Published online Aug 28, 2020. doi: 10.35712/aig.v1.i2.37
Peer-review started: May 27, 2020
First decision: August 9, 2020
Revised: August 22, 2020
Accepted: August 27, 2020
Article in press: August 27, 2020
Published online: August 28, 2020
Processing time: 103 Days and 2.6 Hours
Traditional medical imaging, including ultrasound, computed tomography, magnetic resonance imaging, or positron emission tomography, remains widely used diagnostic modalities for gastrointestinal diseases at present. These modalities are used to assess changes in morphology, attenuation, signal intensity, and enhancement characteristics. Gastrointestinal tumors, especially malignant tumors, are commonly seen in clinical practice with an increasing number of deaths each year. Because the imaging manifestations of different diseases usually overlap, accurate early diagnosis of tumor lesions, noninvasive and effective evaluation of tumor staging, and prediction of prognosis remain challenging. Fortunately, traditional medical images contain a great deal of important information that cannot be recognized by human eyes but can be extracted by artificial intelligence (AI) technology, which can quantitatively assess the heterogeneity of lesions and provide valuable information, including therapeutic effects and patient prognosis. With the development of computer technology, the combination of medical imaging and AI technology is considered to represent a promising field in medical image analysis. This new emerging field is called “radiomics”, which makes big data mining and extraction from medical imagery possible and can help clinicians make effective decisions and develop personalized treatment plans. Recently, AI and radiomics have been gradually applied to lesion detection, qualitative and quantitative diagnosis, histopathological grading and staging of tumors, therapeutic efficacy assessment, and prognosis evaluation. In this minireview, we briefly introduce the basic principles and technology of radiomics. Then, we review the research and application of AI and radiomics in gastrointestinal diseases, especially diagnostic advancements of radiomics in the differential diagnosis, treatment option, assessment of therapeutic efficacy, and prognosis evaluation of esophageal, gastric, hepatic, pancreatic, and colorectal diseases.
Core Tip: This minireview summarizes the research and application of artificial intelligence (AI) technology, radiomics, and texture analysis in gastrointestinal diseases in detail and focuses on the diagnostic advances of AI and radiomics in lesion detection, differential diagnosis, decision of treatment plans, assessment of therapeutic efficacy and tumor response to treatment, and prognosis prediction of gastrointestinal diseases. This technology can provide more valuable information to allow clinicians and radiologists to understand and perform AI and radiomics in their clinical practice.