Copyright
©The Author(s) 2022.
Artif Intell Gastroenterol. Dec 28, 2022; 3(5): 117-141
Published online Dec 28, 2022. doi: 10.35712/aig.v3.i5.117
Published online Dec 28, 2022. doi: 10.35712/aig.v3.i5.117
Table 1 Overview of findings from studies evaluating the detection accuracy of computer-aided detection for Barrett’s esophagus-related neoplasia
Ref. | Country | Study design | AI Classifier | Lesions | Training dataset | Test dataset | Sensitivity (%) | Specificity (%) | Accuracy (%) | AUROC |
Swager et al[11], 2017 | Netherlands | Retrospective | ML2 methods | NPL | - | 60 VLE images | 90 | 93 | - | 0.95 |
van der Sommen et al[10], 2016 | Netherlands | Retrospective | SVM | NPL | - | 100 WLE images | 83 | 83 | - | - |
Hong et al[17], 2017 | South Korea | Retrospective | CNN | NPL, IM, GM | 236 endomicroscopy images | 26 endomicroscopy images | - | - | 80.77 | - |
de Groof et al[13], 2019 | Netherlands, Germany, Belgium | Prospective | SVM | NPL | - | 60 WLE images | 95 | 85 | 91.7 | 0.92 |
Ebigbo et al[21], 2019 | Germany, Brazil | Retrospective | CNN | EAC | Augsburg dataset: 148 WLE images and NBI; MICCAI dataset: 100 WLE images | 97; 94a; 92 | 88; 80a; 100 | - | - | |
Ghatwary et al[24], 2019 | England, Egypt | Retrospective | Multiple CNNs | EAC | Images from 21 patients | Images from 9 patients | 96 | 92 | - | - |
de Groof et al[14], 2020 | Netherlands, France, Sweden, Germany, Belgium, Australia | Ambispective | CNN | NPL | Dataset 1: 494364 images; Dataset 2:1; 247 images; Dataset 3: 297 images | Dataset 3: 297 images; Dataset 4: 80 images; Dataset 5: 80 images | 90b | 87.5b | 88.8b | - |
de Groof et al[15], 2020 | Netherlands, Belgium | Prospective | CNN | NPL | 495611 images | 20 patients; 144 WLE images | 75.8 | 86.5 | 84 | - |
Ebigbo et al[18], 2020 | Germany, Brazil | Prospective | CNN | EAC | 129 images | 62 images | 83.7 | 100 | 89.9 | - |
Hashimoto et al[19], 2020 | United States | Retrospective | CNN | NPL | 1374 images | 458 images | 96.4 | 94.2 | 95.4 | - |
Struyvenberg et al[12], 2020 | Netherlands | Prospective | ML2 methods | NPL | - | 3060 VLE frames | - | - | - | 0.91 |
Iwagami et al[25], 2021 | Japan | Retrospective | CNN | EJC | 3443 images | 232 images | 94 | 42 | 66 | - |
Struyvenberg et al[16], 2021 | Netherlands, Sweden, Belgium | Retrospective | CNN | NPL | 495611 images | 157 NBI zoom videos; 30021 frames | 851; 75 | 831; 90 | 831; 85 | - |
Hussein et al[20], 2022 | England, Spain, Belgium, Austria | Prospective | CNN | DPL | 148936 frames | 264 iscan-1 images | 91 | 79 | - | 0.93 |
Table 2 Overview of findings from studies evaluating the detection accuracy of computer-aided detection for gastric cancer
Ref. | Country | Study design | AI classifier | Lesions | Training dataset | Test dataset | Sensitivity (%) | Specificity (%) | Accuracy (%) | AUROC |
Miyaki et al[47], 2013 | Japan | Prospectivea | SVM | Gastric cancer | 493 FICE-derived magnifying endoscopic images | 92 FICE-derived magnifying endoscopic images | 84.8 | 97 | 85.9 | - |
Kanesaka et al[48], 2018 | Japan, Taiwan | Retrospective | SVM | EGC | 126 M-NBI images | 81 M-NBI images | 96.7 | 95 | 96.3 | - |
Wu et al[50], 2019 | China | Retrospective | CNN | EGC | 9151 images | 200 images | 94 | 91 | 92.5 | - |
Cho et al[51], 2019 | South Korea | Ambispective | CNN | Advanced gastric cancer, EGC, high grade dysplasia, low grade dysplasia, non-neoplasm | 4205 WLE images | 812 WLE images; 200 WLE images | - | - | 86.6b; 76.4 | 0.877b |
Tang et al[49], 2020 | China | Retrospective | CNN | EGC | 35823 WLE images | Internal: 9417 WLE images; External: 1514 WLE images1 | 95.51; 85.9-92.1 | 81.71; 84.4-90.3 | 87.81; 85.1-91.2 | 0.941; 0.887-0.925 |
Namikawa et al[52], 2020 | Japan | Retrospective | CNN | Gastric cancer | 18410 images | 1459 images | 99 | 93.3 | 99 | - |
Horiuchi et al[56], 2020 | Japan | Retrospective | CNN | EGC | 2570 M-NBI images | 258 M-NBI images | 95.4 | 71 | 85.3 | 0.852 |
Horiuchi et al[57], 2020 | Japan | Retrospective | CNN | EGC | 2570 M-NBI images | 174 videos | 87.4 | 82.8 | 85.1 | 0.8684 |
Guo et al[54], 2021 | China | Retrospective | CNN | Gastric cancer, erosions/ulcers, polyps, varices | 293162 WLE images | 33959 WLE images | 67.52; 85.1 | 70.92; 90.3 | - | - |
Ikenoyama et al[55], 2021 | Japan | Retrospective | CNN | EGC | 13584 WLE and NBI images | 2940 WLE and NBI images | 58.4 | 87.3 | - | - |
Hu et al[58], 2021 | China | Retrospective | CNN | EGC | M-NBI images from 170 patients | Internal: M-NBI from 73 patients External: M-NBI images from 52 patients | 79.23; 78.2 | 74.53; 74.1 | 773; 76.3 | 0.8083; 0.813 |
Ueyama et al[59], 2021 | Japan | Retrospective | CNN | EGC | 5574 M-NBI images | 2300 M-NBI | 98 | 100 | 98.7 | - |
Yuan et al[53], 2022 | China | Retrospective | CNN | EGC, advanced gastric cancer, submucosal tumor, polyp, peptic ulcer, erosion, and lesion-free gastric mucosa | 29809 WLE images | 1579 WLE images | 59.24; 100 | 99.34; 98.1 | 93.54; 98.4 | - |
Table 3 Overview of findings from studies evaluating the detection accuracy of computer-aided detection for colonic polyps
Ref. | Country | Study design | Lesions | Training dataset | Test dataset | Sensitivity (%) | Specificity (%) | Accuracy (%) | AUROC |
Komeda et al[139], 2017 | Japan | Retrospective | Adenomas | 1200 images | 10 images | 80 | 60 | 70 | - |
Misawa et al[140], 2018 | Japan | Retrospective | Polyps | 411 video clips | 135 video clips | 90 | 63.3 | 76.5 | 0.87 |
Wang et al[149], 2018 | China, United States | Retrospective | Polyps | 4495 images | Dataset A: 27113 images; Dataset C: 138 video clips; Dataset D: 54 full-length videos | Dataset A: 94.38; Dataset C: 91.64 | Dataset A: 95.92; Dataset D: 95.4 | - | Dataset A: 0.984 |
Horiuchi et al[154], 2019 | Japan | Prospective | Diminutive polyps | - | a | 80 | 95.3 | 91.5 | - |
Hassan et al[141], 2020 | Italy, United States | Retrospective | Polyps | - | 338 video clips | 99.7 | - | - | - |
Guo et al[142], 2021 | Japan | Retrospective | Polyps | 1991 images | 100 video clips; 15 full videos | 87b | 98.3b | - | - |
Neumann et al[143], 2021 | Germany | Retrospective1 | Polyps | > 500 videos | 240 polyps within full-length videos | 100 | 0 | - | - |
Li et al[144], 2021 | Singapore | Retrospective | Polyps | 6038 images | 2571 images | 74.1 | 85.1 | - | - |
Livovsky et al[151], 2021 | Israel | Ambispective | Polyps | 3611 h of videos | 1393 h of videos | 97.1 | 0 | - | - |
Pfeifer et al[158], 2021 | Germany, Italy, Netherlands | Retrospective | Polyps | 10467 images | 45 videos | 90 | 80 | - | 0.92 |
Ahmad et al[145], 20222 | England | Prospective | Polyps | Dataset A: 58849 frames; Dataset B: 10993 videos and still images | Dataset C: 110985 frames; Dataset D: 8950 frames; Dataset E: 542484 frames | Dataset C: 100, 84.1; Dataset D&E: 98.9, 85.2 | Dataset C: 79.6; Dataset D&E: 79.3% | ||
Hori et al[146], 2022 | Japan | Prospective | Polyps | 1456 images | 600 images | 97 | 97.7 | 97.3 | - |
Pacal et al[152], 2022 | Turkey | Retrospective | Polyps | Used images from 3 publicly available datasets (SUN, PICCOLO, Etis-Larib) to create training and test datasets | 91.04 | - | - | - | |
Yoon et al[184], 2022 | South Korea | Retrospective | SSL | 4397 images | Validation Set 2106; SSL Temporal Validation set 133 | 95.44; 93.89 | 90.1 | 92.95 | 0.96 |
Nemoto et al[185], 2022 | Japan | Retrospective | TA, SSL | 1849 images | 400 images | 72 | 89 | 82 | 0.86 |
Lux et al[148], 2022 | Germany | Retrospective | Polyps | 506338 images | 41 full-length videos | - | - | 95.3 | - |
Table 4 Overview of findings from studies evaluating computer-aided detection for adenoma detection rate and polyp detection rate
Ref. | Country | Study design | Patients (n) | PDR (%) | ADR (%) | |||||
CADe | SC | CADe | SC | P value | CADe | SC | P value | |||
Wang et al[168], 2019 | China, United States | Randomized | 522 | 536 | 45.02 | 29.1 | < 0.001 | 29.12 | 20.34 | < 0.001 |
Becq et al[155], 2020 | United States, Turkey, Costa Rica | Prospective | 50b | 82 | 62 | Not reported | - | - | - | |
Gong et al[166], 2020 | China | Randomized | 355 | 349 | 47 | 34 | 0.0016 | 16 | 8 | 0.001 |
Liu et al[171], 2020 | China, United States | Randomized | 393 | 397 | 47.07 | 33.25 | < 0.001 | 29.01 | 20.91 | 0.009 |
Liu et al[173], 2020 | China | Prospective | 508 | 518 | 43.65 | 27.81 | < 0.001 | 39.1 | 23.89 | < 0.001 |
Repici et al[170], 2020 | Italy, Kuwait, United States, Germany | Randomized | 341 | 344 | - | - | - | 54.8 | 40.4 | < 0.001 |
Su et al[169], 2020 | China | Randomized | 308 | 315 | 38.3 | 25.4 | 0.001 | 28.9 | 16.5 | < 0.001 |
Wang et al[156], 2020 | China, United States | Prospective, Tandem1 | 184 | 185 | 65.59 | 55.14 | 0.099 | 42.39 | 35.68 | 0.186 |
Wang et al[167], 2020 | China, United States | Randomized | 484 | 478 | 52 | 37 | < 0.0001 | 34 | 28 | 0.03 |
Kamba et al[164], 2021 | Japan | Randomized, Tandem2 | 172 | 174 | 69.8 | 60.9 | 0.084 | 64.5 | 53.6 | 0.036 |
Luo et al[174], 2021 | China | Randomized, Tandem1 | 72 | 78 | 38.7 | 34 | < 0.001 | - | - | - |
Pfeifer et al[158], 2021 | Germany, Italy, Netherlands | Prospective, Tandem1 | 42b | 50 | 38 | 0.023 | 36 | 26 | 0.044 | |
Shaukat et al[157], 2021 | United States, England | Prospective | 83 | 283 | - | - | - | 54.2 | 40.6 | 0.028 |
Shen et al[150], 2021 | China | Ambispective | 64 | 64 | 78.1 | 56.3 | 0.008 | 53.1 | 29.7 | 0.007 |
Xu et al[172], 2021 | China | Randomized | 1177 | 1175 | 38.8 | 36.2 | 0.183 | - | - | - |
Glissen Brown et al[163], 2022 | China, United States | Randomized, Tandem2 | 113 | 110 | 70.8 | 65.45 | 0.3923 | 50.44 | 43.64 | 0.3091 |
Ishiyama et al[159], 2022 | Japan, Norway | Prospective | 918 | 918 | 59 | 52.1 | 0.003 | 26.4 | 19.9 | 0.001 |
Lux et al[148], 2022 | Germany | Retrospective | 41 | - | - | - | - | - | 41.5 | - |
Quan et al[153], 2022 | United States | Prospective | 300 | 300 | - | - | - | 43.7a; 66.7 | 37.8a; 59.72 | 0.37a; 0.35 |
Repici et al[165], 2022 | Italy, Switzerland, United States, Germany | Randomized | 330 | 330 | - | - | - | 53.3 | 44.5 | 0.017 |
Shaukat et al[162], 2022 | United States | Randomized | 682 | 677 | 64.4 | 61.2 | 0.242 | 47.8 | 43.9 | 0.065 |
Zippelius et al[160], 2022 | Germany, United States | Prospective | 150b | - | - | - | 50.7 | 52 | 0.5 |
- Citation: Galati JS, Duve RJ, O'Mara M, Gross SA. Artificial intelligence in gastroenterology: A narrative review. Artif Intell Gastroenterol 2022; 3(5): 117-141
- URL: https://www.wjgnet.com/2644-3236/full/v3/i5/117.htm
- DOI: https://dx.doi.org/10.35712/aig.v3.i5.117