Published online Aug 28, 2021. doi: 10.35712/aig.v2.i4.94
Peer-review started: April 9, 2021
First decision: July 3, 2021
Revised: July 10, 2021
Accepted: August 27, 2021
Article in press: August 27, 2021
Published online: August 28, 2021
Processing time: 142 Days and 18.6 Hours
A precise knowledge of intra-parenchymal vascular and biliary architecture and the location of lesions in relation to the complex anatomy is indispensable to perform liver surgery. Therefore, virtual three-dimensional (3D)-reconstruction models from computed tomography/magnetic resonance imaging scans of the liver might be helpful for visualization. Augmented reality, mixed reality and 3D-navigation could transfer such 3D-image data directly into the operation theater to support the surgeon. This review examines the literature about the clinical and intraoperative use of these image guidance techniques in liver surgery and provides the reader with the opportunity to learn about these techniques. Augmented reality and mixed reality have been shown to be feasible for the use in open and minimally invasive liver surgery. 3D-navigation facilitated targeting of intraparenchymal lesions. The existing data is limited to small cohorts and description about technical details e.g., accordance between the virtual 3D-model and the real liver anatomy. Randomized controlled trials regarding clinical data or oncological outcome are not available. Up to now there is no intraoperative application of artificial intelligence in liver surgery. The usability of all these sophisticated image guidance tools has still not reached the grade of immersion which would be necessary for a widespread use in the daily surgical routine. Although there are many challenges, augmented reality, mixed reality, 3D-navigation and artificial intelligence are emerging fields in hepato-biliary surgery.
Core Tip: Virtual three-dimensional (3D)-reconstruction models from computed tomography/magnetic resonance imaging scans of the liver might be helpful for visualization during liver surgery. Augmented reality, mixed reality and 3D-navigation could transfer such 3D-image data directly into the operation theater. Augmented reality and mixed reality have been shown to be feasible for the use in open and in minimally invasive liver surgery. 3D-navigation facilitated targeting of intraparenchymal lesions. Randomized controlled trials regarding clinical data or oncological outcome are not available. Up to now there is no intraoperative application of artificial intelligence in liver surgery. The usability of all these sophisticated image guidance tools has still not reached the grade of immersion which would be necessary for a widespread use in the daily surgical routine.