymph node metastasis (LNM) detection (n = 7) and recurrence rate prediction (n = 6). In all four themes, reported accuracies widely varied among the studies, for example, area under receiver characteristics curve (AUC) for detecting LNM ranged from 0.72 to 0.91 and the AUC for predicting pCR ranged from 0.71 to 0.99. In all four themes, combining radiomic features with clinical data improved the predictive models. Preliminary results of this study showed radiomics potential to characterise the whole tumour heterogeneity, with clear implications for individual-targeted treatment. However, radiomics is still in the pre-clinical phase, currently with an insufficient number of large multicentre studies and those existing studies are often limited by insufficient methodological transparency and standardised workflow. Consequently, the clinical translation of existing studies is currently limited.
Collapse
Affiliation(s)
- Annalise Campana
- Discipline of Medical Imaging Science, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Ziba Gandomkar
- Discipline of Medical Imaging Science, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Nicola Giannotti
- Discipline of Medical Imaging Science, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Warren Reed
- Discipline of Medical Imaging Science, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| |
Collapse
|
19
|
Wang J, Gao W, Lu M, Yao X, Yang D. Development of an interpretable machine learning model for Ki-67 prediction in breast cancer using intratumoral and peritumoral ultrasound radiomics features. Front Oncol 2023; 13:1290313. [PMID: 38044998 PMCID: PMC10691503 DOI: 10.3389/fonc.2023.1290313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023] Open
Abstract
Background Traditional immunohistochemistry assessment of Ki-67 in breast cancer (BC) via core needle biopsy is invasive, inaccurate, and nonrepeatable. While machine learning (ML) provides a promising alternative, its effectiveness depends on extensive data. Although the current mainstream MRI-centered radiomics offers sufficient data, its unsuitability for repeated examinations, along with limited accessibility and an intratumoral focus, constrain the application of predictive models in evaluating Ki-67 levels. Objective This study aims to explore ultrasound (US) image-based radiomics, incorporating both intra- and peritumoral features, to develop an interpretable ML model for predicting Ki-67 expression in BC patients. Methods A retrospective analysis was conducted on 263 BC patients, divided into training and external validation cohorts. From intratumoral and peritumoral regions of interest (ROIs) in US images, 849 distinctive radiomics features per ROI were derived. These features underwent systematic selection to analyze Ki-67 expression relationships. Four ML models-logistic regression, random forests, support vector machine (SVM), and extreme gradient boosting-were formulated and internally validated to identify the optimal predictive model. External validation was executed to ascertain the robustness of the optimal model, followed by employing Shapley Additive Explanations (SHAP) to reveal the significant features of the model. Results Among 231 selected BC patients, 67.5% exhibited high Ki-67 expression, with consistency observed across both training and validation cohorts as well as other clinical characteristics. Of the 1698 radiomics features identified, 15 were significantly correlated with Ki-67 expression. The SVM model, utilizing combined ROI, demonstrated the highest accuracy [area under the receiver operating characteristic curve (AUROC): 0.88], making it the most suitable for predicting Ki-67 expression. External validation sustained an AUROC of 0.82, affirming the model's robustness above a 40% threshold. SHAP analysis identified five influential features from intra- and peritumoral ROIs, offering insight into individual prediction. Conclusion This study emphasized the potential of SVM model using radiomics features from both intra- and peritumoral US images, for predicting elevated Ki-67 levels in BC patients. The model exhibited strong performance in validations, indicating its promise as a noninvasive tool to enable personalized decision-making in BC care.
Collapse
|
20
|
Wang M, Mei T, Gong Y. The quality and clinical translation of radiomics studies based on MRI for predicting Ki-67 levels in patients with breast cancer. Br J Radiol 2023; 96:20230172. [PMID: 37724784 PMCID: PMC10546437 DOI: 10.1259/bjr.20230172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/13/2023] [Accepted: 08/02/2023] [Indexed: 09/21/2023] Open
Abstract
OBJECTIVE To evaluate the methodological quality of radiomics literature predicting Ki-67 levels based on MRI in patients with breast cancer (BC) and to propose suggestions for clinical translation. METHODS In this review, we searched PubMed, Embase, and Web of Science for studies published on radiomics in patients with BC. We evaluated the methodological quality of the studies using the Radiomics Quality Score (RQS). The Cochrane Collaboration's software (RevMan 5.4), Meta-DiSc (v. 1.4) and IBM SPSS (v. 26.0) were used for all statistical analyses. RESULTS Eighteen studies met our inclusion criteria, and the average RQS was 10.17 (standard deviation [SD]: 3.54). None of these studies incorporated any of the following items: a phantom study on all scanners, cut-off analyses, prospective study, cost-effectiveness analysis, or open science and data. In the meta-analysis, it showed apparent diffusion coefficient (ADC) played a better role to predict Ki-67 level than dynamic contrast-enhanced (DCE) MRI in the radiomics, with the pooled area under the curve (AUC) of 0.969. CONCLUSION Ki-67 index is a common tumor biomarker with high clinical value. Radiomics is an ever-growing quantitative data-mining method helping predict tumor biomarkers from medical images. However, the quality of the reviewed studies evaluated by the RQS was not so satisfactory and there are ample opportunities for improvement. Open science and data, external validation, phantom study, publicly open radiomics database and standardization in the radiomics practice are what researchers should pay more attention to in the future. ADVANCES IN KNOWLEDGE The RQS tool considered the radiomics used to predict the Ki-67 level was of poor quality. ADC performed better than DCE in radiomic prediction. We propose some measures to facilitate the clinical translation of radiomics.
Collapse
Affiliation(s)
- Min Wang
- Division of Thoracic Tumor Multidisciplinary Treatment, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Mei
- Division of Thoracic Tumor Multidisciplinary Treatment, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Youling Gong
- Division of Thoracic Tumor Multidisciplinary Treatment, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Bellini D, Milan M, Bordin A, Rizzi R, Rengo M, Vicini S, Onori A, Carbone I, De Falco E. A Focus on the Synergy of Radiomics and RNA Sequencing in Breast Cancer. Int J Mol Sci 2023; 24:ijms24087214. [PMID: 37108377 PMCID: PMC10138689 DOI: 10.3390/ijms24087214] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Radiological imaging is currently employed as the most effective technique for screening, diagnosis, and follow up of patients with breast cancer (BC), the most common type of tumor in women worldwide. However, the introduction of the omics sciences such as metabolomics, proteomics, and molecular genomics, have optimized the therapeutic path for patients and implementing novel information parallel to the mutational asset targetable by specific clinical treatments. Parallel to the "omics" clusters, radiological imaging has been gradually employed to generate a specific omics cluster termed "radiomics". Radiomics is a novel advanced approach to imaging, extracting quantitative, and ideally, reproducible data from radiological images using sophisticated mathematical analysis, including disease-specific patterns, that could not be detected by the human eye. Along with radiomics, radiogenomics, defined as the integration of "radiology" and "genomics", is an emerging field exploring the relationship between specific features extracted from radiological images and genetic or molecular traits of a particular disease to construct adequate predictive models. Accordingly, radiological characteristics of the tissue are supposed to mimic a defined genotype and phenotype and to better explore the heterogeneity and the dynamic evolution of the tumor over the time. Despite such improvements, we are still far from achieving approved and standardized protocols in clinical practice. Nevertheless, what can we learn by this emerging multidisciplinary clinical approach? This minireview provides a focused overview on the significance of radiomics integrated by RNA sequencing in BC. We will also discuss advances and future challenges of such radiomics-based approach.
Collapse
Affiliation(s)
- Davide Bellini
- Department of Radiological Sciences, Oncology and Pathology, I.C.O.T. Hospital, Sapienza University of Rome, Via Franco Faggiana 1668, 04100 Latina, Italy
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy
| | - Marika Milan
- UOC Neurology, Fondazione Ca'Granda, Ospedale Maggiore Policlinico, Via F. Sforza, 28, 20122 Milan, Italy
| | - Antonella Bordin
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy
| | - Roberto Rizzi
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy
| | - Marco Rengo
- Department of Radiological Sciences, Oncology and Pathology, I.C.O.T. Hospital, Sapienza University of Rome, Via Franco Faggiana 1668, 04100 Latina, Italy
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy
| | - Simone Vicini
- Department of Radiological Sciences, Oncology and Pathology, I.C.O.T. Hospital, Sapienza University of Rome, Via Franco Faggiana 1668, 04100 Latina, Italy
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy
| | - Alessandro Onori
- Department of Radiological Sciences, Oncology and Pathology, I.C.O.T. Hospital, Sapienza University of Rome, Via Franco Faggiana 1668, 04100 Latina, Italy
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy
| | - Iacopo Carbone
- Department of Radiological Sciences, Oncology and Pathology, I.C.O.T. Hospital, Sapienza University of Rome, Via Franco Faggiana 1668, 04100 Latina, Italy
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy
| | - Elena De Falco
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy
- Mediterranea Cardiocentro, 80122 Napoli, Italy
| |
Collapse
|
22
|
Ke X, Zhao J, Liu X, Zhou Q, Cheng W, Zhang P, Zhou J. Apparent diffusion coefficient values effectively predict cell proliferation and determine oligodendroglioma grade. Neurosurg Rev 2023; 46:83. [PMID: 37022533 DOI: 10.1007/s10143-023-01989-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/27/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023]
Abstract
This study aims to evaluate the value of conventional magnetic resonance imaging (MRI) features and apparent diffusion coefficient (ADC) values in differentiating oligodendroglioma of various grades and explore the correlation between ADC and Ki-67. The preoperative MRI data of 99 patients with World Health Organization (WHO) grades 2 (n = 42) and 3 (n = 57) oligodendroglioma confirmed by surgery and pathology were retrospectively analyzed. Conventional MRI features, ADCmean, ADCmin, and normalized ADC (nADC) were compared between the two groups. A receiver operating characteristic curve was used to evaluate each parameter's diagnostic efficacy in differentiating the two tumor types. Each tumor's Ki-67 proliferation index was also measured to explore its relationship with the ADC value. Compared with WHO2 grade tumors, WHO3 grade tumors had a larger maximum diameter and more significant cystic degeneration/necrosis, edema, and moderate/severe enhancement (all P < 0.05). The ADCmin, ADCmean, and nADC values of the WHO3 and WHO2 grade tumors were significantly different, and the ADCmin value most accurately distinguished the two tumor types, yielding an area under the curve value of 0.980. When 0.96 × 10-3 mm2/s was used as the differential diagnosis threshold, the sensitivity, specificity, and accuracy of the two groups were 100%, 93.00%, and 96.96%, respectively. The ADCmin (r = -0.596), ADCmean (r = - 0.590), nADC (r = - 0.577), and Ki-67 proliferation index values had significantly negative correlations (all P < 0.05). Conventional MRI features and ADC values are beneficial in the noninvasive prediction of the WHO grade and tumor proliferation rate of oligodendroglioma.
Collapse
Affiliation(s)
- Xiaoai Ke
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Cuiyingmen No.82, Lanzhou, 730030, Gansu, People's Republic of China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Jun Zhao
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Cuiyingmen No.82, Lanzhou, 730030, Gansu, People's Republic of China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
| | - Xianwang Liu
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Cuiyingmen No.82, Lanzhou, 730030, Gansu, People's Republic of China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
| | - Qing Zhou
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Cuiyingmen No.82, Lanzhou, 730030, Gansu, People's Republic of China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
| | - Wen Cheng
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Cuiyingmen No.82, Lanzhou, 730030, Gansu, People's Republic of China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Peng Zhang
- Department of Pathology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Cuiyingmen No.82, Lanzhou, 730030, Gansu, People's Republic of China.
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China.
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China.
- Second Clinical School, Lanzhou University, Lanzhou, China.
| |
Collapse
|
23
|
Sun L, Tian H, Ge H, Tian J, Lin Y, Liang C, Liu T, Zhao Y. Cross-attention multi-branch CNN using DCE-MRI to classify breast cancer molecular subtypes. Front Oncol 2023; 13:1107850. [PMID: 36959806 PMCID: PMC10028183 DOI: 10.3389/fonc.2023.1107850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
Purpose The aim of this study is to improve the accuracy of classifying luminal or non-luminal subtypes of breast cancer by using computer algorithms based on DCE-MRI, and to validate the diagnostic efficacy of the model by considering the patient's age of menarche and nodule size. Methods DCE-MRI images of patients with non-specific invasive breast cancer admitted to the Second Affiliated Hospital of Dalian Medical University were collected. There were 160 cases in total, with 84 cases of luminal type (luminal A and luminal B and 76 cases of non-luminal type (HER 2 overexpressing and triple negative). Patients were grouped according to thresholds of nodule sizes of 20 mm and age at menarche of 14 years. A cross-attention multi-branch net CAMBNET) was proposed based on the dataset to predict the molecular subtypes of breast cancer. Diagnostic performance was assessed by accuracy, sensitivity, specificity, F1 and area under the ROC curve (AUC). And the model is visualized with Grad-CAM. Results Several classical deep learning models were included for diagnostic performance comparison. Using 5-fold cross-validation on the test dataset, all the results of CAMBNET are significantly higher than the compared deep learning models. The average prediction recall, accuracy, precision, and AUC for luminal and non-luminal types of the dataset were 89.11%, 88.44%, 88.52%, and 96.10%, respectively. For patients with tumor size <20 mm, the CAMBNET had AUC of 83.45% and ACC of 90.29% for detecting triple-negative breast cancer. When classifying luminal from non-luminal subtypes for patients with age at menarche years, our CAMBNET model achieved an ACC of 92.37%, precision of 92.42%, recall of 93.33%, F1of 92.33%, and AUC of 99.95%. Conclusions The CAMBNET can be applied in molecular subtype classification of breasts. For patients with menarche at 14 years old, our model can yield more accurate results when classifying luminal and non-luminal subtypes. For patients with tumor sizes ≤20 mm, our model can yield more accurate result in detecting triple-negative breast cancer to improve patient prognosis and survival.
Collapse
Affiliation(s)
- Liang Sun
- The College of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning, China
| | - Haowen Tian
- The College of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning, China
| | - Hongwei Ge
- The College of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning, China
| | - Juan Tian
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yuxin Lin
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Chang Liang
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Tang Liu
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- *Correspondence: Tang Liu, ; Yiping Zhao,
| | - Yiping Zhao
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- *Correspondence: Tang Liu, ; Yiping Zhao,
| |
Collapse
|
24
|
Zhang L, Hao J, Guo J, Zhao X, Yin X. Predicting of Ki-67 Expression Level Using Diffusion-Weighted and Synthetic Magnetic Resonance Imaging in Invasive Ductal Breast Cancer. Breast J 2023; 2023:6746326. [PMID: 37063453 PMCID: PMC10098409 DOI: 10.1155/2023/6746326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/26/2023] [Accepted: 03/27/2023] [Indexed: 04/18/2023]
Abstract
Objectives To investigate the association between quantitative parameters generated using synthetic magnetic resonance imaging (SyMRI) and diffusion-weighted imaging (DWI) and Ki-67 expression level in patients with invasive ductal breast cancer (IDC). Method We retrospectively reviewed the records of patients with IDC who underwent SyMRI and DWI before treatment. Precontrast and postcontrast relaxation times (T1, longitudinal; T2, transverse), proton density (PD) parameters, and apparent diffusion coefficient (ADC) values were measured in breast lesions. Univariate and multivariate regression analyses were performed to screen for statistically significant variables to differentiate the high (≥30%) and low (<30%) Ki-67 expression groups. Their performance was evaluated by receiver operating characteristic (ROC) curve analysis. Results We analyzed 97 patients. Multivariate regression analysis revealed that the high Ki-67 expression group (n = 57) had significantly higher parameters generated using SyMRI (pre-T1, p=0.001) and lower ADC values (p=0.036) compared with the low Ki-67 expression group (n = 40). Pre-T1 showed the best diagnostic performance for predicting the Ki-67 expression level in patients with invasive ductal breast cancer (areas under the ROC curve (AUC), 0.711; 95% confidence interval (CI), 0.609-0.813). Conclusions Pre-T1 could be used to predict the pretreatment Ki-67 expression level in invasive ductal breast cancer.
Collapse
Affiliation(s)
- Liying Zhang
- Third Affiliated Hospital of Zhengzhou University, Department of Radiology, Zhengzhou, China
| | - Jisen Hao
- Third Affiliated Hospital of Zhengzhou University, Department of Radiology, Zhengzhou, China
| | - Jia Guo
- Third Affiliated Hospital of Zhengzhou University, Department of Radiology, Zhengzhou, China
| | - Xin Zhao
- Third Affiliated Hospital of Zhengzhou University, Department of Radiology, Zhengzhou, China
| | - Xing Yin
- Third Affiliated Hospital of Zhengzhou University, Department of Radiology, Zhengzhou, China
| |
Collapse
|
25
|
Evaluation of pretreatment ADC values as predictors of treatment response to neoadjuvant chemotherapy in patients with breast cancer - a multicenter study. Cancer Imaging 2022; 22:68. [PMID: 36494872 PMCID: PMC9733082 DOI: 10.1186/s40644-022-00501-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/25/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Magnetic resonance imaging (MRI) can be used to diagnose breast cancer. Diffusion weighted imaging (DWI) and the apparent diffusion coefficient (ADC) can reflect tumor microstructure in a non-invasive manner. The correct prediction of response of neoadjuvant chemotherapy (NAC) is crucial for clinical routine. Our aim was to compare ADC values between patients with pathological complete response (pCR) and non-responders based upon a multi-center design to improve the correct patient selection, which patient would more benefit from NAC and which patient would not. METHODS For this study, data from 4 centers (from Japan, Brazil, Spain and United Kingdom) were retrospectively acquired. The time period was overall 2003-2019. The patient sample comprises 250 patients (all female; median age, 50.5). In every case, pretreatment breast MRI with DWI was performed. pCR was assessed by experienced pathologists in every center using the surgical specimen in the clinical routine work up. pCR was defined as no residual invasive disease in either breast or axillary lymph nodes after NAC. ADC values between the group with pCR and those with no pCR were compared using the Mann-Whitney U test (two-group comparisons). Univariable and multivariabe logistic regression analysis was performed to predict pCR status. RESULTS Overall, 83 patients (33.2%) achieved pCR. The ADC values of the patient group with pCR were lower compared with patients without pCR (0.98 ± 0.23 × 10- 3 mm2/s versus 1.07 ± 0.24 × 10- 3 mm2/s, p = 0.02). The ADC value achieved an odds ratio of 4.65 (95% CI 1.40-15.49) in univariable analysis and of 3.0 (95% CI 0.85-10.63) in multivariable analysis (overall sample) to be associated with pCR status. The odds ratios differed in the subgroup analyses in accordance with the molecular subtype. CONCLUSIONS The pretreatment ADC-value is associated with pathological complete response after NAC in breast cancer patients. This could aid in clinical routine to reduce treatment toxicity for patients, who would not benefit from NAC. However, this must be tested in further studies, as the overlap of the ADC values in both groups is too high for clinical prediction.
Collapse
|
26
|
Fan Y, Pan X, Yang F, Liu S, Wang Z, Sun J, Chen J. Preoperative Computed Tomography Radiomics Analysis for Predicting Receptors Status and Ki-67 Levels in Breast Cancer. Am J Clin Oncol 2022; 45:526-533. [PMID: 36413682 PMCID: PMC9698095 DOI: 10.1097/coc.0000000000000951] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND To assess the prediction performance of preoperative chest computed tomography (CT) based radiomics features for estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor-2 (HER2+), and Ki-67 status of breast cancer. MATERIALS AND METHODS This study enrolled 108 breast cancer patients who received preoperative chest CT examinations in our institution from July 2018 to January 2020. Radiomics features were separately extracted from nonenhanced, arterial, and portal-venous phases CT images. The least absolute shrinkage and selection operator logistic regression was used for feature selection. Then the radiomics signatures for each phase and a combined model of 3 phases were built. Finally, the receiver operating characteristic curves and calibration curves were used to confirm the performance of the radiomics signatures and combined model. In addition, the decision curves were performed to estimate the clinical usefulness of the combined model. RESULTS The 20 most predictive features were finally selected to build radiomics signatures for each phase. The combined model achieved the overall best performance than using either of the nonenhanced, arterial and portal-venous phases alone, achieving an area under the receiver operating characteristic curve of 0.870 for ER+ versus ER-, 0.797 for PR+ versus PR-, 0.881 for HER2+ versus HER2-, and 0.726 for Ki-67. The decision curve demonstrated that the CT-based radiomics features were clinically useful. CONCLUSION This study indicated preopreative chest CT radiomics analysis might be able to assess ER, PR, HER2+, and Ki-67 status of breast cancer. The findings need further to be verified in future larger studies.
Collapse
Affiliation(s)
- Yuan Fan
- General Surgery Department, Qujing City First People’s Hospital, Qujing Yunnan
| | | | | | - Siyun Liu
- GE Healthcare life science, Shanghai, People’s Republic of China
| | - Zhu Wang
- Laboratory of Molecular Diagnosis of Cancer, Cancer Center
| | | | - Jie Chen
- Department of Breast Surgery, West China Hospital of Sichuan University, Chengdu Sichuan
| |
Collapse
|
27
|
Francolini G, Morelli I, Carnevale MG, Grassi R, Nardone V, Loi M, Valzano M, Salvestrini V, Livi L, Desideri I. Integration between Novel Imaging Technologies and Modern Radiotherapy Techniques: How the Eye Drove the Chisel. Cancers (Basel) 2022; 14:5277. [PMID: 36358695 PMCID: PMC9656145 DOI: 10.3390/cancers14215277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 03/12/2024] Open
Abstract
INTRODUCTION Targeted dose-escalation and reduction of dose to adjacent organs at risk have been the main goal of radiotherapy in the last decade. Prostate cancer benefited the most from this process. In recent years, the development of Intensity Modulated Radiation Therapy (IMRT) and Stereotactic Body Radiotherapy (SBRT) radically changed clinical practice, also thanks to the availability of modern imaging techniques. The aim of this paper is to explore the relationship between diagnostic imaging and prostate cancer radiotherapy techniques. MATERIALS AND METHODS Aiming to provide an overview of the integration between modern imaging and radiotherapy techniques, we performed a non-systematic search of papers exploring the predictive value of imaging before treatment, the role of radiomics in predicting treatment outcomes, implementation of novel imaging in RT planning and influence of imaging integration on use of RT in current clinical practice. Three independent authors (GF, IM and ID) performed an independent review focusing on these issues. Key references were derived from a PubMed query. Hand searching and clinicaltrials.gov were also used, and grey literature was searched for further papers of interest. The final choice of papers included was discussed between all co-authors. RESULTS This paper contains a narrative report and a critical discussion of the role of new modern techniques in predicting outcomes before treatment, in radiotherapy planning and in the integration with systemic therapy in the management of prostate cancer. Also, the role of radiomics in a tailored treatment approach is explored. CONCLUSIONS Integration between diagnostic imaging and radiotherapy is of great importance for the modern treatment of prostate cancer. Future clinical trials should be aimed at exploring the real clinical benefit of complex workflows in clinical practice.
Collapse
Affiliation(s)
- Giulio Francolini
- Radiation Oncology Unit, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
| | - Ilaria Morelli
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Maria Grazia Carnevale
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Roberta Grassi
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy
| | - Valerio Nardone
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy
| | - Mauro Loi
- Radiation Oncology Unit, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
| | - Marianna Valzano
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Viola Salvestrini
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Lorenzo Livi
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Isacco Desideri
- Radiation Oncology Unit, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| |
Collapse
|
28
|
Wu J, Fang Q, Yao J, Ge L, Hu L, Wang Z, Jin G. Integration of ultrasound radiomics features and clinical factors: A nomogram model for identifying the Ki-67 status in patients with breast carcinoma. Front Oncol 2022; 12:979358. [PMID: 36276108 PMCID: PMC9581085 DOI: 10.3389/fonc.2022.979358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Objective The aim of this study was to develop and validate an ultrasound-based radiomics nomogram model by integrating the clinical risk factors and radiomics score (Rad-Score) to predict the Ki-67 status in patients with breast carcinoma. Methods Ultrasound images of 284 patients (196 high Ki-67 expression and 88 low Ki-67 expression) were retrospectively analyzed, of which 198 patients belonged to the training set and 86 patients to the test set. The region of interest of tumor was delineated, and the radiomics features were extracted. Radiomics features underwent dimensionality reduction analysis by using the independent sample t test and least absolute shrinkage and selection operator (LASSO) algorithm. The support vector machine (SVM), logistic regression (LR), decision tree (DT), random forest (RF), naive Bayes (NB) and XGBoost (XGB) machine learning classifiers were trained to establish prediction model based on the selected features. The classifier with the highest AUC value was selected to convert the output of the results into the Rad-Score and was regarded as Rad-Score model. In addition, the logistic regression method was used to integrate Rad-Score and clinical risk factors to generate the nomogram model. The leave group out cross-validation (LGOCV) method was performed 200 times to verify the reliability and stability of the nomogram model. Results Six classifier models were established based on the 15 non-zero coefficient features. Among them, the LR classifier achieved the best performance in the test set, with the area under the receiver operating characteristic curve (AUC) value of 0.786, and was obtained as the Rad-Score model, while the XGB performed the worst (AUC, 0.615). In multivariate analysis, independent risk factor for high Ki-67 status was age (odds ratio [OR] = 0.97, p = 0.04). The nomogram model based on the age and Rad-Score had a slightly higher AUC than that of Rad-Score model (AUC, 0.808 vs. 0.798) in the test set, but no statistical difference (p = 0.144, DeLong test). The LGOCV yielded a median AUC of 0.793 in the test set. Conclusions This study proposed a convenient, clinically useful ultrasound radiomics nomogram model that can be used for the preoperative individualized prediction of the Ki-67 status in patients with BC.
Collapse
Affiliation(s)
- Jiangfeng Wu
- Department of Ultrasound, Dongyang People’s Hospital, Dongyang, China
- *Correspondence: Guilong Jin, ; Zhengping Wang, ; Liyan Hu, ; Lifang Ge,
| | - Qingqing Fang
- Department of Ultrasound, Tianxiang East Hospital, Yiwu, China
| | - Jincao Yao
- Department of Ultrasound, Zhejiang Cancer Hospital, Hangzhou, China
| | - Lifang Ge
- Department of Ultrasound, Dongyang People’s Hospital, Dongyang, China
- *Correspondence: Guilong Jin, ; Zhengping Wang, ; Liyan Hu, ; Lifang Ge,
| | - Liyan Hu
- Department of Ultrasound, Dongyang People’s Hospital, Dongyang, China
- *Correspondence: Guilong Jin, ; Zhengping Wang, ; Liyan Hu, ; Lifang Ge,
| | - Zhengping Wang
- Department of Ultrasound, Dongyang People’s Hospital, Dongyang, China
- *Correspondence: Guilong Jin, ; Zhengping Wang, ; Liyan Hu, ; Lifang Ge,
| | - Guilong Jin
- Department of Ultrasound, Dongyang People’s Hospital, Dongyang, China
- *Correspondence: Guilong Jin, ; Zhengping Wang, ; Liyan Hu, ; Lifang Ge,
| |
Collapse
|
29
|
Wang W, Lv S, Xun J, Wang L, Zhao F, Wang J, Zhou Z, Chen Y, Sun Z, Zhu L. Comparison of diffusion kurtosis imaging and dynamic contrast enhanced MRI in prediction of prognostic factors and molecular subtypes in patients with breast cancer. Eur J Radiol 2022; 154:110392. [DOI: 10.1016/j.ejrad.2022.110392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/18/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022]
|
30
|
Zhong M, Yang Z, Chen X, Huang R, Wang M, Fan W, Dai Z, Chen X. Readout-Segmented Echo-Planar Diffusion-Weighted MR Imaging Improves the Differentiation of Breast Cancer Receptor Statuses Compared With Conventional Diffusion-Weighted Imaging. J Magn Reson Imaging 2022; 56:691-699. [PMID: 35038210 PMCID: PMC9542110 DOI: 10.1002/jmri.28065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Readout-segmented echo-planar diffusion-weighted imaging (RS-EPI) can improve image quality and signal-to-noise ratio, the resulting apparent diffusion coefficient (ADC) value acts as a more sensitive biomarker to characterize tumors. However, data regarding the differentiation of breast cancer (BC) receptor statuses using RS-EPI are limited. PURPOSE To determine whether RS-EPI improves the differentiation of receptor statuses compared with conventional single-shot (SS) EPI in breast MRI. STUDY TYPE Retrospective. POPULATION A total of 151 BC women with the mean age of 50.6 years. FIELD STRENGTH/SEQUENCE A 3 T/ RS-EPI and SS-EPI. ASSESSMENT The ADCs of the lesion and normal background tissue from the two sequences were collected by two radiologists with 15 years of experience working of breast MRI (M.H.Z. and X.F.C.), and a normalized ADC was calculated by dividing the mean ADC value of the lesion by the mean ADC value of the normal background tissue. STATISTICAL TESTS Agreement between the ADC measurements from the two sequences was assessed using the Pearson correlation coefficient and Bland-Altman plots. One-way analysis of variance, Kruskal-Wallis test, and median difference were used to compare the ADC measurements for all lesions and different receptor statuses. A P value less than 0.05 indicated a significant result. RESULTS The ADC measurements of all lesions and normal background tissues were significantly higher on RS-EPI than on SS-EPI (1.82 ± 0.33 vs. 1.55 ± 0.30 and 0.83 ± 0.11 vs. 0.79 ± 0.10). The normalized ADC was lower on RS-EPI than on SS-EPI (0.47 ± 0.11 vs. 0.53 ± 0.12, a median difference of -0.04 [95% CI: -0.256 to 0.111]). For both diffusion methods, only the ADC measurement of RS-EPI was higher for human epidermal growth factor receptor-2 (HER-2)-positive tumors than for HER-2-negative tumors (0.87 ± 0.10 vs. 0.81 ± 0.11), and this measurement was associated with HER-2 positive status (adjusted odds ratio [OR] = 654.4); however, similar results were not observed for the ADC measurement of SS-EPI (0.80 ± 0.10 vs. 0.78 ± 0.11 with P = 0.199 and adjusted OR = 0.21 with P = 0.464, respectively). DATA CONCLUSION RS-EPI can improve the distinction between HER-2-positive and HER-2-negative breast cancer, complementing the clinical application of diffusion imaging. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Minghao Zhong
- Department of Radiology, Meizhou People's HospitalMeizhou514031China
| | - Zhiqi Yang
- Department of Radiology, Meizhou People's Hospital, Meizhou, 514031 China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, 514031 China
| | - Xiaofeng Chen
- Department of Radiology, Meizhou People's HospitalMeizhou514031China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka PopulationMeizhou514031China
| | - Ruibin Huang
- Department of RadiologyFirst Affiliated Hospital of Shantou University Medical CollegeShantou515000China
| | - Mengzhu Wang
- MR Scientific Marketing, Siemens HealthineersGuangzhou510620China
| | - Weixiong Fan
- Department of Radiology, Meizhou People's HospitalMeizhou514031China
| | - Zhuozhi Dai
- Department of Radiology, Shantou Central Hospital, Shantou, Guangdong, 515041 China
| | - Xiangguang Chen
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, 514031 China
- Department of Radiology, Meizhou People's Hospital, Meizhou, 514031 China
| |
Collapse
|
31
|
Li Z, Huang H, Wang C, Zhao Z, Ma W, Wang D, Mao H, Liu F, Yang Y, Pan W, Lu Z. DCE-MRI radiomics models predicting the expression of radioresistant-related factors of LRP-1 and survivin in locally advanced rectal cancer. Front Oncol 2022; 12:881341. [PMID: 36106114 PMCID: PMC9465298 DOI: 10.3389/fonc.2022.881341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Objective Low-density lipoprotein receptor-related protein-1 (LRP-1) and survivin are associated with radiotherapy resistance in patients with locally advanced rectal cancer (LARC). This study aimed to evaluate the value of a radiomics model based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for the preoperative assessment of LRP-1 and survivin expressions in these patients. Methods One hundred patients with pathologically confirmed LARC who underwent DCE-MRI before surgery between February 2017 and September 2021 were included in this retrospective study. DCE-MRI perfusion histogram parameters were calculated for the entire lesion using post-processing software (Omni Kinetics, G.E. Healthcare, China), with three quantitative parameter maps. LRP-1 and survivin expressions were assessed by immunohistochemical methods and patients were classified into low- and high-expression groups. Results Four radiomics features were selected to construct the LRP-1 discrimination model. The LRP-1 predictive model achieved excellent diagnostic performance, with areas under the receiver operating curve (AUCs) of 0.853 and 0.747 in the training and validation cohorts, respectively. The other four radiomics characteristics were screened to construct the survivin predictive model, with AUCs of 0.780 and 0.800 in the training and validation cohorts, respectively. Decision curve analysis confirmed the clinical usefulness of the radiomics models. Conclusion DCE-MRI radiomics models are particularly useful for evaluating LRP-1 and survivin expressions in patients with LARC. Our model has significant potential for the preoperative identification of patients with radiotherapy resistance and can serve as an essential reference for treatment planning.
Collapse
Affiliation(s)
- Zhiheng Li
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Huizhen Huang
- Shaoxing University School of Medicine, Shaoxing, China
| | - Chuchu Wang
- Shaoxing University School of Medicine, Shaoxing, China
| | - Zhenhua Zhao
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Weili Ma
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Dandan Wang
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Haijia Mao
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Fang Liu
- Department of Pathology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Ye Yang
- Department of Pathology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Weihuo Pan
- Department of Colon and Rectal Surgery, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Zengxin Lu
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
- *Correspondence: Zengxin Lu,
| |
Collapse
|
32
|
Liu J, Wang X, Hu M, Zheng Y, Zhu L, Wang W, Hu J, Zhou Z, Dai Y, Dong F. Development of an ultrasound-based radiomics nomogram to preoperatively predict Ki-67 expression level in patients with breast cancer. Front Oncol 2022; 12:963925. [PMID: 36046035 PMCID: PMC9421073 DOI: 10.3389/fonc.2022.963925] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo develop and validate a radiomics nomogram that could incorporate clinicopathological characteristics and ultrasound (US)-based radiomics signature to non-invasively predict Ki-67 expression level in patients with breast cancer (BC) preoperatively.MethodsA total of 328 breast lesions from 324 patients with BC who were pathologically confirmed in our hospital from June 2019 to October 2020 were included, and they were divided into high Ki-67 expression level group and low Ki-67 expression level group. Routine US and shear wave elastography (SWE) were performed for each lesion, and the ipsilateral axillary lymph nodes (ALNs) were scanned for abnormal changes. The datasets were randomly divided into training and validation cohorts with a ratio of 7:3. Correlation analysis and the least absolute shrinkage and selection operator (LASSO) were used to select the radiomics features obtained from gray-scale US images of BC patients, and each radiomics score (Rad-score) was calculated. Afterwards, multivariate logistic regression analysis was used to establish a radiomics nomogram based on the radiomics signature and clinicopathological characteristics. The prediction performance of the nomogram was assessed by the area under the receiver operating characteristic curve (AUC), the calibration curve, and decision curve analysis (DCA) using the results of immunohistochemistry as the gold standard.ResultsThe radiomics signature, consisted of eight selected radiomics features, achieved a nearly moderate prediction efficacy with AUC of 0.821 (95% CI:0.764-0.880) and 0.713 (95% CI:0.612-0.814) in the training and validation cohorts, respectively. The radiomics nomogram, incorporating maximum diameter of lesions, stiff rim sign, US-reported ALN status, and radiomics signature showed a promising performance for prediction of Ki-67 expression level, with AUC of 0.904 (95% CI:0.860-0.948) and 0.890 (95% CI:0.817-0.964) in the training and validation cohorts, respectively. The calibration curve and DCA indicated promising consistency and clinical applicability.ConclusionThe proposed US-based radiomics nomogram could be used to non-invasively predict Ki-67 expression level in BC patients preoperatively, and to assist clinicians in making reliable clinical decisions.
Collapse
Affiliation(s)
- Jinjin Liu
- Department of Ultrasound, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xuchao Wang
- Department of Radiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Mengshang Hu
- Department of Ultrasound, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yan Zheng
- Department of Ultrasound, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lin Zhu
- Department of Ultrasound, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Wang
- Department of Ultrasound, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jisu Hu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Zhiyong Zhou
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- *Correspondence: Zhiyong Zhou, ; Yakang Dai, ; Fenglin Dong,
| | - Yakang Dai
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- *Correspondence: Zhiyong Zhou, ; Yakang Dai, ; Fenglin Dong,
| | - Fenglin Dong
- Department of Ultrasound, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Zhiyong Zhou, ; Yakang Dai, ; Fenglin Dong,
| |
Collapse
|
33
|
Xu A, Chu X, Zhang S, Zheng J, Shi D, Lv S, Li F, Weng X. Development and validation of a clinicoradiomic nomogram to assess the HER2 status of patients with invasive ductal carcinoma. BMC Cancer 2022; 22:872. [PMID: 35945526 PMCID: PMC9364617 DOI: 10.1186/s12885-022-09967-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Background The determination of HER2 expression status contributes significantly to HER2-targeted therapy in breast carcinoma. However, an economical, efficient, and non-invasive assessment of HER2 is lacking. We aimed to develop a clinicoradiomic nomogram based on radiomics scores extracted from multiparametric MRI (mpMRI, including ADC-map, T2W1, DCE-T1WI) and clinical risk factors to assess HER2 status. Methods We retrospectively collected 214 patients with pathologically confirmed invasive ductal carcinoma between January 2018 to March 2021 from Fudan University Shanghai Cancer Center, and randomly divided this cohort into training set (n = 128, 42 HER2-positive and 86 HER2-negative cases) and validation set (n = 86, 28 HER2-positive and 58 HER2-negative cases) at a ratio of 6:4. The original and transformed pretherapy mpMRI images were treated by semi-automated segmentation and manual modification on the DeepWise scientific research platform v1.6 (http://keyan.deepwise.com/), then radiomics feature extraction was implemented with PyRadiomics library. Recursive feature elimination (RFE) based on logistic regression (LR) and LASSO regression were adpoted to identify optimal features before modeling. LR, Linear Discriminant Analysis (LDA), support vector machine (SVM), random forest (RF), naive Bayesian (NB) and XGBoost (XGB) algorithms were used to construct the radiomics signatures. Independent clinical predictors were identified through univariate logistic analysis (age, tumor location, ki-67 index, histological grade, and lymph node metastasis). Then, the radiomics signature with the best diagnostic performance (Rad score) was further combined with significant clinical risk factors to develop a clinicoradiomic model (nomogram) using multivariate logistic regression. The discriminative power of the constructed models were evaluated by AUC, DeLong test, calibration curve, and decision curve analysis (DCA). Results 70 (32.71%) of the enrolled 214 cases were HER2-positive, while 144 (67.29%) were HER2-negative. Eleven best radiomics features were retained to develop 6 radiomcis classifiers in which RF classifier showed the highest AUC of 0.887 (95%CI: 0.827–0.947) in the training set and acheived the AUC of 0.840 (95%CI: 0.758–0.922) in the validation set. A nomogram that incorporated the Rad score with two selected clinical factors (Ki-67 index and histological grade) was constructed and yielded better discrimination compared with Rad score (p = 0.374, Delong test), with an AUC of 0.945 (95%CI: 0.904–0.987) in the training set and 0.868 (95%CI: 0.789–0.948; p = 0.123) in the validation set. Moreover, calibration with the p-value of 0.732 using Hosmer–Lemeshow test demonstrated good agreement, and the DCA verified the benefits of the nomogram. Conclusion Post largescale validation, the clinicoradiomic nomogram may have the potential to be used as a non-invasive tool for determination of HER2 expression status in clinical HER2-targeted therapy prediction. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09967-6.
Collapse
Affiliation(s)
- Aqiao Xu
- Department of Radiology, The Central Hospital Affiliated to Shaoxing University (Shaoxing Central Hospital), Shaoxing, 312030, China.
| | - Xiufeng Chu
- Department of Surgical, The Central Hospital Affiliated to Shaoxing University (Shaoxing Central Hospital), Shaoxing, 312030, China
| | - Shengjian Zhang
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Jing Zheng
- Department of Radiology, The Central Hospital Affiliated to Shaoxing University (Shaoxing Central Hospital), Shaoxing, 312030, China
| | - Dabao Shi
- Department of Radiology, The Central Hospital Affiliated to Shaoxing University (Shaoxing Central Hospital), Shaoxing, 312030, China
| | - Shasha Lv
- Department of Radiology, The Central Hospital Affiliated to Shaoxing University (Shaoxing Central Hospital), Shaoxing, 312030, China
| | - Feng Li
- Department of Research Collaboration, R&D center, Beijing Deepwise & League of PHD Technology Co., Ltd, Beijing, 100080, P.R. China
| | - Xiaobo Weng
- Department of Radiology, The Central Hospital Affiliated to Shaoxing University (Shaoxing Central Hospital), Shaoxing, 312030, China.
| |
Collapse
|
34
|
Comparison between two packages for pectoral muscle removal on mammographic images. Radiol Med 2022; 127:848-856. [PMID: 35816260 PMCID: PMC9349098 DOI: 10.1007/s11547-022-01521-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022]
Abstract
Background Pectoral muscle removal is a fundamental preliminary step in computer-aided diagnosis systems for full-field digital mammography (FFDM). Currently, two open-source publicly available packages (LIBRA and OpenBreast) provide algorithms for pectoral muscle removal within Matlab environment. Purpose To compare performance of the two packages on a single database of FFDM images. Methods Only mediolateral oblique (MLO) FFDM was considered because of large presence of pectoral muscle on this type of projection. For obtaining ground truth, pectoral muscle has been manually segmented by two radiologists in consensus. Both LIBRA’s and OpenBreast’s removal performance with respect to ground truth were compared using Dice similarity coefficient and Cohen-kappa reliability coefficient; Wilcoxon signed-rank test has been used for assessing differences in performances; Kruskal–Wallis test has been used to verify possible dependence of the performance from the breast density or image laterality. Results FFDMs from 168 consecutive women at our institution have been included in the study. Both LIBRA’s Dice-index and Cohen-kappa were significantly higher than OpenBreast (Wilcoxon signed-rank test P < 0.05). No dependence on breast density or laterality has been found (Kruskal–Wallis test P > 0.05). Conclusion: Libra has a better performance than OpenBreast in pectoral muscle delineation so that, although our study has not a direct clinical application, these results are useful in the choice of packages for the development of complex systems for computer-aided breast evaluation.
Collapse
|
35
|
Vicini S, Bortolotto C, Rengo M, Ballerini D, Bellini D, Carbone I, Preda L, Laghi A, Coppola F, Faggioni L. A narrative review on current imaging applications of artificial intelligence and radiomics in oncology: focus on the three most common cancers. Radiol Med 2022; 127:819-836. [DOI: 10.1007/s11547-022-01512-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022]
|
36
|
Floridi C, Cellina M, Irmici G, Bruno A, Rossini N, Borgheresi A, Agostini A, Bruno F, Arrigoni F, Arrichiello A, Candelari R, Barile A, Carrafiello G, Giovagnoni A. Precision Imaging Guidance in the Era of Precision Oncology: An Update of Imaging Tools for Interventional Procedures. J Clin Med 2022; 11:4028. [PMID: 35887791 PMCID: PMC9322069 DOI: 10.3390/jcm11144028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/02/2022] [Accepted: 07/08/2022] [Indexed: 02/05/2023] Open
Abstract
Interventional oncology (IO) procedures have become extremely popular in interventional radiology (IR) and play an essential role in the diagnosis, treatment, and supportive care of oncologic patients through new and safe procedures. IR procedures can be divided into two main groups: vascular and non-vascular. Vascular approaches are mainly based on embolization and concomitant injection of chemotherapeutics directly into the tumor-feeding vessels. Percutaneous approaches are a type of non-vascular procedures and include percutaneous image-guided biopsies and different ablation techniques with radiofrequency, microwaves, cryoablation, and focused ultrasound. The use of these techniques requires precise imaging pretreatment planning and guidance that can be provided through different imaging techniques: ultrasound, computed tomography, cone-beam computed tomography, and magnetic resonance. These imaging modalities can be used alone or in combination, thanks to fusion imaging, to further improve the confidence of the operators and the efficacy and safety of the procedures. This article aims is to provide an overview of the available IO procedures based on clinical imaging guidance to develop a targeted and optimal approach to cancer patients.
Collapse
Affiliation(s)
- Chiara Floridi
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy; (A.B.); (N.R.); (A.A.); (A.G.)
- Division of Special and Pediatric Radiology, Department of Radiology, University Hospital “Umberto I—Lancisi—Salesi”, 60126 Ancona, Italy;
- Division of Interventional Radiology, Department of Radiological Sciences, University Politecnica Delle Marche, 60126 Ancona, Italy;
| | - Michaela Cellina
- Radiology Department, Fatebenefratelli Hospital, ASST Fatebenefratelli Sacco, 20122 Milan, Italy;
| | - Giovanni Irmici
- Post-Graduation School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy; (G.I.); (A.A.)
| | - Alessandra Bruno
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy; (A.B.); (N.R.); (A.A.); (A.G.)
| | - Nicolo’ Rossini
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy; (A.B.); (N.R.); (A.A.); (A.G.)
| | - Alessandra Borgheresi
- Division of Special and Pediatric Radiology, Department of Radiology, University Hospital “Umberto I—Lancisi—Salesi”, 60126 Ancona, Italy;
| | - Andrea Agostini
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy; (A.B.); (N.R.); (A.A.); (A.G.)
| | - Federico Bruno
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.B.); (A.B.)
| | - Francesco Arrigoni
- Emergency and Interventional Radiology, San Salvatore Hospital, 67100 L’Aquila, Italy;
| | - Antonio Arrichiello
- Post-Graduation School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy; (G.I.); (A.A.)
| | - Roberto Candelari
- Division of Interventional Radiology, Department of Radiological Sciences, University Politecnica Delle Marche, 60126 Ancona, Italy;
| | - Antonio Barile
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.B.); (A.B.)
| | - Gianpaolo Carrafiello
- Operative Unit of Radiology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy;
- Department of Health Sciences, Università degli Studi di Milano, 20122 Milan, Italy
| | - Andrea Giovagnoni
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy; (A.B.); (N.R.); (A.A.); (A.G.)
- Division of Special and Pediatric Radiology, Department of Radiology, University Hospital “Umberto I—Lancisi—Salesi”, 60126 Ancona, Italy;
| |
Collapse
|
37
|
Mendez AM, Fang LK, Meriwether CH, Batasin SJ, Loubrie S, Rodríguez-Soto AE, Rakow-Penner RA. Diffusion Breast MRI: Current Standard and Emerging Techniques. Front Oncol 2022; 12:844790. [PMID: 35880168 PMCID: PMC9307963 DOI: 10.3389/fonc.2022.844790] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
The role of diffusion weighted imaging (DWI) as a biomarker has been the subject of active investigation in the field of breast radiology. By quantifying the random motion of water within a voxel of tissue, DWI provides indirect metrics that reveal cellularity and architectural features. Studies show that data obtained from DWI may provide information related to the characterization, prognosis, and treatment response of breast cancer. The incorporation of DWI in breast imaging demonstrates its potential to serve as a non-invasive tool to help guide diagnosis and treatment. In this review, current technical literature of diffusion-weighted breast imaging will be discussed, in addition to clinical applications, advanced techniques, and emerging use in the field of radiomics.
Collapse
Affiliation(s)
- Ashley M. Mendez
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Lauren K. Fang
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Claire H. Meriwether
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Summer J. Batasin
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Stéphane Loubrie
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Ana E. Rodríguez-Soto
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Rebecca A. Rakow-Penner
- Department of Radiology, University of California San Diego, La Jolla, CA, United States,Department of Bioengineering, University of California San Diego, La Jolla, CA, United States,*Correspondence: Rebecca A. Rakow-Penner,
| |
Collapse
|
38
|
De Muzio F, Grassi F, Dell’Aversana F, Fusco R, Danti G, Flammia F, Chiti G, Valeri T, Agostini A, Palumbo P, Bruno F, Cutolo C, Grassi R, Simonetti I, Giovagnoni A, Miele V, Barile A, Granata V. A Narrative Review on LI-RADS Algorithm in Liver Tumors: Prospects and Pitfalls. Diagnostics (Basel) 2022; 12:1655. [PMID: 35885561 PMCID: PMC9319674 DOI: 10.3390/diagnostics12071655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Liver cancer is the sixth most detected tumor and the third leading cause of tumor death worldwide. Hepatocellular carcinoma (HCC) is the most common primary liver malignancy with specific risk factors and a targeted population. Imaging plays a major role in the management of HCC from screening to post-therapy follow-up. In order to optimize the diagnostic-therapeutic management and using a universal report, which allows more effective communication among the multidisciplinary team, several classification systems have been proposed over time, and LI-RADS is the most utilized. Currently, LI-RADS comprises four algorithms addressing screening and surveillance, diagnosis on computed tomography (CT)/magnetic resonance imaging (MRI), diagnosis on contrast-enhanced ultrasound (CEUS) and treatment response on CT/MRI. The algorithm allows guiding the radiologist through a stepwise process of assigning a category to a liver observation, recognizing both major and ancillary features. This process allows for characterizing liver lesions and assessing treatment. In this review, we highlighted both major and ancillary features that could define HCC. The distinctive dynamic vascular pattern of arterial hyperenhancement followed by washout in the portal-venous phase is the key hallmark of HCC, with a specificity value close to 100%. However, the sensitivity value of these combined criteria is inadequate. Recent evidence has proven that liver-specific contrast could be an important tool not only in increasing sensitivity but also in diagnosis as a major criterion. Although LI-RADS emerges as an essential instrument to support the management of liver tumors, still many improvements are needed to overcome the current limitations. In particular, features that may clearly distinguish HCC from cholangiocarcinoma (CCA) and combined HCC-CCA lesions and the assessment after locoregional radiation-based therapy are still fields of research.
Collapse
Affiliation(s)
- Federica De Muzio
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, 86100 Campobasso, Italy;
| | - Francesca Grassi
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 81100 Naples, Italy; (F.G.); (F.D.); (R.G.)
| | - Federica Dell’Aversana
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 81100 Naples, Italy; (F.G.); (F.D.); (R.G.)
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Naples, Italy
| | - Ginevra Danti
- Division of Radiology, Azienda Ospedaliera Universitaria Careggi, 50134 Florence, Italy; (G.D.); (F.F.); (G.C.); (V.M.)
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (P.P.); (F.B.)
| | - Federica Flammia
- Division of Radiology, Azienda Ospedaliera Universitaria Careggi, 50134 Florence, Italy; (G.D.); (F.F.); (G.C.); (V.M.)
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (P.P.); (F.B.)
| | - Giuditta Chiti
- Division of Radiology, Azienda Ospedaliera Universitaria Careggi, 50134 Florence, Italy; (G.D.); (F.F.); (G.C.); (V.M.)
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (P.P.); (F.B.)
| | - Tommaso Valeri
- Department of Clinical Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy; (T.V.); (A.A.); (A.G.)
- Department of Radiological Sciences, University Hospital Ospedali Riuniti, Via Tronto 10/a, 60126 Torrette, Italy
| | - Andrea Agostini
- Department of Clinical Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy; (T.V.); (A.A.); (A.G.)
- Department of Radiological Sciences, University Hospital Ospedali Riuniti, Via Tronto 10/a, 60126 Torrette, Italy
| | - Pierpaolo Palumbo
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (P.P.); (F.B.)
- Area of Cardiovascular and Interventional Imaging, Department of Diagnostic Imaging, Abruzzo Health Unit 1, 67100 L’Aquila, Italy
| | - Federico Bruno
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (P.P.); (F.B.)
- Emergency Radiology, San Salvatore Hospital, Via Lorenzo Natali 1, 67100 L’Aquila, Italy;
| | - Carmen Cutolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Fisciano, Italy;
| | - Roberta Grassi
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 81100 Naples, Italy; (F.G.); (F.D.); (R.G.)
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (P.P.); (F.B.)
| | - Igino Simonetti
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Via Mariano Semmola, 80131 Naples, Italy; (I.S.); (V.G.)
| | - Andrea Giovagnoni
- Department of Clinical Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy; (T.V.); (A.A.); (A.G.)
- Department of Radiological Sciences, University Hospital Ospedali Riuniti, Via Tronto 10/a, 60126 Torrette, Italy
| | - Vittorio Miele
- Division of Radiology, Azienda Ospedaliera Universitaria Careggi, 50134 Florence, Italy; (G.D.); (F.F.); (G.C.); (V.M.)
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (P.P.); (F.B.)
| | - Antonio Barile
- Emergency Radiology, San Salvatore Hospital, Via Lorenzo Natali 1, 67100 L’Aquila, Italy;
| | - Vincenza Granata
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Via Mariano Semmola, 80131 Naples, Italy; (I.S.); (V.G.)
| |
Collapse
|
39
|
Ability of Delta Radiomics to Predict a Complete Pathological Response in Patients with Loco-Regional Rectal Cancer Addressed to Neoadjuvant Chemo-Radiation and Surgery. Cancers (Basel) 2022; 14:cancers14123004. [PMID: 35740669 PMCID: PMC9221458 DOI: 10.3390/cancers14123004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/27/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary The present study aimed to investigate the possible use of MRI delta texture analysis (D-TA) in order to predict the extent of pathological response in patients with locally advanced rectal cancer addressed to neoadjuvant chemo-radiotherapy (C-RT) followed by surgery. We found that D-TA may really predict the frequency of pCR in this patient setting and, thus, it may be investigated as a potential item to identify candidate patients who may benefit from an aggressive radical surgery. Abstract We performed a pilot study to evaluate the use of MRI delta texture analysis (D-TA) as a methodological item able to predict the frequency of complete pathological responses and, consequently, the outcome of patients with locally advanced rectal cancer addressed to neoadjuvant chemoradiotherapy (C-RT) and subsequently, to radical surgery. In particular, we carried out a retrospective analysis including 100 patients with locally advanced rectal adenocarcinoma who received C-RT and then radical surgery in three different oncological institutions between January 2013 and December 2019. Our experimental design was focused on the evaluation of the gross tumor volume (GTV) at baseline and after C-RT by means of MRI, which was contoured on T2, DWI, and ADC sequences. Multiple texture parameters were extracted by using a LifeX Software, while D-TA was calculated as percentage of variations in the two time points. Both univariate and multivariate analysis (logistic regression) were, therefore, carried out in order to correlate the above-mentioned TA parameters with the frequency of pathological responses in the examined patients’ population focusing on the detection of complete pathological response (pCR, with no viable cancer cells: TRG 1) as main statistical endpoint. ROC curves were performed on three different datasets considering that on the 21 patients, only 21% achieved an actual pCR. In our training dataset series, pCR frequency significantly correlated with ADC GLCM-Entropy only, when univariate and binary logistic analysis were performed (AUC for pCR was 0.87). A confirmative binary logistic regression analysis was then repeated in the two remaining validation datasets (AUC for pCR was 0.92 and 0.88, respectively). Overall, these results support the hypothesis that D-TA may have a significant predictive value in detecting the occurrence of pCR in our patient series. If confirmed in prospective and multicenter trials, these results may have a critical role in the selection of patients with locally advanced rectal cancer who may benefit form radical surgery after neoadjuvant chemoradiotherapy.
Collapse
|
40
|
Darvish L, Bahreyni-Toossi MT, Roozbeh N, Azimian H. The role of radiogenomics in the diagnosis of breast cancer: a systematic review. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00310-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
One of the most common cancers diagnosed worldwide is breast cancer (BC), which is the leading cause of cancer death among women. The radiogenomics method is more accurate for managing and inhibiting this disease, which takes individual diagnosis on genes, environments, and lifestyles of each person. The present study aims to highlight the current state-of-the-art, the current role and limitations, and future directions of radiogenomics in breast cancer.
Method
This systematic review article was searched from databases such as Embase, PubMed, Web of Science, Google Scholar, Scopus, and Cochrane Library without any date or language limitations of databases. Searches were performed using Boolean OR and AND operators between the main terms and keywords of particular topic of the subject under investigation. All retrospective, prospective, cohort, and pilot studies were included, which were provided with more details about the topic. Articles such as letter to the editor, review, and short communications were excluded because of lack of information, discussions, or use of radiogenomics method on other cancers. For quality assessment of articles, STROBE checklist was used.
Result
For the systematic review, 18 articles were approved after assessing the full text of selected articles. In this review, 3614 patients with BC of selected articles were evaluated, and all radiogenomics were associated with more power in classification, differential diagnosis, and prognosis of BC. Among the various modalities to predict genomic indicators and molecular subtypes, DCE-MRI has the higher performance and finally the highest amount of AUC value (0.956) belonged to PI3K gene.
Conclusion
This review shows that radiogenomics can help with the diagnosis and treatment of breast cancer in patients. It has shown that recognizing and specifying radiogenomic phenotypes in the genomic signatures can be helpful in treatment and diagnosis of disease. The molecular methods used in these articles are limited to miRNAs expression, gene expression, Ki67 proliferation index, next-generation RNA sequencing, whole RNA sequencing, and molecular histopathology that can be completed in future studies by other methods such as exosomal miRNAs, specific proteins expression, DNA repair capacity, and other biomarkers that have prognostic and predictive value for cancer treatment response. Studies with control group and large sample size for evaluation of radiogenomics in diagnosis and treatment recommended.
Collapse
|
41
|
Borgheresi A, De Muzio F, Agostini A, Ottaviani L, Bruno A, Granata V, Fusco R, Danti G, Flammia F, Grassi R, Grassi F, Bruno F, Palumbo P, Barile A, Miele V, Giovagnoni A. Lymph Nodes Evaluation in Rectal Cancer: Where Do We Stand and Future Perspective. J Clin Med 2022; 11:2599. [PMID: 35566723 PMCID: PMC9104021 DOI: 10.3390/jcm11092599] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/25/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022] Open
Abstract
The assessment of nodal involvement in patients with rectal cancer (RC) is fundamental in disease management. Magnetic Resonance Imaging (MRI) is routinely used for local and nodal staging of RC by using morphological criteria. The actual dimensional and morphological criteria for nodal assessment present several limitations in terms of sensitivity and specificity. For these reasons, several different techniques, such as Diffusion Weighted Imaging (DWI), Intravoxel Incoherent Motion (IVIM), Diffusion Kurtosis Imaging (DKI), and Dynamic Contrast Enhancement (DCE) in MRI have been introduced but still not fully validated. Positron Emission Tomography (PET)/CT plays a pivotal role in the assessment of LNs; more recently PET/MRI has been introduced. The advantages and limitations of these imaging modalities will be provided in this narrative review. The second part of the review includes experimental techniques, such as iron-oxide particles (SPIO), and dual-energy CT (DECT). Radiomics analysis is an active field of research, and the evidence about LNs in RC will be discussed. The review also discusses the different recommendations between the European and North American guidelines for the evaluation of LNs in RC, from anatomical considerations to structured reporting.
Collapse
Affiliation(s)
- Alessandra Borgheresi
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60121 Ancona, Italy; (A.B.); (A.A.); (A.B.); (A.G.)
| | - Federica De Muzio
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Andrea Agostini
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60121 Ancona, Italy; (A.B.); (A.A.); (A.B.); (A.G.)
- Department of Radiological Sciences, University Hospital Ospedali Riuniti, 60126 Ancona, Italy;
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
| | - Letizia Ottaviani
- Department of Radiological Sciences, University Hospital Ospedali Riuniti, 60126 Ancona, Italy;
| | - Alessandra Bruno
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60121 Ancona, Italy; (A.B.); (A.A.); (A.B.); (A.G.)
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale IRCCS di Napoli, 80131 Naples, Italy;
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Napoli, Italy
| | - Ginevra Danti
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy;
| | - Federica Flammia
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy;
| | - Roberta Grassi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80128 Naples, Italy
| | - Francesca Grassi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80128 Naples, Italy
| | - Federico Bruno
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Pierpaolo Palumbo
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Abruzzo Health Unit 1, Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, 67100 L’Aquila, Italy
| | - Antonio Barile
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Vittorio Miele
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy;
| | - Andrea Giovagnoni
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60121 Ancona, Italy; (A.B.); (A.A.); (A.B.); (A.G.)
- Department of Radiological Sciences, University Hospital Ospedali Riuniti, 60126 Ancona, Italy;
| |
Collapse
|
42
|
Prediction of Breast Cancer Histological Outcome by Radiomics and Artificial Intelligence Analysis in Contrast-Enhanced Mammography. Cancers (Basel) 2022; 14:cancers14092132. [PMID: 35565261 PMCID: PMC9102628 DOI: 10.3390/cancers14092132] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/30/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The assessment of breast lesions through mammographic images is currently challenging, especially in dense breasts. Contrast-enhanced mammography has been shown to overcome the limitations of standard mammography but it greatly depends on the interpretative skills of the physician. The aim of this study was to evaluate the potentialities of statistical and artificial intelligence algorithms as a tool for helping the radiologists in the interpretation of images. The most remarkable results were achieved in discriminating benign from malignant lesions and in the identification of the presence of the hormone receptor. A tool to support the physician’s decision-making process may be designed starting from simple logistic regression and tree-based algorithms. This type of tool may help the radiologist in assessing the investigated breast and in choosing the appropriate follow-up without resorting to histology. Abstract Purpose: To evaluate radiomics features in order to: differentiate malignant versus benign lesions; predict low versus moderate and high grading; identify positive or negative hormone receptors; and discriminate positive versus negative human epidermal growth factor receptor 2 related to breast cancer. Methods: A total of 182 patients with known breast lesions and that underwent Contrast-Enhanced Mammography were enrolled in this retrospective study. The reference standard was pathology (118 malignant lesions and 64 benign lesions). A total of 837 textural metrics were extracted by manually segmenting the region of interest from both craniocaudally (CC) and mediolateral oblique (MLO) views. Non-parametric Wilcoxon–Mann–Whitney test, receiver operating characteristic, logistic regression and tree-based machine learning algorithms were used. The Adaptive Synthetic Sampling balancing approach was used and a feature selection process was implemented. Results: In univariate analysis, the classification of malignant versus benign lesions achieved the best performance when considering the original_gldm_DependenceNonUniformity feature extracted on CC view (accuracy of 88.98%). An accuracy of 83.65% was reached in the classification of grading, whereas a slightly lower value of accuracy (81.65%) was found in the classification of the presence of the hormone receptor; the features extracted were the original_glrlm_RunEntropy and the original_gldm_DependenceNonUniformity, respectively. The results of multivariate analysis achieved the best performances when using two or more features as predictors for classifying malignant versus benign lesions from CC view images (max test accuracy of 95.83% with a non-regularized logistic regression). Considering the features extracted from MLO view images, the best test accuracy (91.67%) was obtained when predicting the grading using a classification-tree algorithm. Combinations of only two features, extracted from both CC and MLO views, always showed test accuracy values greater than or equal to 90.00%, with the only exception being the prediction of the human epidermal growth factor receptor 2, where the best performance (test accuracy of 89.29%) was obtained with the random forest algorithm. Conclusions: The results confirm that the identification of malignant breast lesions and the differentiation of histological outcomes and some molecular subtypes of tumors (mainly positive hormone receptor tumors) can be obtained with satisfactory accuracy through both univariate and multivariate analysis of textural features extracted from Contrast-Enhanced Mammography images.
Collapse
|
43
|
Combined Hepatocellular-Cholangiocarcinoma: What the Multidisciplinary Team Should Know. Diagnostics (Basel) 2022; 12:diagnostics12040890. [PMID: 35453938 PMCID: PMC9026907 DOI: 10.3390/diagnostics12040890] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 12/10/2022] Open
Abstract
Combined hepatocellular-cholangiocarcinoma (cHCC-CCA) is a rare type of primary liver malignancy. Among the risk factors, hepatitis B and hepatitis C virus infections, cirrhosis, and male gender are widely reported. The clinical appearance of cHCC-CCA is similar to that of HCC and iCCA and it is usually silent until advanced states, causing a delay of diagnosis. Diagnosis is mainly based on histology from biopsies or surgical specimens. Correct pre-surgical diagnosis during imaging studies is very problematic and is due to the heterogeneous characteristics of the lesion in imaging, with overlapping features of HCC and CCA. The predominant histological subtype within the lesion establishes the predominant imaging findings. Therefore, in this scenario, the radiological findings characteristic of HCC show an overlap with those of CCA. Since cHCC-CCAs are prevalent in patients at high risk of HCC and there is a risk that these may mimic HCC, it is currently difficult to see a non-invasive diagnosis of HCC. Surgery is the only curative treatment of HCC-CCA. The role of liver transplantation (LT) in the treatment of cHCC-CCA remains controversial, as is the role of ablative or systemic therapies in the treatment of this tumour. These lesions still remain challenging, both in diagnosis and in the treatment phase. Therefore, a pre-treatment imaging diagnosis is essential, as well as the identification of prognostic factors that could stratify the risk of recurrence and the most adequate therapy according to patient characteristics.
Collapse
|
44
|
Granata V, Fusco R, Belli A, Borzillo V, Palumbo P, Bruno F, Grassi R, Ottaiano A, Nasti G, Pilone V, Petrillo A, Izzo F. Conventional, functional and radiomics assessment for intrahepatic cholangiocarcinoma. Infect Agent Cancer 2022; 17:13. [PMID: 35346300 PMCID: PMC8961950 DOI: 10.1186/s13027-022-00429-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/18/2022] [Indexed: 02/08/2023] Open
Abstract
Background This paper offers an assessment of diagnostic tools in the evaluation of Intrahepatic Cholangiocarcinoma (ICC). Methods Several electronic datasets were analysed to search papers on morphological and functional evaluation in ICC patients. Papers published in English language has been scheduled from January 2010 to December 2021.
Results We found that 88 clinical studies satisfied our research criteria. Several functional parameters and morphological elements allow a truthful ICC diagnosis. The contrast medium evaluation, during the different phases of contrast studies, support the recognition of several distinctive features of ICC. The imaging tool to employed and the type of contrast medium in magnetic resonance imaging, extracellular or hepatobiliary, should change considering patient, departement, and regional features. Also, Radiomics is an emerging area in the evaluation of ICCs. Post treatment studies are required to evaluate the efficacy and the safety of therapies so as the patient surveillance. Conclusions Several morphological and functional data obtained during Imaging studies allow a truthful ICC diagnosis.
Collapse
|
45
|
Fusco R, Granata V, Grazzini G, Pradella S, Borgheresi A, Bruno A, Palumbo P, Bruno F, Grassi R, Giovagnoni A, Grassi R, Miele V, Barile A. Radiomics in medical imaging: pitfalls and challenges in clinical management. Jpn J Radiol 2022; 40:919-929. [PMID: 35344132 DOI: 10.1007/s11604-022-01271-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/14/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND Radiomics and radiogenomics are two words that recur often in language of radiologists, nuclear doctors and medical physicists especially in oncology field. Radiomics is the technique of medical images analysis to extract quantitative data that are not detected by human eye. METHODS This article is a narrative review on Radiomics in Medical Imaging. In particular, the review exposes the process, the limitations related to radiomics, and future prospects are discussed. RESULTS Several studies showed that radiomics is very promising. However, there were some critical issues: poor standardization and generalization of radiomics results, data-quality control, repeatability, reproducibility, database balancing and issues related to model overfitting. CONCLUSIONS Radiomics procedure should made considered all pitfalls and challenges to obtain robust and reproducible results that could be generalized in other patients cohort.
Collapse
Affiliation(s)
| | - Vincenza Granata
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli", Naples, Italy.
| | - Giulia Grazzini
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.,Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122, Milan, Italy
| | - Silvia Pradella
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.,Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122, Milan, Italy
| | - Alessandra Borgheresi
- Department of Clinical Special and Dental Sciences, School of Radiology, University Politecnica delle Marche, Ancona, Italy
| | - Alessandra Bruno
- Department of Clinical Special and Dental Sciences, School of Radiology, University Politecnica delle Marche, Ancona, Italy
| | - Pierpaolo Palumbo
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122, Milan, Italy.,Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, Abruzzo Health Unit 1, 67100, L'Aquila, Italy
| | - Federico Bruno
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122, Milan, Italy.,Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, 67100, L'Aquila, Italy
| | - Roberta Grassi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122, Milan, Italy.,Division of Radiology, "Università Degli Studi della Campania Luigi Vanvitelli", Naples, Italy
| | - Andrea Giovagnoni
- Department of Clinical Special and Dental Sciences, School of Radiology, University Politecnica delle Marche, Ancona, Italy
| | - Roberto Grassi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122, Milan, Italy.,Division of Radiology, "Università Degli Studi della Campania Luigi Vanvitelli", Naples, Italy
| | - Vittorio Miele
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.,Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122, Milan, Italy
| | - Antonio Barile
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122, Milan, Italy.,Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, 67100, L'Aquila, Italy
| |
Collapse
|
46
|
Advanced Magnetic Resonance Imaging (MRI) Techniques: Technical Principles and Applications in Nanomedicine. Cancers (Basel) 2022; 14:cancers14071626. [PMID: 35406399 PMCID: PMC8997011 DOI: 10.3390/cancers14071626] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Magnetic Resonance Imaging (MRI) is a consolidated imaging tool for the multiparametric assessment of tissues in various pathologies from degenerative and inflammatory diseases to cancer. In recent years, the continuous technological evolution of the equipment has led to the development of sequences that provide not only anatomical but also functional and metabolic information. In addition, there is a growing and emerging field of research in clinical applications using MRI to exploit the diagnostic and therapeutic capabilities of nanocompounds. This review illustrates the application of the most advanced magnetic resonance techniques in the field of nanomedicine. Abstract In the last decades, nanotechnology has been used in a wide range of biomedical applications, both diagnostic and therapeutic. In this scenario, imaging techniques represent a fundamental tool to obtain information about the properties of nanoconstructs and their interactions with the biological environment in preclinical and clinical settings. This paper reviews the state of the art of the application of magnetic resonance imaging in the field of nanomedicine, as well as the use of nanoparticles as diagnostic and therapeutic tools, especially in cancer, including the characteristics that hinder the use of nanoparticles in clinical practice.
Collapse
|
47
|
Fusco R, Di Bernardo E, Piccirillo A, Rubulotta MR, Petrosino T, Barretta ML, Mattace Raso M, Vallone P, Raiano C, Di Giacomo R, Siani C, Avino F, Scognamiglio G, Di Bonito M, Granata V, Petrillo A. Radiomic and Artificial Intelligence Analysis with Textural Metrics Extracted by Contrast-Enhanced Mammography and Dynamic Contrast Magnetic Resonance Imaging to Detect Breast Malignant Lesions. Curr Oncol 2022; 29:1947-1966. [PMID: 35323359 PMCID: PMC8947713 DOI: 10.3390/curroncol29030159] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose:The purpose of this study was to discriminate between benign and malignant breast lesions through several classifiers using, as predictors, radiomic metrics extracted from CEM and DCE-MRI images. In order to optimize the analysis, balancing and feature selection procedures were performed. Methods: Fifty-four patients with 79 histo-pathologically proven breast lesions (48 malignant lesions and 31 benign lesions) underwent both CEM and DCE-MRI. The lesions were retrospectively analyzed with radiomic and artificial intelligence approaches. Forty-eight textural metrics were extracted, and univariate and multivariate analyses were performed: non-parametric statistical test, receiver operating characteristic (ROC) and machine learning classifiers. Results: Considering the single metrics extracted from CEM, the best predictors were KURTOSIS (area under ROC curve (AUC) = 0.71) and SKEWNESS (AUC = 0.71) calculated on late MLO view. Considering the features calculated from DCE-MRI, the best predictors were RANGE (AUC = 0.72), ENERGY (AUC = 0.72), ENTROPY (AUC = 0.70) and GLN (gray-level nonuniformity) of the gray-level run-length matrix (AUC = 0.72). Considering the analysis with classifiers and an unbalanced dataset, no significant results were obtained. After the balancing and feature selection procedures, higher values of accuracy, specificity and AUC were reached. The best performance was obtained considering 18 robust features among all metrics derived from CEM and DCE-MRI, using a linear discriminant analysis (accuracy of 0.84 and AUC = 0.88). Conclusions: Classifiers, adjusted with adaptive synthetic sampling and feature selection, allowed for increased diagnostic performance of CEM and DCE-MRI in the differentiation between benign and malignant lesions.
Collapse
Affiliation(s)
- Roberta Fusco
- Medical Oncolody Division, Igea SpA, 80013 Naples, Italy; (R.F.); (E.D.B.)
| | - Elio Di Bernardo
- Medical Oncolody Division, Igea SpA, 80013 Naples, Italy; (R.F.); (E.D.B.)
| | - Adele Piccirillo
- Department of Electrical Engineering and Information Technologies, Università degli Studi di Napoli Federico II, 80125 Naples, Italy;
| | - Maria Rosaria Rubulotta
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (M.R.R.); (T.P.); (M.L.B.); (M.M.R.); (P.V.); (C.R.); (A.P.)
| | - Teresa Petrosino
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (M.R.R.); (T.P.); (M.L.B.); (M.M.R.); (P.V.); (C.R.); (A.P.)
| | - Maria Luisa Barretta
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (M.R.R.); (T.P.); (M.L.B.); (M.M.R.); (P.V.); (C.R.); (A.P.)
| | - Mauro Mattace Raso
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (M.R.R.); (T.P.); (M.L.B.); (M.M.R.); (P.V.); (C.R.); (A.P.)
| | - Paolo Vallone
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (M.R.R.); (T.P.); (M.L.B.); (M.M.R.); (P.V.); (C.R.); (A.P.)
| | - Concetta Raiano
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (M.R.R.); (T.P.); (M.L.B.); (M.M.R.); (P.V.); (C.R.); (A.P.)
| | - Raimondo Di Giacomo
- Senology Surgical Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (R.D.G.); (C.S.); (F.A.)
| | - Claudio Siani
- Senology Surgical Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (R.D.G.); (C.S.); (F.A.)
| | - Franca Avino
- Senology Surgical Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (R.D.G.); (C.S.); (F.A.)
| | - Giosuè Scognamiglio
- Pathology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (G.S.); (M.D.B.)
| | - Maurizio Di Bonito
- Pathology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (G.S.); (M.D.B.)
| | - Vincenza Granata
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (M.R.R.); (T.P.); (M.L.B.); (M.M.R.); (P.V.); (C.R.); (A.P.)
- Correspondence: ; Tel.: +39-081-590-714; Fax: +39-081-590-3825
| | - Antonella Petrillo
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (M.R.R.); (T.P.); (M.L.B.); (M.M.R.); (P.V.); (C.R.); (A.P.)
| |
Collapse
|
48
|
Granata V, Fusco R, Setola SV, Simonetti I, Cozzi D, Grazzini G, Grassi F, Belli A, Miele V, Izzo F, Petrillo A. An update on radiomics techniques in primary liver cancers. Infect Agent Cancer 2022; 17:6. [PMID: 35246207 PMCID: PMC8897888 DOI: 10.1186/s13027-022-00422-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Radiomics is a progressing field of research that deals with the extraction of quantitative metrics from medical images. Radiomic features detention indirectly tissue features such as heterogeneity and shape and can, alone or in combination with demographic, histological, genomic, or proteomic data, be used for decision support system in clinical setting. METHODS This article is a narrative review on Radiomics in Primary Liver Cancers. Particularly, limitations and future perspectives are discussed. RESULTS In oncology, assessment of tissue heterogeneity is of particular interest: genomic analysis have demonstrated that the degree of tumour heterogeneity is a prognostic determinant of survival and an obstacle to cancer control. Therefore, that Radiomics could support cancer detection, diagnosis, evaluation of prognosis and response to treatment, so as could supervise disease status in hepatocellular carcinoma (HCC) and Intrahepatic Cholangiocarcinoma (ICC) patients. Radiomic analysis is a convenient radiological image analysis technique used to support clinical decisions as it is able to provide prognostic and / or predictive biomarkers that allow a fast, objective and repeatable tool for disease monitoring. CONCLUSIONS Although several studies have shown that this analysis is very promising, there is little standardization and generalization of the results, which limits the translation of this method into the clinical context. The limitations are mainly related to the evaluation of data quality, repeatability, reproducibility, overfitting of the model. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Via Mariano Semmola 80131, Naples, Italy.
| | | | - Sergio Venazio Setola
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Via Mariano Semmola 80131, Naples, Italy
| | - Igino Simonetti
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Via Mariano Semmola 80131, Naples, Italy
| | - Diletta Cozzi
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.,Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via Della Signora 2, 20122, Milan, Italy
| | - Giulia Grazzini
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.,Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via Della Signora 2, 20122, Milan, Italy
| | - Francesca Grassi
- Division of Radiology, "Università Degli Studi Della Campania Luigi Vanvitelli", Naples, Italy
| | - Andrea Belli
- Division of Hepatobiliary Surgical Oncology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", 80131, Naples, Italy
| | - Vittorio Miele
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.,Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via Della Signora 2, 20122, Milan, Italy
| | - Francesco Izzo
- Division of Hepatobiliary Surgical Oncology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", 80131, Naples, Italy
| | - Antonella Petrillo
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Via Mariano Semmola 80131, Naples, Italy
| |
Collapse
|
49
|
Wang W, Zhang X, Zhu L, Chen Y, Dou W, Zhao F, Zhou Z, Sun Z. Prediction of Prognostic Factors and Genotypes in Patients With Breast Cancer Using Multiple Mathematical Models of MR Diffusion Imaging. Front Oncol 2022; 12:825264. [PMID: 35174093 PMCID: PMC8841854 DOI: 10.3389/fonc.2022.825264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/07/2022] [Indexed: 01/31/2023] Open
Abstract
Purpose To explore the clinical value of apparent diffusion coefficient (ADC), intravoxel incoherent motion (IVIM), and diffusion kurtosis imaging (DKI) based on diffusion-weighted MRI (DW-MRI) for predicting genotypes and prognostic factors of breast cancer. Materials and Methods A total of 227 patients with breast cancer confirmed by pathology were reviewed retrospectively. Diffusion-weighted imaging (DWI), IVIM, and DKI were performed in all patients. The corresponding ADC, true diffusion coefficient (D), perfusion-related diffusion coefficient (D*), perfusion fraction (f), mean diffusion rate (MD), and mean kurtosis value (MK) were measured. Multivariate logistic regression analysis and receiver operating characteristic (ROC) curve were used to analyze the diagnostic efficacy in predicting the Nottingham prognostic index (NPI), the expression of antigen Ki-67, and the molecular subtypes of breast cancer. The nomogram of the combined genotype-prediction model was established based on the multivariate logistic regression model results. Results D* and MK values were significantly higher in the high-grade Nottingham group (NPI ≥ 3.4) than the low-grade Nottingham group (NPI < 3.4) (p < 0.01). When D* ≥ 30.95 × 10−3 mm2/s and MK ≥ 0.69, the NPI tended to be high grade (with areas under the curve (AUCs) of 0.712 and 0.647, respectively). The combination of D* and MK demonstrated the highest AUC of 0.734 in grading NPI with sensitivity and accuracy of 71.7% and 77.1%, respectively. Additionally, higher D*, f, and MK and lower ADC and D values were observed in the high Ki-67 than low Ki-67 expression groups (p < 0.05). The AUC of the combined model (D + D* + f + MK) was 0.755, being significantly higher than that of single parameters (Z = 2.770~3.244, p = 0.001~0.006) in distinguishing high from low Ki-67 expression. D* and f values in the Luminal A subtype were significantly lower than in other subtypes (p < 0.05). Luminal B showed decreased D value compared with other subtypes (p < 0.05). The HER-2-positive subtype demonstrated increased ADC values compared with the Luminal B subtype (p < 0.05). Luminal A/B showed significantly lower D, D*, MD, and MK than the non-Luminal subtypes (p < 0.05). The combined model (D + D* + MD + MK) showed an AUC of 0.830 in diagnosing the Luminal and non-Luminal subtypes, which is significantly higher than that of a single parameter (Z = 3.273~4.440, p < 0.01). f ≥ 54.30% [odds ratio (OR) = 1.038, p < 0.001] and MK ≥ 0.68 (OR = 24.745, p = 0.012) were found to be significant predictors of triple-negative subtypes. The combination of f and MK values demonstrated superior diagnostic performance with AUC, sensitivity, specificity, and accuracy of 0.756, 67.5%, 77.5%, and 82.4%, respectively. Moreover, as shown in the calibration curve, strong agreements were observed between nomogram prediction probability and actual findings in the prediction of genotypes (p = 0.22, 0.74). Conclusion DWI, IVIM, and DKI, as MR diffusion imaging techniques with different mathematical models showed potential to identify the prognosis and genotype of breast cancer. In addition, the combination of these three models can improve the diagnostic efficiency and thus may contribute to opting for an appropriate therapeutic approach in clinic treatment.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Medical Imaging, Affiliated Hospital of Jining Medical University, Jining, China
| | - Xindong Zhang
- Department of Medical Imaging, Affiliated Hospital of Jining Medical University, Jining, China
| | - Laimin Zhu
- Department of Medical Imaging, Affiliated Hospital of Jining Medical University, Jining, China
| | - Yueqin Chen
- Department of Medical Imaging, Affiliated Hospital of Jining Medical University, Jining, China
| | | | - Fan Zhao
- Department of Medical Imaging, Affiliated Hospital of Jining Medical University, Jining, China
| | - Zhe Zhou
- Department of Medical Imaging, Affiliated Hospital of Jining Medical University, Jining, China
| | - Zhanguo Sun
- Department of Medical Imaging, Affiliated Hospital of Jining Medical University, Jining, China
- *Correspondence: Zhanguo Sun,
| |
Collapse
|
50
|
Kayadibi Y, Kocak B, Ucar N, Akan YN, Akbas P, Bektas S. Radioproteomics in Breast Cancer: Prediction of Ki-67 Expression With MRI-based Radiomic Models. Acad Radiol 2022; 29 Suppl 1:S116-S125. [PMID: 33744071 DOI: 10.1016/j.acra.2021.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022]
Abstract
RATIONALE AND OBJECTIVES We aimed to investigate the value of magnetic resonance image (MRI)-based radiomics in predicting Ki-67 expression of breast cancer. METHODS In this retrospective study, 159 lesions from 154 patients were included. Radiomic features were extracted from contrast-enhanced T1-weighted MRI (C+MRI) and apparent diffusion coefficient (ADC) maps, with open-source software. Dimension reduction was done with reliability analysis, collinearity analysis, and feature selection. Two different Ki-67 expression cut-off values (14% vs 20%) were studied as reference standard for the classifications. Input for the models were radiomic features from individual MRI sequences or their combination. Classifications were performed using a generalized linear model. RESULTS Considering Ki-67 cut-off value of 14%, training and testing AUC values were 0.785 (standard deviation [SD], 0.193) and 0.849 for ADC; 0.696 (SD, 0.150) and 0.695 for C+MRI; 0.755 (SD, 0.171) and 0.635 for the combination of both sequences, respectively. Regarding Ki-67 cut-off value of 20%, training and testing AUC values were 0.744 (SD, 0.197) and 0.617 for ADC; 0.629 (SD, 0.251) and 0.741 for C+MRI; 0.761 (SD, 0.207) and 0.618 for the combination of both sequences, respectively. CONCLUSION ADC map-based selected radiomic features coupled with generalized linear modeling might be a promising non-invasive method to determine the Ki-67 expression level of breast cancer.
Collapse
|