1
|
Sall I, Foxall R, Felth L, Maret S, Rosa Z, Gaur A, Calawa J, Pavlik N, Whistler JL, Whistler CA. Gut dysbiosis was inevitable, but tolerance was not: temporal responses of the murine microbiota that maintain its capacity for butyrate production correlate with sustained antinociception to chronic morphine. Gut Microbes 2025; 17:2446423. [PMID: 39800714 PMCID: PMC11730370 DOI: 10.1080/19490976.2024.2446423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/24/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
The therapeutic benefits of opioids are compromised by the development of analgesic tolerance, which necessitates higher dosing for pain management thereby increasing the liability for drug dependence and addiction. Rodent models indicate opposing roles of the gut microbiota in tolerance: morphine-induced gut dysbiosis exacerbates tolerance, whereas probiotics ameliorate tolerance. Not all individuals develop tolerance, which could be influenced by differences in microbiota, and yet no study design has capitalized upon this natural variation. We leveraged natural behavioral variation in a murine model of voluntary oral morphine self-administration to elucidate the mechanisms by which microbiota influences tolerance. Although all mice shared similar morphine-driven microbiota changes that largely masked informative associations with variability in tolerance, our high-resolution temporal analyses revealed a divergence in the progression of dysbiosis that best explained sustained antinociception. Mice that did not develop tolerance maintained a higher capacity for production of the short-chain fatty acid (SCFA) butyrate known to bolster intestinal barriers and promote neuronal homeostasis. Both fecal microbial transplantation (FMT) from donor mice that did not develop tolerance and dietary butyrate supplementation significantly reduced the development of tolerance independently of suppression of systemic inflammation. These findings could inform immediate therapies to extend the analgesic efficacy of opioids.
Collapse
Affiliation(s)
- Izabella Sall
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Graduate program in Molecular and Evolutionary Systems Biology, University of New Hampshire, Durham, NH, USA
| | - Randi Foxall
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Lindsey Felth
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Soren Maret
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Zachary Rosa
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Anirudh Gaur
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Jennifer Calawa
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Microbiology Graduate Program, University of New Hampshire, Durham, NH, USA
| | - Nadia Pavlik
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Jennifer L. Whistler
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
- Department of Physiology and Membrane Biology, UC Davis School of Medicine, Davis, CA, USA
| | - Cheryl A. Whistler
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
2
|
Prince N, Peralta Marzal LN, Roussin L, Monnoye M, Philippe C, Maximin E, Ahmed S, Salenius K, Lin J, Autio R, Adolfs Y, Pasterkamp RJ, Garssen J, Naudon L, Rabot S, Kraneveld AD, Perez-Pardo P. Mouse strain-specific responses along the gut-brain axis upon fecal microbiota transplantation from children with autism. Gut Microbes 2025; 17:2447822. [PMID: 39773319 PMCID: PMC11730631 DOI: 10.1080/19490976.2024.2447822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/03/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
Several factors are linked to the pathophysiology of autism spectrum disorders (ASD); however, the molecular mechanisms of the condition remain unknown. As intestinal problems and gut microbiota dysbiosis are associated with ASD development and severity, recent studies have focused on elucidating the microbiota-gut-brain axis' involvement. This study aims to explore mechanisms through which gut microbiota might influence ASD. Briefly, we depleted the microbiota of conventional male BALB/cAnNCrl (Balb/c) and C57BL/6J (BL/6) mice prior to human fecal microbiota transplantation (hFMT) with samples from children with ASD or their neurotypical siblings. We found mouse strain-specific responses to ASD hFMT. Notably, Balb/c mice exhibit decreased exploratory and social behavior, and show evidence of intestinal, systemic, and central inflammation accompanied with metabolic shifts. BL/6 mice show less changes after hFMT. Our results reveal that gut microbiota alone induce changes in ASD-like behavior, and highlight the importance of mouse strain selection when investigating multifactorial conditions like ASD.
Collapse
Affiliation(s)
- Naika Prince
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Lucia N. Peralta Marzal
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Léa Roussin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Magali Monnoye
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Catherine Philippe
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Elise Maximin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Sabbir Ahmed
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Karoliina Salenius
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere, Finland
| | - Jake Lin
- Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Reija Autio
- Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Youri Adolfs
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - R. Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Laurent Naudon
- Université Paris-Saclay, INRAE, AgroParisTech, CNRS, Micalis Institute, Jouy-en-Josas, France
| | - Sylvie Rabot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Aletta D. Kraneveld
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Department of Neuroscience, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Paula Perez-Pardo
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
3
|
Novau-Ferré N, Papandreou C, Rojo-Marticella M, Canals-Sans J, Bulló M. Gut microbiome differences in children with Attention Deficit Hyperactivity Disorder and Autism Spectrum Disorder and effects of probiotic supplementation: A randomized controlled trial. RESEARCH IN DEVELOPMENTAL DISABILITIES 2025; 161:105003. [PMID: 40184961 DOI: 10.1016/j.ridd.2025.105003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Emerging evidence suggests a significant role of gut microbiota on neurodevelopmental disorders, including Attention Deficit Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD). AIMS Our study aimed to compare gut microbiota composition between these disorders and evaluate the effect of probiotic supplementation. METHODS We conducted a 12-week randomized, double-blind, placebo-controlled trial with 80 children aged 5-14 years (39 with ADHD, 41 with ASD). Baseline and post-intervention fecal samples were analyzed using 16S rRNA gene sequencing to identify changes in gut microbiota composition. RESULTS We identified 22 taxa differentiating ADHD and ASD (AUC = 0.939), characterised by increased presence of Clostridia, Ruminococcaceae, and Lachnospiraceae in ADHD, and Bacteroides, Bacilli and Actinobacteria in ASD. These differences remained after accounting for potential confounders. ASD children receiving probiotics had significant increases in Chao 1, Fisher's alpha, and Shannon indices whereas no significant differences in α and β-diversity were found in ADHD. In ADHD, bacteria with potential adverse effects were under-represented. In ASD, the abundance of Eggerthellaceae, and other taxa associated with gastrointestinal problems and anxiety was decreased. CONCLUSION Variations in gut microbiota may influence responses in ADHD and ASD. Probiotic supplementation favorably altered gut microbiota composition, offering insights for future therapeutic strategies targeting the microbiome in neurodevelopmental disorders. WHAT THIS PAPER ADDS Recent research underscores the role of gut microbiota in ADHD and ASD, indicating that diet can significantly influence microbiota composition and potentially manage these neurodevelopmental disorders. This study reveals distinct differences in gut microbiota composition between children with ADHD and ASD and demonstrates that probiotic supplementation can modulate specific microbial genera in each disorder. These findings pave the way for the development of innovative microbiome-targeted therapies, offering a new avenue for the treatment of neurodevelopmental disorders. Understanding this relationship is crucial for designing future interventions.
Collapse
Affiliation(s)
- Nil Novau-Ferré
- Nutrition and Metabolic Health Research Group (NuMeH). Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain; Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain; Center of Environmental, Food and Toxicological Technology - TecnATox, Rovira i Virgili University, 43201 Reus, Spain
| | - Christopher Papandreou
- Nutrition and Metabolic Health Research Group (NuMeH). Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain; Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain; Center of Environmental, Food and Toxicological Technology - TecnATox, Rovira i Virgili University, 43201 Reus, Spain; Department of Nutrition and Dietetics Sciences, School of Health Sciences, Hellenic Mediterranean University (HMU), 72300 Siteia, Greece
| | - Meritxell Rojo-Marticella
- Nutrition and Mental Health Research Group (NutriSam), Department of Psychology, Rovira i Virgili University, 43007 Tarragona, Spain; Research Center for Behavior Assessment (CRAMC), Rovira i Virgili University, 43007 Tarragona, Spain
| | - Josefa Canals-Sans
- Nutrition and Mental Health Research Group (NutriSam), Department of Psychology, Rovira i Virgili University, 43007 Tarragona, Spain; Research Center for Behavior Assessment (CRAMC), Rovira i Virgili University, 43007 Tarragona, Spain.
| | - Mònica Bulló
- Nutrition and Metabolic Health Research Group (NuMeH). Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain; Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain; Center of Environmental, Food and Toxicological Technology - TecnATox, Rovira i Virgili University, 43201 Reus, Spain; CIBER Physiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain.
| |
Collapse
|
4
|
Lewis N, Villani A, Lagopoulos J. Gut dysbiosis as a driver of neuroinflammation in attention-deficit/hyperactivity disorder: A review of current evidence. Neuroscience 2025; 569:298-321. [PMID: 39848564 DOI: 10.1016/j.neuroscience.2025.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/25/2025]
Abstract
There is mounting evidence for the involvement of the immune system, neuroinflammation and disturbed gut microbiota, or dysbiosis, in attention-deficit/hyperactivity disorder (ADHD). Gut dysbiosis is strongly implicated in many physical, autoimmune, neurological, and neuropsychiatric conditions, however knowledge of its particular pathogenic role in ADHD is sparse. As such, this narrative review examines and synthesizes the available evidence related to inflammation, dysbiosis, and neural processes in ADHD. Minimal differences in microbiota diversity measures between cases and controls were found, however many relative abundance differences were observed at all classification levels (phylum to strain). Compositional differences of taxa important to key gut-brain axis pathways, in particular Bacteroides species and Faecalibacterium, may contribute to inflammation, brain functioning differences, and symptoms, in ADHD. We have identified one possible model of ADHD etiopathogenesis involving systemic inflammation, an impaired blood-brain barrier, and neural disturbances as downstream consequences of gut dysbiosis. Nevertheless, studies conducted to date have varied degrees of methodological rigour and involve diverse participant characteristics and analytical techniques, highlighting a need for additional research.
Collapse
Affiliation(s)
- Naomi Lewis
- School of Health, University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia; Thompson Institute, University of the Sunshine Coast, 12 Innovation Pkwy, Birtinya, QLD 4575, Australia.
| | - Anthony Villani
- School of Health, University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia.
| | - Jim Lagopoulos
- Thompson Brain and Mind Healthcare, Eccles Blvd, Birtinya, QLD 4575, Australia.
| |
Collapse
|
5
|
D’Angelo E, Fiori F, Ferraro GA, Tessitore A, Nazzaro L, Serpico R, Contaldo M. Autism Spectrum Disorder, Oral Implications, and Oral Microbiota. CHILDREN (BASEL, SWITZERLAND) 2025; 12:368. [PMID: 40150650 PMCID: PMC11941467 DOI: 10.3390/children12030368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025]
Abstract
Background/Objectives: Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by difficulties in social interaction, communication, and repetitive behaviors. Recent evidence indicates a significant relationship between ASD and imbalances in microbiota, particularly in the oral and gastrointestinal areas. This review examines the impact of oral microbiota, self-injurious behaviors (SIB), sensory sensitivity, and dietary choices on the comorbidities associated with ASD. Methods: An extensive literature review was conducted using PubMed and Scopus. The focus was on human studies with full-text availability, utilizing search terms related to ASD, oral health, oral microbiota, and neurodevelopmental disorders. The research was evaluated for methodological quality and its relevance to the connections between microbiota, oral health, and ASD. Results: Individuals with ASD face unique oral health challenges, including injuries from self-injurious behaviors and increased sensory sensitivity, which complicate oral hygiene and care. Selective eating can lead to nutritional deficiencies and worsen oral health issues. Dysbiosis in oral and gut microbiota, marked by altered levels of acetate, propionate, and butyrate, interferes with gut-brain and oral-brain connections, contributing to behavioral and neurological symptoms. Treatment options such as probiotics, fecal microbiota transfer, and sensory integration therapies can potentially alleviate symptoms and improve quality of life. Conclusions: The relationship between ASD, oral health, and microbiota suggests a bidirectional influence through neuroinflammatory mechanisms and metabolic disturbances. Proactive strategies focusing on microbiota and dental health may help reduce comorbidities and enhance the overall management of ASD, underscoring the need for further research into microbiota-host interactions and their therapeutic potential.
Collapse
Affiliation(s)
- Emiliana D’Angelo
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 6, 80138 Naples, Italy; (E.D.); (F.F.); (R.S.)
| | - Fausto Fiori
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 6, 80138 Naples, Italy; (E.D.); (F.F.); (R.S.)
| | - Giuseppe A. Ferraro
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Assunta Tessitore
- Department of Clinical Medicine, Public Health, Life Sciences and Environment, University of L’Aquila, Piazzale Salvatore Tommasi 1, Blocco 11, 67010 L’Aquila, Italy;
| | - Luca Nazzaro
- Division of General, Oncological, Mini-Invasive and Obesity Surgery, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy;
| | - Rosario Serpico
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 6, 80138 Naples, Italy; (E.D.); (F.F.); (R.S.)
| | - Maria Contaldo
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 6, 80138 Naples, Italy; (E.D.); (F.F.); (R.S.)
| |
Collapse
|
6
|
Osredkar J, Kumer K, Godnov U, Jekovec Vrhovšek M, Vidova V, Price EJ, Javornik T, Avguštin G, Fabjan T. Urinary Metabolomic Profile in Children with Autism Spectrum Disorder. Int J Mol Sci 2025; 26:2254. [PMID: 40076876 PMCID: PMC11900373 DOI: 10.3390/ijms26052254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 03/14/2025] Open
Abstract
Autism spectrum disorder (ASD) has been associated with disruptions in tryptophan (TRP) metabolism, affecting the production of key neuroactive metabolites. Investigating these metabolic pathways could yield valuable biomarkers for ASD severity and progression. We included 44 children with ASD and 44 healthy children, members of the same family. The average age in the ASD group was 10.7 years, while the average age in the control group was 9.4 years. Urinary tryptophan metabolites were quantified via liquid chromatography-mass spectrometry operating multiple reaction monitoring (MRM). Urinary creatinine was analyzed on an Advia 2400 analyzer using the Jaffe reaction. Statistical comparisons were made between ASD subgroups based on CARS scores. Our findings indicate that children with ASD have higher TRP concentrations (19.94 vs. 16.91; p = 0.04) than their siblings. Kynurenine (KYN) was found at higher levels in children with ASD compared to children in the control group (82.34 vs. 71.20; p = 0.86), although this difference was not statistically significant. The ASD group showed trends of higher KYN/TRP ratios and altered TRP/ indole-3-acetic acid (IAA) and TRP/5-hydroxyindoleacetic acid (5-HIAA) ratios, correlating with symptom severity. Although the numbers of the two groups were different, our findings suggest that mild and severe illnesses involve separate mechanisms. However, further comprehensive studies are needed to validate these ratios as diagnostic tools for ASD.
Collapse
Affiliation(s)
- Joško Osredkar
- Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (J.O.); (K.K.); (T.J.)
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Kristina Kumer
- Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (J.O.); (K.K.); (T.J.)
| | - Uroš Godnov
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Ljubljana, 6000 Koper, Slovenia;
| | - Maja Jekovec Vrhovšek
- Center for Autism, Unit of Child Psychiatry, University Children’s Hospital, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
| | - Veronika Vidova
- RECETOX, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic; (V.V.); (E.J.P.)
- Environmental Exposure Assessment Research Infrastructure-Czech Republic (EIRENE-CZ), 60200 Brno, Czech Republic
| | - Elliott James Price
- RECETOX, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic; (V.V.); (E.J.P.)
- Environmental Exposure Assessment Research Infrastructure-Czech Republic (EIRENE-CZ), 60200 Brno, Czech Republic
| | - Tara Javornik
- Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (J.O.); (K.K.); (T.J.)
| | - Gorazd Avguštin
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, 1230 Domžale, Slovenia;
| | - Teja Fabjan
- Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (J.O.); (K.K.); (T.J.)
| |
Collapse
|
7
|
Palmer JK, van der Pols JC, Sullivan KA, Staudacher HM, Byrne R. A Double-Blind Randomised Controlled Trial of Prebiotic Supplementation in Children with Autism: Effects on Parental Quality of Life, Child Behaviour, Gastrointestinal Symptoms, and the Microbiome. J Autism Dev Disord 2025; 55:775-788. [PMID: 38291245 PMCID: PMC11828843 DOI: 10.1007/s10803-024-06239-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 02/01/2024]
Abstract
PURPOSE Modifying gut bacteria in children with autism may influence behaviour, with potential to improve family functioning. We conducted a randomised controlled trial to assess the effect of prebiotics on behaviour, gastrointestinal symptoms and downstream effects on parental quality of life. METHOD Children with autism (4-10yrs) were randomised to 2.4 g/d of prebiotic (GOS) or placebo for six weeks. Pre and post stools samples were collected, and validated questionnaires used to measure change in social and mealtime behaviours, GI symptoms and pQOL. Linear mixed models evaluated group differences for behavioural variables, and Mann Whitney U tests were used to compare change between-groups for GI symptoms, differential abundance of genera and alpha diversity of the microbiome. RESULTS Thirty-three parent-child dyads completed the trial. No group difference was seen for behavioural variables but both groups improved significantly from baseline. There was a medium effect size between groups for GI symptoms (d = 0.47) and pQOL (d = 0.44) driven by greater improvements in the prebiotic group. Bifidobacterium increased threefold following prebiotics (1.4-5.9%, p < 0.001) with no change in controls. Supplements were well tolerated, compliance with dose 94%. CONCLUSION Prebiotics modify levels of Bifidobacterium and prove well tolerated but in this instance, resulted in only marginal effects on GI symptoms and pQOL. A larger sample of children with more severe symptoms could help to determine the potential of prebiotics in autism. TRIAL REGISTRATION https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?ACTRN=12619000615189 .
Collapse
Affiliation(s)
- Jacqueline K Palmer
- School of Exercise and Nutrition Science, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.
| | - Jolieke C van der Pols
- School of Exercise and Nutrition Science, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Karen A Sullivan
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Heidi M Staudacher
- Food & Mood Centre, School of Medicine, Barwon Health, IMPACT Institute, Deakin University, Geelong, VIC, Australia
| | - Rebecca Byrne
- School of Exercise and Nutrition Science, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
8
|
Davias A, Verghese M, Bridgman SL, Tun HM, Field CJ, Hicks M, Pei J, Hicks A, Moraes TJ, Simons E, Turvey SE, Subbarao P, Scott JA, Mandhane PJ, Kozyrskyj AL. Gut microbiota metabolites, secretory immunoglobulin A and Bayley-III cognitive scores in children from the CHILD Cohort Study. Brain Behav Immun Health 2025; 44:100946. [PMID: 39911944 PMCID: PMC11795817 DOI: 10.1016/j.bbih.2025.100946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/19/2024] [Accepted: 01/13/2025] [Indexed: 02/07/2025] Open
Abstract
Background Dysbiosis of the gut microbiota has been demonstrated in neurodevelopmental disorders but the underlying mechanisms that may explain these associations are poorly understood. Gut secretory immunoglobulin A (SIgA) binds pathogenic microbes, preventing mucosal penetration. Gut microbes also influence SIgA production and its binding characteristics through short-chain fatty acid (SCFA) metabolites, allowing them to regulate the immune response. Serum IgA deficiency has been noted in children with autism spectrum disorders (ASD). In this study, we aimed to determine whether SIgA level in infancy is associated with gut microbiota taxonomy and metabolites, and neurodevelopmental outcomes in preschool children. Methods For a subsample of 178 children from the Canadian CHILD Cohort Study, gut microbiota of fecal samples collected at 3-4 months and 12 months was profiled using 16S rRNA sequencing. Gut bacterial metabolites levels and SIgA level were measured by nuclear magnetic resonance (NMR) based metabolomics and SIgA enzyme-linked immunosorbent assay at 3-4 months, respectively. Bayley-III Scale of Infant Development was assessed at 12 and 24 months. We evaluated direct relationships in multiple linear regression models and putative causal relationships in statistical mediation models. Results Propionate and butyrate levels at 3-4 months were associated with decreased Bayley cognitive score at 24 months (p-values: 0.01 and 0.02, respectively) in adjusted multiple linear regression models, but when we investigated an indirect relationship mediated by decreased SIgA level at 3-4 months, it did not reach statistical significance (p-values: 0.18 and 0.20, respectively). Lactate level at 3-4 months was associated with increased Bayley cognitive score at 24 months in adjusted multiple linear regression models (p-value: 0.01), but the statistical model mediated by increased SIgA level at 3-4 months did not reach statistical significance neither (p-value: 0.20). Conclusions Our study contributes to growing evidence that neurodevelopment is influenced by the infant gut microbiota and that it might involve SIgA level, but larger studies are required.
Collapse
Affiliation(s)
- Aline Davias
- Edmonton Clinic Health Academy, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, University Grenoble Alpes, Inserm, CNRS, 38700, La Tronche, France
| | - Myah Verghese
- Edmonton Clinic Health Academy, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Sarah L. Bridgman
- Edmonton Clinic Health Academy, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Hein M. Tun
- The Jockey Club School of Public Health and Primary Care, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
- Microbiota I-Center (MagIC), Hong Kong, SAR, China
| | - Catherine J. Field
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Canada
| | - Matthew Hicks
- Edmonton Clinic Health Academy, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Jacqueline Pei
- Department of Educational Psychology, Faculty of Education, University of Alberta, Edmonton, Canada
| | - Anne Hicks
- Edmonton Clinic Health Academy, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Theo J. Moraes
- Hospital for Sick Children (SickKids), Department of Pediatrics, University of Toronto, Toronto, Canada
| | - Elinor Simons
- Children's Hospital Research Institute of Manitoba, Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Canada
| | - Stuart E. Turvey
- BC Children's Hospital, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Padmaja Subbarao
- Hospital for Sick Children (SickKids), Department of Pediatrics, University of Toronto, Toronto, Canada
- Dalla Lana School of Public Health, Division of Occupational and Environmental Health, University of Toronto, Toronto, Canada
| | - James A. Scott
- Dalla Lana School of Public Health, Division of Occupational and Environmental Health, University of Toronto, Toronto, Canada
| | - Piushkumar J. Mandhane
- Edmonton Clinic Health Academy, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Anita L. Kozyrskyj
- Edmonton Clinic Health Academy, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
9
|
Mallick K, Islam SR, Krishna V, Manna SK, Banerjee S. Role of AIM2 and cGAS-STING signaling in high fat high carbohydrate diet-induced gut dysbiosis associated neurodegeneration. Life Sci 2025; 363:123392. [PMID: 39805489 DOI: 10.1016/j.lfs.2025.123392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
AIMS Gut dysbiosis modulates CNS complications and cognitive decline through the gut-brain axis. The study aims to investigate the molecular mechanisms involved in gut dysbiosis-associated cognitive changes and the potential effects of probiotics in high fat-high carbohydrate diet-induced gut dysbiosis-associated neurodegeneration. MATERIALS AND METHODS We used high fat, high-carbohydrate diet (HFHCD) and high-fat diet (HFD) to induce gut dysbiosis-associated neurodegeneration in C57BL/6 mice. IVIS imaging system and biochemical changes using ELISA measured intestinal inflammation. We used fecal samples for qPCR profiling of intestinal bacteria, and serum was used for inflammatory marker analysis using ELISA. Behavioral studies measured cognitive changes, while histopathology, immunohistochemistry, and western blot analysis of hippocampal samples measured protein changes. KEY FINDINGS The behavioral studies showed a significant decrease in cognitive function associated with gut dysbiosis in HFHCD and HFD animals. Gut dysbiosis was associated with intestinal inflammation and increased intestinal permeability, followed by systemic and neuroinflammatory changes. Molecular signaling studies showed the involvement of AIM2 inflammasome and cGAS-STING signaling pathways in neurodegeneration for HFHCD animals. Administration of probiotics restored the above processes and prevented gut dysbiosis-associated memory decline in mice. SIGNIFICANCE The study shows that alteration in microbial composition due to prolonged HFHCD could contribute to intestinal inflammation and increased intestinal permeability, facilitating the translocation of microbial toxins like LPS, leading to systemic inflammation, which eventually leads to neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Keya Mallick
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Chunilal Bhawan, 168, Maniktala Main Rd, Kolkata, West Bengal 700054, India
| | - Sk Ramiz Islam
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, West Bengal 700 064, India
| | - Vamsi Krishna
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Chunilal Bhawan, 168, Maniktala Main Rd, Kolkata, West Bengal 700054, India
| | - Soumen Kanti Manna
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, West Bengal 700 064, India; Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai, Maharashtra 400 094, India
| | - Sugato Banerjee
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Chunilal Bhawan, 168, Maniktala Main Rd, Kolkata, West Bengal 700054, India.
| |
Collapse
|
10
|
Chen Y, Du X, Zhang X, Li F, Yuan S, Wang W, Zhu Z, Wang M, Gu C. Research trends of inflammation in autism spectrum disorders: a bibliometric analysis. Front Immunol 2025; 16:1534660. [PMID: 40028326 PMCID: PMC11868081 DOI: 10.3389/fimmu.2025.1534660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
Background Inflammation has been recognized as a significant factor in the pathophysiology of autism spectrum disorders (ASD), which have garnered increasing scholarly attention over the past few decades. This study aims to explore research trends related to inflammation and ASD through bibliometric analysis. Method A comprehensive literature search was conducted in the Web of Science Core Collection (WoSCC) on August 28, 2024. This study was restricted to literature published in English. The bibliometric analysis utilized VOSviewer, CiteSpace, and the R package "bibliometrix" to visualize collaborations, keyword co-occurrences, and emerging research trends. Results A total of 1,752 articles addressing inflammation and ASD were published, demonstrating a consistent upward trend in research output. The United States emerged as the country with the highest volume of publications. Saleh A. Bakheet was identified as the most prolific authors, significantly contributing to the literature with 54 publications. The University of California System was recognized as the most productive institution in this area of study. The journal of Brain Behavior and Immunity was noted as a prominent venue for publication in this field, exhibiting high citation metrics that reflect its considerable influence. The keyword "children" was the most frequently occurring term, with other significant terms including "oxidative stress" and "brain." The keyword burst analysis revealed notable periods of increased research focus on topics such as "inflammatory bowel disease," "cytokine production," "neurodevelopmental disorders," and "microbiota." Conclusion This bibliometric analysis highlights the growing scholarly attention devoted to the relationship between inflammation and ASD. Significant contributions and emerging trends emphasize the pivotal role of neuroinflammation in ASD, indicating a necessity for further exploration in this domain.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zengyan Zhu
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
| | - Mei Wang
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
| | - Chao Gu
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
| |
Collapse
|
11
|
Barba-Vila O, García-Mieres H, Ramos B. Probiotics in autism spectrum disorders: a systematic review of clinical studies and future directions. Nutr Rev 2025; 83:329-343. [PMID: 38497979 DOI: 10.1093/nutrit/nuae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
CONTEXT It is hypothesized that gut dysbiosis, a typical feature of patients with autism spectrum disorder (ASD), could be involved in the origin of this neurodevelopmental disorder. Therefore, the use of probiotics to restore gastrointestinal (GI) equilibrium might be a promising therapeutic strategy due to its capacity to balance the gut-brain axis and behavioral responses. OBJECTIVE To summarize current knowledge on the use of probiotics to treat core clinical ASD symptoms and concomitant GI signs, compare the design of published studies with those of ongoing trials, assess the near future of this field, and provide recommendations for improving novel studies. DATA SOURCES The literature search was conducted in February 2020 and updated in March 2021, using a broad range of bibliographic and clinical trial-specific databases. DATA EXTRACTION Data were extracted using a standardized form, and articles reporting on 28 clinical studies (already published or still ongoing) were included. The risk of bias in clinical studies was evaluated using the Cochrane Collaboration Risk of Bias Assessment tool for randomized trials and the Risk of Bias in Nonrandomized Studies-Interventions tool for nonrandomized trials. RESULTS The results suggest that probiotics improve ASD-like social deficits, GI symptoms, and gut microbiota profile. However, inconsistencies among studies and their methodological limitations make it difficult to draw any conclusions regarding the efficacy of probiotics in ASD. This review provides specific suggestions for future research to improve the quality of the studies. CONCLUSIONS Although ongoing studies have improved designs, the available knowledge does not permit solid conclusions to be made regarding the efficacy of probiotics in ameliorating the symptoms (psychiatric and/or GI) associated with ASD. Thus, more high-quality research and new approaches are needed to design effective probiotic strategies for ASD.
Collapse
Affiliation(s)
- Olga Barba-Vila
- Department de Bioquímica i Biología Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona Bellaterra, Barcelona, Spain
| | - Helena García-Mieres
- Etiopathogenesis and Treatment of Severe Mental Disorders, Teaching, Research, and Innovation Unit, Institut de Recerca Sant Joan de Déu, Parc Sanitari Sant Joan de Déu Sant Boi de Llobregat, Barcelona, Spain
- Centro Investigación Biomédica en Red Salud Mental, Madrid, Spain
- Health Services Research Unit, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- Department of Medicine and Health Sciences, Pompeu Fabra University, Barcelona, Spain
- Faculty of Medicine, University of Vic-Central University of Catalonia, Vic, Spain
| | - Belén Ramos
- Department de Bioquímica i Biología Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona Bellaterra, Barcelona, Spain
- Etiopathogenesis and Treatment of Severe Mental Disorders, Teaching, Research, and Innovation Unit, Institut de Recerca Sant Joan de Déu, Parc Sanitari Sant Joan de Déu Sant Boi de Llobregat, Barcelona, Spain
- Centro Investigación Biomédica en Red Salud Mental, Madrid, Spain
| |
Collapse
|
12
|
Rojo-Marticella M, Arija V, Canals-Sans J. Effect of Probiotics on the Symptomatology of Autism Spectrum Disorder and/or Attention Deficit/Hyperactivity Disorder in Children and Adolescents: Pilot Study. Res Child Adolesc Psychopathol 2025; 53:163-178. [PMID: 39798036 PMCID: PMC11845535 DOI: 10.1007/s10802-024-01278-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 01/13/2025]
Abstract
The aim of this study is to investigate the impact of using probiotics with strains related to dopamine and gamma-aminobutyric acid production on clinical features of autism spectrum disorder (ASD) and/or attention deficit/hyperactivity disorder (ADHD). This randomized, controlled trial involved 38 children with ADHD and 42 children with ASD, aged 5-16 years, who received probiotics (Lactiplantibacillus plantarum and Levilactobacillus brevis 109/cfu/daily) or placebo for 12 weeks. Parent-reported symptoms were assessed using Conners' 3rd-Ed and the Social Responsiveness Scale Test, 2nd-Ed (SRS-2), and children completed the Conners Continuous Performance Test, 3rd-Ed (CPT 3) or Conners Kiddie CPT, 2nd-Ed (K-CPT 2). Executive functions, quality of life and sleep patterns were also parent-assessed. Intention-to-treat analyses, controlling for sociodemographic and nutritional covariates, revealed no significant inter-group differences in parent-reported or neuropsychological data after the probiotic intervention. However, age-stratified analyses showed improved hyperactivity-impulsivity symptoms in younger children with ASD (Cohen's d = 1.245) and ADHD (Cohen's d = 0.692). Intra-group analyses supported these findings in the aforementioned age and intervention group for both diagnoses. An improvement in impulsivity for children with ASD was also observed in the intra-group analysis of the CPT commissions scores (probiotic: p = 0.001, Cohen's d = -1.216; placebo: p = 0.013, Cohen's d = -0.721). A better comfort score (quality of life) was shown in children with ASD (probiotic: p = 0.010, Cohen's d = 0.722; placebo: p = 0.099, Cohen's d = 0.456). The probiotics used, may improve hyperactivity-impulsivity in children with ASD or/and ADHD and quality of life in children with ASD. Further research is warranted to explore probiotics as an adjunctive therapeutic intervention for NDs.Trial registration: clinicaltrials.gov Identifier: NCT05167110.
Collapse
Affiliation(s)
- Meritxell Rojo-Marticella
- Nutrition and Mental Health Research Group (NUTRISAM), Universitat Rovira I Virgili (URV), Carretera de Valls, S/N, 43007, Tarragona, Spain
- Department of Psychology, Research Center for Behavioral Assessment (CRAMC), Universitat Rovira I Virgili (URV), Tarragona, Spain
- Pere Virgili Institute for Health Research (IISPV), Universitat Rovira I Virgili (URV), Reus, Spain
| | - Victoria Arija
- Nutrition and Mental Health Research Group (NUTRISAM), Universitat Rovira I Virgili (URV), Carretera de Valls, S/N, 43007, Tarragona, Spain
- Pere Virgili Institute for Health Research (IISPV), Universitat Rovira I Virgili (URV), Reus, Spain
| | - Josefa Canals-Sans
- Nutrition and Mental Health Research Group (NUTRISAM), Universitat Rovira I Virgili (URV), Carretera de Valls, S/N, 43007, Tarragona, Spain.
- Department of Psychology, Research Center for Behavioral Assessment (CRAMC), Universitat Rovira I Virgili (URV), Tarragona, Spain.
- Pere Virgili Institute for Health Research (IISPV), Universitat Rovira I Virgili (URV), Reus, Spain.
| |
Collapse
|
13
|
Andrei C, Zanfirescu A, Ormeneanu VP, Negreș S. Evaluating the Efficacy of Secondary Metabolites in Antibiotic-Induced Dysbiosis: A Narrative Review of Preclinical Studies. Antibiotics (Basel) 2025; 14:138. [PMID: 40001382 PMCID: PMC11852119 DOI: 10.3390/antibiotics14020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Drug-induced dysbiosis, particularly from antibiotics, has emerged as a significant contributor to chronic diseases by disrupting gut microbiota composition and function. Plant-derived secondary metabolites, such as polysaccharides, polyphenols, alkaloids, and saponins, show potential in mitigating antibiotic-induced dysbiosis. This review aims to consolidate evidence from preclinical studies on the therapeutic effects of secondary metabolites in restoring gut microbial balance, emphasizing their mechanisms and efficacy. METHODS A narrative review was conducted using PubMed, Scopus, and Web of Science. Studies were selected based on specific inclusion criteria, focusing on animal models treated with secondary metabolites for antibiotic-induced dysbiosis. The search terms included "gut microbiota", "antibiotics", and "secondary metabolites". Data extraction focused on microbial alterations, metabolite-specific effects, and mechanisms of action. Relevant findings were systematically analyzed and summarized. RESULTS Secondary metabolites demonstrated diverse effects in mitigating the impact of dysbiosis by modulating gut microbial composition, reducing inflammation, and supporting host biological markers. Polysaccharides and polyphenols restored the Firmicutes/Bacteroidetes ratio, increased beneficial taxa such as Lactobacillus and Bifidobacterium, and suppressed pathogenic bacteria like Escherichia-Shigella. Metabolites such as triterpenoid saponins enhanced gut barrier integrity by upregulating tight junction proteins, while alkaloids reduced inflammation by modulating proinflammatory cytokines (e.g., TNF-α, IL-1β). These metabolites also improved short-chain fatty acid production, which is crucial for gut and systemic health. While antibiotic-induced dysbiosis was the primary focus, other drug classes (e.g., PPIs, metformin) require further investigation. CONCLUSIONS Plant-derived secondary metabolites show promise in managing antibiotic-induced dysbiosis by restoring microbial balance, reducing inflammation, and improving gut barrier function. Future research should explore their applicability to other types of drug-induced dysbiosis and validate findings in human studies to enhance clinical relevance.
Collapse
Affiliation(s)
| | - Anca Zanfirescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.A.); (V.-P.O.); (S.N.)
| | | | | |
Collapse
|
14
|
Tomaszek N, Urbaniak AD, Bałdyga D, Chwesiuk K, Modzelewski S, Waszkiewicz N. Unraveling the Connections: Eating Issues, Microbiome, and Gastrointestinal Symptoms in Autism Spectrum Disorder. Nutrients 2025; 17:486. [PMID: 39940343 PMCID: PMC11819948 DOI: 10.3390/nu17030486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by challenges in social communication, restricted interests, and repetitive behaviors. It is also associated with a high prevalence of eating disorders, gastrointestinal (GI) symptoms, and alterations in gut microbiota composition. One of the most pressing concerns is food selectivity. Various eating disorders, such as food neophobia, avoidant/restrictive food intake disorder (ARFID), specific dietary patterns, and poor-quality diets, are commonly observed in this population, often leading to nutrient deficiencies. Additionally, gastrointestinal problems in children with ASD are linked to imbalances in gut microbiota and immune system dysregulation. The aim of this narrative review is to identify previous associations between the gut-brain axis and gastrointestinal problems in ASD. We discuss the impact of the "microbiome-gut-brain axis", a bidirectional connection between gut microbiota and brain function, on the development and symptoms of ASD. In gastrointestinal problems associated with ASD, a 'vicious cycle' may play a significant role: ASD symptoms contribute to the prevalence of ARFID, which in turn leads to microbiota degradation, ultimately worsening ASD symptoms. Current data suggest a link between gastrointestinal problems in ASD and the microbiota, but the amount of evidence is limited. Further research is needed, targeting the correlation of a patient's microbiota status, dietary habits, and disease course.
Collapse
Affiliation(s)
| | | | | | | | - Stefan Modzelewski
- Department of Psychiatry, Medical University of Bialystok, pl. Wołodyjowskiego 2, 15-272 Białystok, Poland; (N.T.); (A.D.U.); (D.B.); (K.C.); (N.W.)
| | | |
Collapse
|
15
|
Wu T, Cheng H, Zhuang J, Liu X, Ouyang Z, Qian R. Risk factors for inflammatory bowel disease: an umbrella review. Front Cell Infect Microbiol 2025; 14:1410506. [PMID: 39926114 PMCID: PMC11802543 DOI: 10.3389/fcimb.2024.1410506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 11/21/2024] [Indexed: 02/11/2025] Open
Abstract
Introduction Inflammatory bowel disease (IBD) represents a cluster of chronic idiopathic inflammatory disorders situated at the nexus of intricate interplays. The primary aim of the present investigation is to perform an umbrella review of metaanalyses, systematically offering a comprehensive overview of the evidence concerning risk factors for IBD. Methods To achieve this, we searched reputable databases, including PubMed, Embase, Web of Science, and the Cochrane Database of Systematic Reviews, from inception through April 2023. Two authors independently assessed the methodological quality of each metaanalysis using the AMSTAR tool and adhered to evidence classification criteria. Results In total, we extracted 191 unique risk factors in meta-analyses, including 92 significantly associated risk factors. The top ten risk factors were human cytomegalovirus (HCMV) infection, IBD family history, periodontal disease, poliomyelitis, campylobacter species infection, hidradenitis suppurativa, psoriasis, use of proton pump inhibitors, chronic obstructive pulmonary disease, and western dietary pattern. Discussion In conclusion, this umbrella review extracted 62 risk factors and 30 protective factors, most of which were related to underlying diseases, personal lifestyle and environmental factors. The findings in this paper help to develop better prevention and treatment measures to reduce the incidence of IBD, delay its progression, and reduce the burden of IBD-related disease worldwide. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023417175.
Collapse
Affiliation(s)
- Tingping Wu
- Shenzhen Bao'an Chinese Medicine Hospital, The Seventh Clinical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Honghui Cheng
- Shenzhen Bao'an Chinese Medicine Hospital, The Seventh Clinical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jiamei Zhuang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Xianhua Liu
- Shenzhen Bao'an Chinese Medicine Hospital, The Seventh Clinical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Zichen Ouyang
- Shenzhen Bao'an Chinese Medicine Hospital, The Seventh Clinical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Rui Qian
- Shenzhen Bao'an Chinese Medicine Hospital, The Seventh Clinical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
16
|
Persico AM, Asta L, Chehbani F, Mirabelli S, Parlatini V, Cortese S, Arango C, Vitiello B. The pediatric psychopharmacology of autism spectrum disorder: A systematic review - Part II: The future. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111176. [PMID: 39490514 DOI: 10.1016/j.pnpbp.2024.111176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/31/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
Part I of this systematic review summarized the state-of-the-art of pediatric psychopharmacology for Autism Spectrum Disorder (ASD), a severe and lifelong neurodevelopmental disorder. The purpose of this Part II follow-up article is to provide a systematic overview of the experimental psychopharmacology of ASD. To this aim, we have first identified in the Clinicaltrials.gov website all the 157 pharmacological and nutraceutical compounds which have been experimentally tested in children and adolescents with ASD using the randomized placebo-controlled trial (RCT) design. After excluding 24 drugs already presented in Part I, a systematic review spanning each of the remaining 133 compounds was registered on Prospero (ID: CRD42023476555), performed on PubMed (August 8, 2024), and completed with EBSCO, PsycINFO (psychology and psychiatry literature) and the Cochrane Database of Systematic reviews, yielding a total of 115 published RCTs, including 57 trials for 23 pharmacological compounds and 48 trials for 17 nutraceuticals/supplements. Melatonin and oxytocin were not included, because recent systematic reviews have been already published for both these compounds. RCTs of drugs with the strongest foundation in preclinical research, namely arbaclofen, balovaptan and bumetanide have all failed to reach their primary end-points, although efforts to target specific patient subgroups do warrant further investigation. For the vast majority of compounds, including cannabidiol, vasopressin, and probiotics, insufficient evidence of efficacy and safety is available. However, a small subset of compounds, including N-acetylcysteine, folinic acid, l-carnitine, coenzyme Q10, sulforaphane, and metformin may already be considered, with due caution, for clinical use, because there is promising evidence of efficacy and a high safety profile. For several other compounds, such as secretin, efficacy can be confidently excluded, and/or the data discourage undertaking new RCTs. Part I and Part II summarize "drug-based" information, which will be ultimately merged to provide clinicians with a "symptom-based" consensus statement in a conclusive Part III, with the overarching aim to foster evidence-based clinical practices and to organize new strategies for future clinical trials.
Collapse
Affiliation(s)
- Antonio M Persico
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Child & Adolescent Neuropsychiatry Program, Modena University Hospital, Modena, Italy.
| | - Lisa Asta
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fethia Chehbani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvestro Mirabelli
- Interdepartmental Program "Autism 0-90", "G. Martino" University Hospital, Messina, Italy
| | - Valeria Parlatini
- Center for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK; Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK; Solent NHS Trust, Southampton, UK
| | - Samuele Cortese
- Center for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK; Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK; Solent NHS Trust, Southampton, UK; Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York City, NY, USA; DiMePRe-J-Department of Precision and Regenerative Medicine-Jonic Area, University "Aldo Moro", Bari, Italy
| | - Celso Arango
- Child and Adolescent Psychiatry Department, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Benedetto Vitiello
- Department of Public Health and Pediatric Sciences, Section of Child and Adolescent Neuropsychiatry, University of Turin, Turin, Italy
| |
Collapse
|
17
|
Ying J, Zhang MW, Wei KC, Wong SH, Subramaniam M. Influential articles in autism and gut microbiota: bibliometric profile and research trends. Front Microbiol 2025; 15:1401597. [PMID: 39850141 PMCID: PMC11755156 DOI: 10.3389/fmicb.2024.1401597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 12/27/2024] [Indexed: 01/25/2025] Open
Abstract
Objective Autism spectrum disorder (ASD) is a common neurodevelopmental disorder. Increasing evidence suggests that it is potentially related to gut microbiota, but no prior bibliometric analysis has been performed to explore the most influential works in the relationships between ASD and gut microbiota. In this study, we conducted an in-depth analysis of the most-cited articles in this field, aiming to provide insights to the existing body of research and guide future directions. Methods A search strategy was constructed and conducted in the Web of Science database to identify the 100 most-cited papers in ASD and gut microbiota. The Biblioshiny package in R was used to analyze and visualize the relevant information, including citation counts, country distributions, authors, journals, and thematic analysis. Correlation and comparison analyses were performed using SPSS software. Results The top 100 influential manuscripts were published between 2000 and 2021, with a total citation of 40,662. The average number of citations annually increased over the years and was significantly correlated to the year of publication (r = 0.481, p < 0.01, Spearman's rho test). The United States was involved in the highest number of publications (n = 42). The number of publications in the journal was not significantly related to the journal's latest impact factor (r = 0.016, p > 0.05, Spearman's rho test). Co-occurrence network and thematic analysis identified several important areas, such as microbial metabolites of short-chain fatty acids and overlaps with irritable bowel syndrome. Conclusion This bibliometric analysis provides the key information of the most influential studies in the area of ASD and gut microbiota, and suggests the hot topics and future directions. The findings of this study can serve as a valuable reference for researchers and policymakers, guiding the development and implementation of the scientific research strategies in this area.
Collapse
Affiliation(s)
- Jiangbo Ying
- Department of Developmental Psychiatry, Institute of Mental Health, Singapore, Singapore
| | | | - Ker-Chiah Wei
- Department of Developmental Psychiatry, Institute of Mental Health, Singapore, Singapore
| | - Sunny H. Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, Singapore, Singapore
| | | |
Collapse
|
18
|
Hadrich I, Turki M, Chaari I, Abdelmoula B, Gargouri R, Khemakhem N, Elatoui D, Abid F, Kammoun S, Rekik M, Aloulou S, Sehli M, Mrad AB, Neji S, Feiguin FM, Aloulou J, Abdelmoula NB, Sellami H. Gut mycobiome and neuropsychiatric disorders: insights and therapeutic potential. Front Cell Neurosci 2025; 18:1495224. [PMID: 39845646 PMCID: PMC11750820 DOI: 10.3389/fncel.2024.1495224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
Background The human gut mycobiome, a minor but integral component of the gut microbiome, has emerged as a significant player in host homeostasis and disease development. While bacteria have traditionally been the focus of gut microbiome studies, recent evidence suggests that fungal communities (mycobiota) may also play a crucial role in modulating health, particularly in neuropsychiatric disorders. Objective This review aims to provide a comprehensive overview of current knowledge on the relationship between the gut mycobiome and neuropsychiatric disorders, exploring the potential of targeting fungal communities as a novel therapeutic strategy. Methods We summarized recent findings from metagenomic analyses that characterize the diversity and composition of gut mycobiota and discuss how these communities interact with the host and other microorganisms via the gut-brain axis. Key methodologies for studying mycobiota, such as high-throughout sequencing and bioinformatics approaches, were also reviewed to highlight advances in the field. Results Emerging research links gut mycobiota dysbiosis to conditions such as schizophrenia, Alzheimer's disease, autism spectrum disorders, bipolar disorder, and depression. Studies indicate that specific fungal populations, such as Candida and Saccharomyces, may influence neuroinflammation, gut permeability and immune responses, thereby affecting mental health outcomes. Conclusion Understanding the gut mycobiome's role in neuropsychiatric disorders opens new avenues for therapeutic interventions, including antifungal treatments, probiotics, and dietary modifications. Future research should integrate multi-omics approaches to unravel the complex interkingdom interactions within the gut ecosystem, paving the way for personalized medicine in mental health care.
Collapse
Affiliation(s)
- Ines Hadrich
- Fungal and Parasitic Molecular Biology Laboratory LR 05ES11, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Mariem Turki
- Psychiatry “B” Department, Hedi Chaker University Hospital, Sfax, Tunisia
- Reserach Unit “Drosophila”UR22ES03, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Imen Chaari
- Psychiatry “B” Department, Hedi Chaker University Hospital, Sfax, Tunisia
- Reserach Unit “Drosophila”UR22ES03, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Balkiss Abdelmoula
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
| | - Rahma Gargouri
- Department of Pneumology, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Nahed Khemakhem
- Fungal and Parasitic Molecular Biology Laboratory LR 05ES11, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Dhawia Elatoui
- Reserach Unit “Drosophila”UR22ES03, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Fatma Abid
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
| | - Sonda Kammoun
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
- Ophthalmology Department, Habib Bourguiba University Hospital, Faculty of Medicine, Sfax, Tunisia
| | - Mona Rekik
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
- Ophthalmology Department, Habib Bourguiba University Hospital, Faculty of Medicine, Sfax, Tunisia
| | - Samir Aloulou
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
- Medical Carcinology Department, Mohamed Ben Sassi University Hospital of Gabes, Faculty of Medicine, Sfax, Tunisia
| | - Mariem Sehli
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
- Ophthalmology Department, Habib Bourguiba University Hospital, Faculty of Medicine, Sfax, Tunisia
| | - Aymen Ben Mrad
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
- Ophthalmology Department, Habib Bourguiba University Hospital, Faculty of Medicine, Sfax, Tunisia
| | - Sourour Neji
- Fungal and Parasitic Molecular Biology Laboratory LR 05ES11, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Fabian M. Feiguin
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Jihene Aloulou
- Psychiatry “B” Department, Hedi Chaker University Hospital, Sfax, Tunisia
- Reserach Unit “Drosophila”UR22ES03, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Nouha Bouayed Abdelmoula
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
| | - Hayet Sellami
- Reserach Unit “Drosophila”UR22ES03, Faculty of Medicine, University of Sfax, Sfax, Tunisia
- Parasitology and Mycology Laboratory - Habib Bourguiba University Hospital, Sfax, Tunisia
| |
Collapse
|
19
|
Moreno RJ, Abu Amara R, Ashwood P. Toward a better understanding of T cell dysregulation in autism: An integrative review. Brain Behav Immun 2025; 123:1147-1158. [PMID: 39378971 DOI: 10.1016/j.bbi.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/28/2024] [Accepted: 10/05/2024] [Indexed: 10/10/2024] Open
Abstract
Autism spectrum disorder (ASD) is a highly heterogeneous disorder characterized by impairments in social, communicative, and restrictive behaviors. Over the past 20 years, research has highlighted the role of the immune system in regulating neurodevelopment and behavior. In ASD, immune abnormalities are frequently observed, such as elevations in pro-inflammatory cytokines, alterations in immune cell frequencies, and dysregulated mechanisms of immune suppression. The adaptive immune system - the branch of the immune system conferring cellular immunity - may be involved in the etiology of ASD. Specifically, dysregulated T cell activity, characterized by altered cellular function and increased cytokine release, presence of inflammatory phenotypes and altered cellular signaling, has been consistently observed in several studies across multiple laboratories and geographic regions. Similarly, mechanisms regulating their activation are also disrupted. T cells at homeostasis coordinate the healthy development of the central nervous system (CNS) during early prenatal and postnatal development, and aid in CNS maintenance into adulthood. Thus, T cell dysregulation may play a role in neurodevelopment and the behavioral and cognitive manifestations observed in ASD. Outside of the CNS, aberrant T cell activity may also be responsible for the increased frequency of immune based conditions in the ASD population, such as allergies, gut inflammation and autoimmunity. In this review, we will discuss the current understanding of T cell biology in ASD and speculate on mechanisms behind their dysregulation. This review also evaluates how aberrant T cell biology affects gastrointestinal issues and behavior in the context of ASD.
Collapse
Affiliation(s)
- R J Moreno
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA; The M.I.N.D. Institute, University of California at Davis, CA, USA
| | - R Abu Amara
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA; The M.I.N.D. Institute, University of California at Davis, CA, USA
| | - P Ashwood
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA; The M.I.N.D. Institute, University of California at Davis, CA, USA.
| |
Collapse
|
20
|
Zhu K, Xie X, Hou F, Chen Y, Wang H, Jiang Q, Feng Y, Xiao P, Zhang Q, Xiang Z, Fan Y, Wu X, Li L, Song R. The Association Between Functional Variants in Long Non-coding RNAs and the Risk of Autism Spectrum Disorder Was Not Mediated by Gut Microbiota. Mol Neurobiol 2025; 62:412-420. [PMID: 38861233 DOI: 10.1007/s12035-024-04276-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/27/2024] [Indexed: 06/12/2024]
Abstract
The effect of functional variants in long non-coding RNA (lncRNA) gene regions on autism spectrum disorder (ASD) remains unclear. The present study aimed to investigate the association of functional variants located in lncRNA genes with the risk of ASD and explore whether gut microbiota would mediate the relationship. A total of 87 cases and 71 healthy controls were enrolled in the study. MassARRAY platform and 16S rRNA sequencing were respectively applied to assess the genotype of candidate SNPs and gut microbiota of children. The logistic regression models showed that the association between rs2295412 and the risk of ASD was statistically significant after Bonferroni adjustments. The risk of ASD decreased by 19% for each additional C allele carried by children in multiplicative models (OR = 0.81, 95% CI, 0.69-0.94, P = 0.007). Although we identified significant correlations between rs8113922 polymorphisms, Bifidobacteriales, and ASD, the mediating effect of gut microbiota on the relationship of the polymorphisms with the risk of ASD was not significant. The findings demonstrated that functional variants in lncRNA genes play an important role in ASD and gut microbiota could not mediate the association. Future studies are warranted to verify the results and search for more possible mechanisms of variants located in lncRNA genes implicated in ASD.
Collapse
Affiliation(s)
- Kaiheng Zhu
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No 13 Hangkong Road, Wuhan, China
| | - Xinyan Xie
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No 13 Hangkong Road, Wuhan, China
| | - Fang Hou
- Maternity and Children, Health Care Hospital of Luohu District, Shenzhen, China
| | - Yanlin Chen
- Maternity and Children, Health Care Hospital of Luohu District, Shenzhen, China
| | - Haoxue Wang
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No 13 Hangkong Road, Wuhan, China
| | - Qi Jiang
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No 13 Hangkong Road, Wuhan, China
| | - Yanan Feng
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No 13 Hangkong Road, Wuhan, China
| | - Pei Xiao
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No 13 Hangkong Road, Wuhan, China
| | - Quan Zhang
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No 13 Hangkong Road, Wuhan, China
| | - Zhen Xiang
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No 13 Hangkong Road, Wuhan, China
| | - Yixi Fan
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No 13 Hangkong Road, Wuhan, China
| | - Xufang Wu
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No 13 Hangkong Road, Wuhan, China
| | - Li Li
- Maternity and Children, Health Care Hospital of Luohu District, Shenzhen, China.
| | - Ranran Song
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No 13 Hangkong Road, Wuhan, China.
| |
Collapse
|
21
|
Mamun AA, Geng P, Wang S, Shao C, Xiao J. IUPHAR review: Targeted therapies of signaling pathways based on the gut microbiome in autism spectrum disorders: Mechanistic and therapeutic applications. Pharmacol Res 2025; 211:107559. [PMID: 39733842 DOI: 10.1016/j.phrs.2024.107559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
Autism spectrum disorders (ASD) are complex neurodevelopmental disorders characterized by impairments in social interaction, communication and repetitive activities. Gut microbiota significantly influences behavior and neurodevelopment by regulating the gut-brain axis. This review explores gut microbiota-influenced treatments for ASD, focusing on their therapeutic applications and mechanistic insights. In addition, this review discusses the interactions between gut microbiota and the immune, metabolic and neuroendocrine systems, focusing on crucial microbial metabolites including short-chain fatty acids (SCFAs) and several neurotransmitters. Furthermore, the review explores various therapy methods including fecal microbiota transplantation, dietary modifications, probiotics and prebiotics and evaluates their safety and efficacy in reducing ASD symptoms. The discussion shows the potential of customized microbiome-based therapeutics and the integration of multi-omics methods to understand the underlying mechanisms. Moreover, the review explores the intricate relationship between gut microbiota and ASD, aiming to develop innovative therapies that utilize the gut microbiome to improve the clinical outcomes of ASD patients. Microbial metabolites such as neurotransmitter precursors, tryptophan metabolites and SCFAs affect brain development and behavior. Symptoms of ASD are linked to changes in these metabolites. Dysbiosis in the gut microbiome may impact neuroinflammatory processes linked to autism, negatively affecting immune signaling pathways. Research indicates that probiotics and prebiotics can improve gut microbiota and alleviate symptoms in ASD patients. Fecal microbiota transplantation may also improve behavioral symptoms and restore gut microbiota balance. The review emphasizes the need for further research on gut microbiota modification as a potential therapeutic approach for ASD, highlighting its potential in clinical settings.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China.
| | - Jian Xiao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
22
|
Darmanto AG, Yen TL, Jan JS, Linh TTD, Taliyan R, Yang CH, Sheu JR. Beyond metabolic messengers: Bile acids and TGR5 as pharmacotherapeutic intervention for psychiatric disorders. Pharmacol Res 2025; 211:107564. [PMID: 39733841 DOI: 10.1016/j.phrs.2024.107564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/05/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
Psychiatric disorders pose a significant global health challenge, exacerbated by the COVID-19 pandemic and insufficiently addressed by the current treatments. This review explores the emerging role of bile acids and the TGR5 receptor in the pathophysiology of psychiatric conditions, emphasizing their signaling within the gut-brain axis. We detail the synthesis and systemic functions of bile acids, their transformation by gut microbiota, and their impact across various neuropsychiatric disorders, including major depressive disorder, general anxiety disorder, schizophrenia, autism spectrum disorder, and bipolar disorder. The review highlights how dysbiosis and altered bile acid metabolism contribute to the development and exacerbation of these neuropsychiatric disorders through mechanisms involving inflammation, oxidative stress, and neurotransmitter dysregulation. Importantly, we detail both pharmacological and non-pharmacological interventions that modulate TGR5 signaling, offering potential breakthroughs in treatment strategies. These include dietary adjustments to enhance beneficial bile acids production and the use of specific TGR5 agonists that have shown promise in preclinical and clinical settings for their regulatory effects on critical pathways such as cAMP-PKA, NRF2-mediated antioxidant responses, and neuroinflammation. By integrating findings from the dynamics of gut microbiota, bile acids metabolism, and TGR5 receptor related signaling events, this review underscores cutting-edge therapeutic approaches poised to revolutionize the management and treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Arief Gunawan Darmanto
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan, ROC; School of Medicine, Universitas Ciputra, Surabaya 60219, Indonesia
| | - Ting-Lin Yen
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan, ROC; Department of Medical Research, Cathay General Hospital, Taipei 22174, Taiwan, ROC
| | - Jing-Shiun Jan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan, ROC
| | - Tran Thanh Duy Linh
- Family Medicine Training Center, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Rajeev Taliyan
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, Pilani, Rajasthan, India
| | - Chih-Hao Yang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan, ROC; Research Center for Neuroscience, Taipei Medical University, Taipei, Taiwan, ROC.
| | - Joen-Rong Sheu
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan, ROC; Research Center for Neuroscience, Taipei Medical University, Taipei, Taiwan, ROC; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan, ROC.
| |
Collapse
|
23
|
Keerthy D, Spratlen MJ, Wen L, Seeram D, Park H, Calero L, Uhlemann AC, Herbstman JB. An evaluation of in utero polycyclic aromatic hydrocarbon exposure on the neonatal meconium microbiome. ENVIRONMENTAL RESEARCH 2024; 263:120053. [PMID: 39341532 PMCID: PMC11816390 DOI: 10.1016/j.envres.2024.120053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
INTRODUCTION In utero exposure to environmental polycyclic aromatic hydrocarbon (PAH) is associated with neurodevelopmental impairments[1-8], prematurity[9-12] and low birthweight[9,13-15]. The gut microbiome serves as an intermediary between self and external environment; therefore, exploring the impact of PAH on microbiota may elucidate their role in disease. Here, we evaluated the effect of in utero PAH exposure on meconium microbiome. METHODS We evaluated 49 mother-child dyads within Fair Start Birth Cohort with full term delivery and adequate meconium sampling. Prenatal PAH was measured using personal active samplers worn for 48 h during third trimester. Post-processing, 35 samples with adequate biomass were evaluated for association between tertile of PAH exposure (high (H) vs low/medium (L/M)) and microbiome diversity. RESULTS No significant differences were observed in alpha diversity metrics, Chao1 and Shannon index, between exposure groups for total PAH. However, alpha diversity metrics were negatively associated with log benzo[a]anthracene (BaA) and log chrysene (Chry) with high exposure, but positively associated with log benzo[a]pyrene (BaP) with low/medium exposure. After adjustment for birthweight and sex, alpha diversity metrics were negatively associated with log BaA, BaP, Chry, Indeno (Zhang et al., 2021; Perera et al., 2018)pyrene (IcdP) and total PAH with high exposure. Conversely, with low/medium exposure, alpha diversity metrics positively correlated with log BaP and benzo[b]fluoranthane (BbF). No significant difference in beta diversity was observed across groups using UniFrac, weighted UniFrac, or Bray-Curtis methods. Differential expression analysis showed differentially abundant taxa between exposure groups. CONCLUSION Bacterial taxa were detectable in 35/49 (71%) meconium samples. Altered alpha diversity metrics and differentially abundant taxa between groups suggest in utero PAH exposure may impede early colonization. Sample size is limited, but these findings provide supporting evidence for wider scale research. Research on long-term impact of prenatal PAH exposure on childhood health outcomes is ongoing. Differential effects of specific PAHs need further evaluation.
Collapse
Affiliation(s)
- Divya Keerthy
- Neonatal and Perinatal Medicine, Columbia University, New York, NY, United States; Neonatal and Perinatal Medicine, NewYork Presbyterian Queens, Flushing, NY, United States.
| | - Miranda J Spratlen
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Lingsheng Wen
- Division of Infectious Diseases, Columbia University, New York, NY, United States
| | - Dwayne Seeram
- Division of Infectious Diseases, Columbia University, New York, NY, United States
| | - Heekuk Park
- Division of Infectious Diseases, Columbia University, New York, NY, United States
| | - Lehyla Calero
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Columbia University, New York, NY, United States
| | - Julie B Herbstman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| |
Collapse
|
24
|
Jin F, Wang Z. Mapping the structure of biomarkers in autism spectrum disorder: a review of the most influential studies. Front Neurosci 2024; 18:1514678. [PMID: 39734494 PMCID: PMC11671500 DOI: 10.3389/fnins.2024.1514678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/02/2024] [Indexed: 12/31/2024] Open
Abstract
Background Autism spectrum disorder is a distinctive developmental condition which is caused by an interaction between genetic vulnerability and environmental factors. Biomarkers play a crucial role in understanding disease characteristics for diagnosis, prognosis, and treatment. This study employs bibliometric analysis to identify and review the 100 top-cited articles' characteristics, current research hotspots and future directions of autism biomarkers. Methods A comprehensive search of autism biomarkers studies was retrieved from the Web of Science Core Collection database with a combined keyword search strategy. A comprehensive analysis of the top 100 articles was conducted with CiteSpace, VOSviewer, and Excel, including citations, countries, authors, and keywords. Results The top 100 cited studies were published between 1988 and 2021, with the United States led in productivity. Core biomarkers such as genetics, children, oxidative stress, and mitochondrial dysfunction are well-established. Potential trends for future research may include brain studies, metabolomics, and associations with other psychiatric disorders. Conclusion This pioneering bibliometric analysis provides a comprehensive compilation of the 100 most-cited studies on autism, which not only offers a valuable resource for doctors, and researchers but shedding insights into current shortcomings and future endeavors. Future research should prioritize the application of emerging technologies for biomarkers, longitudinal study of biomarkers, and specificity of autism biomarkers to advance the precision of ASD diagnosis and treatment.
Collapse
Affiliation(s)
| | - Zhidan Wang
- School of Education Science, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
25
|
Moreno RJ, Ashwood P. An Update on Microbial Interventions in Autism Spectrum Disorder with Gastrointestinal Symptoms. Int J Mol Sci 2024; 25:13078. [PMID: 39684788 PMCID: PMC11641496 DOI: 10.3390/ijms252313078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/24/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
In the United States, autism spectrum disorder (ASD) affects 1 in 33 children and is characterized by atypical social interactions, communication difficulties, and intense, restricted interests. Microbial dysbiosis in the gastrointestinal (GI) tract is frequently observed in individuals with ASD, potentially contributing to behavioral manifestations and correlating with worsening severity. Moreover, dysbiosis may contribute to the increased prevalence of GI comorbidities in the ASD population and exacerbate immune dysregulation, further worsening dysbiosis. Over the past 25 years, research on the impact of microbial manipulation on ASD outcomes has gained substantial interest. Various approaches to microbial manipulation have been preclinically and clinically tested, including antibiotic treatment, dietary modifications, prebiotics, probiotics, and fecal microbiota transplantation. Each method has shown varying degrees of success in reducing the severity of ASD behaviors and/or GI symptoms and varying long-term efficacy. In this review, we discuss these microbiome manipulation methods and their outcomes. We also discuss potential microbiome manipulation early in life, as this is a critical period for neurodevelopment.
Collapse
Affiliation(s)
- Rachel J. Moreno
- Department of Medical Microbiology and Immunology, University of California, Davis, CA 95616, USA
- The M.I.N.D. Institute, University of California, Davis, CA 95817, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California, Davis, CA 95616, USA
- The M.I.N.D. Institute, University of California, Davis, CA 95817, USA
| |
Collapse
|
26
|
Islam MZ, Jozipovic D, Lopez PA, Krych L, Correia BSB, Bertram HC, Hansen AK, Hansen CHF. Wild-Mouse-Derived Gut Microbiome Transplantation in Laboratory Mice Partly Alleviates House-Dust-Mite-Induced Allergic Airway Inflammation. Microorganisms 2024; 12:2499. [PMID: 39770703 PMCID: PMC11728220 DOI: 10.3390/microorganisms12122499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025] Open
Abstract
Laboratory mice are instrumental for preclinical research but there are serious concerns that the use of a clean standardized environment for specific-pathogen-free (SPF) mice results in poor bench-to-bedside translation due to their immature immune system. The aim of the present study was to test the importance of the gut microbiota in wild vs. SPF mice for evaluating host immune responses in a house-dust-mite-induced allergic airway inflammation model without the influence of pathogens. The wild mouse microbiome reduced histopathological changes and TNF-α in the lungs and serum when transplanted to microbiota-depleted mice compared to mice transplanted with the microbiome from SPF mice. Moreover, the colonic gene expression of Gata3 was significantly lower in the wild microbiome-associated mice, whereas Muc1 was more highly expressed in both the ileum and colon. Intestinal microbiome and metabolomic analyses revealed distinct profiles associated with the wild-derived microbiome. The wild-mouse microbiome thus partly reduced sensitivity to house-dust-mite-induced allergic airway inflammation compared to the SPF mouse microbiome, and preclinical studies using this model should consider using both 'dirty' rewilded and SPF mice for testing new therapeutic compounds due to the significant effects of their respective microbiomes and derived metabolites on host immune responses.
Collapse
Affiliation(s)
- Md Zohorul Islam
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark (A.K.H.)
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC 3220, Australia
| | - Danica Jozipovic
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark (A.K.H.)
| | - Pablo Atienza Lopez
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg, Denmark
| | - Lukasz Krych
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg, Denmark
| | | | | | - Axel Kornerup Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark (A.K.H.)
| | - Camilla Hartmann Friis Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark (A.K.H.)
| |
Collapse
|
27
|
Poupard L, Page G, Thoreau V, Kaouah Z. Relationships between Gut Microbiota and Autism Spectrum Disorders: Development and Treatment. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2024; 22:554-564. [PMID: 39420603 PMCID: PMC11494427 DOI: 10.9758/cpn.24.1179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 10/19/2024]
Abstract
Many studies have demonstrated the impact of intestinal microbiota on normal brain development. Moreover, the gut microbiota (GM) is impacted by multiple endogenous and environmental factors that may promote gut dysbiosis (GD). An increasing number of studies are investigating the possible role of the GD in the development of neurological and behavioral disorders. For autism spectrum disorders (ASD), specific intestinal bacterial signatures have been identified, knowing that gastrointestinal symptoms are frequently found in ASD. In this review, the peri and post-natal factors modulating the GM are described and the specific gut bacterial signature of ASD children is detailed. Through bidirectional communication between the GM and the brain, several mechanisms are involved in the development of ASD, such as cytokine-mediated neuroinflammation and decreased production of neuroprotective factors such as short-chain fatty acids by the GM. Imbalance of certain neurotransmitters such as serotonin or gamma-aminobutyric acid could also play a role in these gut-brain interactions. Some studies show that this GD in ASD is partly reversible by treatment with pre- and probiotics, or fecal microbiota transplantation with promising results. However, certain limitations have been raised, in particular concerning the short duration of treatment, the small sample sizes and the diversity of protocols. The development of standardized therapeutics acting on GD in large cohort could rescue the gastrointestinal symptoms and behavioral impairments, as well as patient management.
Collapse
Affiliation(s)
- Lisa Poupard
- Medicine and Pharmacy Faculty, University of Poitiers, Poitiers, France
| | - Guylène Page
- Medicine and Pharmacy Faculty, University of Poitiers, Poitiers, France
- Neurovascular Unit and Cognitive Disorders (NEUVACOD), Pôle Biologie Santé, University of Poitiers, Poitiers, France
| | - Vincent Thoreau
- Medicine and Pharmacy Faculty, University of Poitiers, Poitiers, France
- Neurovascular Unit and Cognitive Disorders (NEUVACOD), Pôle Biologie Santé, University of Poitiers, Poitiers, France
| | - Zahyra Kaouah
- Medicine and Pharmacy Faculty, University of Poitiers, Poitiers, France
- Neurovascular Unit and Cognitive Disorders (NEUVACOD), Pôle Biologie Santé, University of Poitiers, Poitiers, France
| |
Collapse
|
28
|
Sall I, Foxall R, Felth L, Maret S, Rosa Z, Gaur A, Calawa J, Pavlik N, Whistler JL, Whistler CA. Gut dysbiosis was inevitable, but tolerance was not: temporal responses of the murine microbiota that maintain its capacity for butyrate production correlate with sustained antinociception to chronic morphine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589671. [PMID: 38659831 PMCID: PMC11042308 DOI: 10.1101/2024.04.15.589671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The therapeutic benefits of opioids are compromised by the development of analgesic tolerance, which necessitates higher dosing for pain management thereby increasing the liability for drug dependence and addiction. Rodent models indicate opposing roles of the gut microbiota in tolerance: morphine-induced gut dysbiosis exacerbates tolerance, whereas probiotics ameliorate tolerance. Not all individuals develop tolerance which could be influenced by differences in microbiota, and yet no study design has capitalized upon this natural variation. We leveraged natural behavioral variation in a murine model of voluntary oral morphine self-administration to elucidate the mechanisms by which microbiota influences tolerance. Although all mice shared similar morphine-driven microbiota changes that largely masked informative associations with variability in tolerance, our high-resolution temporal analyses revealed a divergence in the progression of dysbiosis that best explained sustained antinociception. Mice that did not develop tolerance maintained a higher capacity for production of the short-chain fatty acid (SCFA) butyrate known to bolster intestinal barriers and promote neuronal homeostasis. Both fecal microbial transplantation (FMT) from donor mice that did not develop tolerance and dietary butyrate supplementation significantly reduced the development of tolerance independently of suppression of systemic inflammation. These findings could inform immediate therapies to extend the analgesic efficacy of opioids.
Collapse
Affiliation(s)
- Izabella Sall
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Graduate program in Molecular and Evolutionary Systems Biology, University of New Hampshire, Durham, NH, USA
| | - Randi Foxall
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Lindsey Felth
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Soren Maret
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Zachary Rosa
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Anirudh Gaur
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Jennifer Calawa
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Microbiology Graduate Program, University of New Hampshire, Durham, NH, USA
| | - Nadia Pavlik
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Jennifer L. Whistler
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
- Department of Physiology and Membrane Biology, UC Davis School of Medicine, Davis, CA, USA
| | - Cheryl A. Whistler
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
29
|
Anaclerio F, Minelli M, Antonucci I, Gatta V, Stuppia L. Microbiota and Autism: A Review on Oral and Gut Microbiome Analysis Through 16S rRNA Sequencing. Biomedicines 2024; 12:2686. [PMID: 39767593 PMCID: PMC11726726 DOI: 10.3390/biomedicines12122686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 01/16/2025] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with multifactorial etiologies, including genetic, environmental, and microbiological factors. In recent years, increasing attention has been given to the role of the gut microbiota in ASD. Emerging evidence suggests that gut microbiota dysbiosis may influence the central nervous system through the gut-brain axis, potentially impacting behavior and neurodevelopment. The use of 16S rRNA gene sequencing has become a pivotal tool in profiling the microbial communities associated with ASD, offering valuable insights into bacterial diversity, composition, and potential functional roles. This review aims to provide a comprehensive analysis of current findings on the relationship between the gut and oral microbiota with ASD, and a particular focus on studies utilizing 16S rRNA sequencing. We will explore how gut microbiome alterations may contribute to ASD pathophysiology, discuss the limitations of existing research, and propose future directions for the integration of microbiome analysis in ASD diagnostics and treatment strategies. These findings underscore the potential role of microbiota in modulating ASD symptoms. The data suggest that specific bacterial taxa are consistently altered in ASD, which may have implications for understanding the gut-brain axis and its influence on neurodevelopment.
Collapse
Affiliation(s)
- Federico Anaclerio
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.M.); (I.A.); (V.G.); (L.S.)
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Maria Minelli
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.M.); (I.A.); (V.G.); (L.S.)
- Department of Medical Genetics, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Ivana Antonucci
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.M.); (I.A.); (V.G.); (L.S.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Valentina Gatta
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.M.); (I.A.); (V.G.); (L.S.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Liborio Stuppia
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.M.); (I.A.); (V.G.); (L.S.)
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
30
|
Mihailovich M, Tolinački M, Soković Bajić S, Lestarevic S, Pejovic-Milovancevic M, Golić N. The Microbiome-Genetics Axis in Autism Spectrum Disorders: A Probiotic Perspective. Int J Mol Sci 2024; 25:12407. [PMID: 39596472 PMCID: PMC11594817 DOI: 10.3390/ijms252212407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Autism spectrum disorder (commonly known as autism) is a complex and prevalent neurodevelopmental condition characterized by challenges in social behavior, restricted interests, and repetitive behaviors. It is projected that the annual cost of autism spectrum disorder in the US will reach USD 461 billion by 2025. However, despite being a major public health problem, effective treatment for the underlying symptoms remains elusive. As numerous literature data indicate the role of gut microbiota in autism prognosis, particularly in terms of alleviating gastrointestinal (GI) symptoms, high hopes have been placed on probiotics for autism treatment. Approximately twenty clinical studies have been conducted using single or mixed probiotic cultures. However, unequivocal results on the effect of probiotics on people with autism have not been obtained. The small sample sizes, differences in age of participants, choice of probiotics, dose and duration of treatment, outcome measures, and analytical methods used are largely inconsistent, making it challenging to draw distinctive conclusions. Here, we discuss the experimental evidence for specific gut bacteria and their metabolites and how they affect autism in light of the phenotypic and etiological complexity and heterogeneity. We propose a personalized medicine approach for using probiotics to increase the quality of life of individuals with autism by selecting specific probiotics to improve particular features of the condition.
Collapse
Affiliation(s)
- Marija Mihailovich
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 11042 Belgrade, Serbia; (M.T.); (S.S.B.); (N.G.)
- Human Technopole, 20157 Milan, Italy
| | - Maja Tolinački
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 11042 Belgrade, Serbia; (M.T.); (S.S.B.); (N.G.)
| | - Svetlana Soković Bajić
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 11042 Belgrade, Serbia; (M.T.); (S.S.B.); (N.G.)
| | - Sanja Lestarevic
- Institute of Mental Health, 11000 Belgrade, Serbia; (S.L.); (M.P.-M.)
| | - Milica Pejovic-Milovancevic
- Institute of Mental Health, 11000 Belgrade, Serbia; (S.L.); (M.P.-M.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Nataša Golić
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 11042 Belgrade, Serbia; (M.T.); (S.S.B.); (N.G.)
| |
Collapse
|
31
|
Martínez-González AE, Cervin M, Pérez-Sánchez S. Assessing gastrointestinal symptoms in people with autism: Applying a new measure based on the Rome IV criteria. Dig Liver Dis 2024; 56:1863-1870. [PMID: 38851976 DOI: 10.1016/j.dld.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND People with autism spectrum disorder (ASD) often struggle with gastrointestinal symptoms, implicating alterations of the gut-microbiota-brain axis, which has also been linked to sensory reactivity, pain, and gastro-intestinal symptoms in ASD. To better understand the prevalence and impact of gastrointestinal symptoms among individuals with ASD, a measure is needed that adhere to the Rome IV criteria of gastrointestinal symptoms and is applicable to individuals with ASD. The Gastrointestinal Symptom Severity Scale (GSSS) is a new assessment tool designed to match this need. METHODS In a diverse sample of 265 individuals with ASD (mean age = 9.44, SD = 4.99), we examined the psychometric properties of the GSSS, the prevalence of gastrointestinal symptoms and associations with ASD traits, sensory sensitivity, repetitive behaviors, and pain. RESULTS A unidimensional factor structure of the GSSS was confirmed and the measure showed good internal consistency, adequate test-retest reliability and strong convergent validity. Around a third of the participants evidenced clear difficulties with gastrointestinal symptoms and gastrointestinal symptoms were strongly associated with more pronounced ASD traits, sensory reactivity, and repetitive behaviors. CONCLUSIONS The GSSS shows promise as a useful measure to analyze the prevalence, severity, and impact of gastro-intestinal symptoms in individuals with ASD.
Collapse
Affiliation(s)
- Agustín Ernesto Martínez-González
- Department of Developmental Psychology and Didactics, University of Alicante, Spain. Postal Address: Carretera San Vicente del Raspeig, s/n-03690, San Vicente del Raspeig, Alicante, Spain.
| | - Matti Cervin
- Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - Susana Pérez-Sánchez
- Hospital Pediatric Service University General "Los Arcos", Mar Menor, Murcia. Spain; University of Murcia, Murcia, Spain
| |
Collapse
|
32
|
Chamtouri M, Merghni A, Miranda-Cadena K, Sakly N, Gaddour N, de Los Reyes-Gavilán CG, Mastouri M, Eraso E, Quindós G. Characterization of Yeast Isolated from the Gut Microbiota of Tunisian Children with Autism Spectrum Disorder. J Fungi (Basel) 2024; 10:730. [PMID: 39590651 PMCID: PMC11595294 DOI: 10.3390/jof10110730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 11/28/2024] Open
Abstract
Research on the microbiota-gut-brain axis in autism has primarily focused on bacteria, with limited attention to fungi. There is a growing interest in understanding the involvement of fungi, particularly Candida, in patients with autism spectrum disorder. The aim of this study was to assess the prevalence, antifungal susceptibility profiles and virulence factors of Candida isolates from the guts of Tunisian children with autism. Twenty-eight children with autism and forty-six controls were enrolled. Candida isolates from the faecal samples were identified using biochemical and molecular methods; antifungal susceptibility testing was determined by the EUCAST broth microdilution method and virulence factors, including biofilm formation, cell surface hydrophobicity and phospholipase and proteinase activities, were assessed in vitro. As a result, Candida was detected in 13 children with autism (46.4%) and 14 control children (30.4%). Candida albicans was found to be the most common species isolate in the faeces of both groups of children. Antifungal susceptibility profiles showed that one Candida isolate was resistant to amphotericin B and anidulafungin (3.7%), six were resistant to micafungin (22.2%) and five were resistant to fluconazole (18.5%). All Candida isolates were biofilm producers. Of the twenty-seven isolates, only four showed phospholipase activity (14.8%), eight showed aspartyl-proteinase activity (29.6%) and nine were hydrophobic (33.3%). These results highlight the presence of Candida in the guts of children with autism, as well as the ability to express multiple virulence factors and the antifungal resistance, and they emphasize the need for further studies to confirm intestinal Candida colonization and its potential role in autism.
Collapse
Affiliation(s)
- Mariem Chamtouri
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (M.C.); (C.G.d.L.R.-G.)
- Laboratory of Transmissible Diseases and Biologically Active Substances LR99ES27, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia;
| | - Abderrahmen Merghni
- Laboratory of Antimicrobial Resistance LR99ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia;
| | - Katherine Miranda-Cadena
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, 48080 Bilbao, Spain; (K.M.-C.); (G.Q.)
| | - Nabil Sakly
- Laboratory of Medical and Molecular Parasitology-Mycology (code LR12ES08), Department of Clinical Biology B, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia;
| | - Naoufel Gaddour
- Unit of Child Psychiatry, Monastir University Hospital, Monastir 5000, Tunisia;
| | - Clara G. de Los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (M.C.); (C.G.d.L.R.-G.)
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Maha Mastouri
- Laboratory of Transmissible Diseases and Biologically Active Substances LR99ES27, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia;
| | - Elena Eraso
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, 48080 Bilbao, Spain; (K.M.-C.); (G.Q.)
| | - Guillermo Quindós
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, 48080 Bilbao, Spain; (K.M.-C.); (G.Q.)
| |
Collapse
|
33
|
Bogielski B, Michalczyk K, Głodek P, Tempka B, Gębski W, Stygar D. Association between small intestine bacterial overgrowth and psychiatric disorders. Front Endocrinol (Lausanne) 2024; 15:1438066. [PMID: 39497810 PMCID: PMC11532184 DOI: 10.3389/fendo.2024.1438066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/01/2024] [Indexed: 11/07/2024] Open
Abstract
Small intestinal bacterial overgrowth (SIBO) is a gastrointestinal condition characterized by abnormal colonization of bacteria in the small intestine, leading to overgrowth and alteration, which is linked to gastrointestinal issues, potentially affecting neurological and mental health. Despite existing research, we still do not understand how SIBO affects tryptophan metabolism and psychiatric diseases. We investigated the literature for connections between SIBO, tryptophan metabolism disruptions, and psychiatric disorders like autism, schizophrenia, Alzheimer's, and Parkinson's diseases. We also explored the interaction between thyroid disorders and their influence on SIBO and psychiatric illnesses. PubMed and Google Scholar databases were searched using keywords and phrases, individual and in combinations, like "SIBO," "gut microbiota," "neurologic disorders," "mental disorders," "tryptophan," "dopamine," and "thyroid disease." We focused on original research and review papers that presented empirical studies conducted on animal models and human subjects published in English between February 1992 to February 2023. The initial 2 634 534 records were preliminary screened based on title and abstract and then subjected to full-text review to exclude publications with insufficient data on SIBO, lack of a psychiatric disorder component, or methodological limitations compromising the integrity of the findings. The analysis highlights the significance of the association between psychiatric disorders and SIBO, emphasizing the role of gut-microbial diversity in mental health. We advocate for more detailed studies, including longitudinal research, to clarify the causal relationships between SIBO, gut dysbiosis, and psychiatric disorders and for an integrated approach while treating complex psychiatric conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Dominika Stygar
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Zabrze, Poland
| |
Collapse
|
34
|
Darwesh MAK, Bakr W, Omar TEI, El-Kholy MA, Azzam NF. Unraveling the relative abundance of psychobiotic bacteria in children with Autism Spectrum Disorder. Sci Rep 2024; 14:24321. [PMID: 39414875 PMCID: PMC11484847 DOI: 10.1038/s41598-024-72962-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/12/2024] [Indexed: 10/18/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder characterized by social deficits. Accumulated evidence has shown a link between alterations in the composition of gut microbiota and both neurobehavioural and gastrointestinal symptoms in children with ASD which are related to the genera Lactobacillus and Bifidobacterium. These genera have been recently categorized as "psychobiotics". Moreover, this study aimed to compare the relative abundance of psychobiotics (L. plantarum, L. reuteri, and B. longum) to the total gut microbiome in typically developing (TD) children and those with ASD in order to correlate the distribution of psychobiotic with the severity and sensory impairments in autism. The ASD children were assessed using the Childhood Autism Rating Scale (CARS), while sensory impairments were evaluated using the Short Sensory Profile (SSP). Furthermore, the gut microbiome was analyzed using the quantitative real-time PCR. The study revealed a statistically significant increase in the relative abundance of L. reuteri and L. plantarum in the TD group in comparison to ASD children. Regarding the SSP total score of ASD children, a statistically significant negative correlation was found between both Lactobacillus and L. plantarum with the under-responsive subscale. For the Autism Treatment Evaluation Checklist (ATEC) score, B. longum and Lactobacillus showed a significant positive correlation with Health/Physical/Behaviour.
Collapse
Affiliation(s)
- Mennat-Allah K Darwesh
- Department of Microbiology. High Institute of Public Health, Alexandria University, Alexandria, Egypt.
| | - Wafaa Bakr
- Department of Microbiology. High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Tarek E I Omar
- Department of Pediatrics, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mohammed A El-Kholy
- Department of Microbiology and Biotechnology, Division of Clinical and Biological Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), Alexandria, Egypt
| | - Nashwa Fawzy Azzam
- Department of Microbiology. High Institute of Public Health, Alexandria University, Alexandria, Egypt
| |
Collapse
|
35
|
Mitchell LK, Heussler HS, Burgess CJ, Rehman A, Steinert RE, Davies PSW. Gastrointestinal, Behaviour and Anxiety Outcomes in Autistic Children Following an Open Label, Randomised Pilot Study of Synbiotics vs Synbiotics and Gut-Directed Hypnotherapy. J Autism Dev Disord 2024:10.1007/s10803-024-06588-9. [PMID: 39417900 DOI: 10.1007/s10803-024-06588-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
Alterations of the microbiome-gut-brain (MGB) axis have been associated with autism spectrum disorder (ASD) and disorders of gut-brain interaction (DGBI). DGBI are highly prevalent in autistic children and are associated with worsening behaviour and anxiety. Treatments such as probiotics, prebiotics and gut-directed hypnotherapy (GDH) have shown efficacy in improving gut symptoms in children. The primary objective of the study was to compare changes in gastrointestinal (GI) scores following a 12-week intervention of synbiotics (prebiotic + probiotic) +/- GDH with a follow-up at 24 weeks. Secondary objectives included changes in behavioural and anxiety symptoms, while changes in gut microbiome composition were assessed as an exploratory objective. Children diagnosed with ASD aged 5.00-10.99 years (n = 40) were recruited and randomised (1:1) to a 12-week intervention of either synbiotics (SYN group) or synbiotics + GDH (COM group). Both the SYN and COM group experienced significant reductions in total GI scores post-intervention and at follow-up (p < 0.001), with no superiority of the COM treatment over the SYN treatment. The COM group showed beneficial reductions in anxiety scores (p = 0.002) and irritability behaviours (p < 0.001) which were not present in the SYN group. At follow-up, only those in the COM group maintained significant reductions in GI pain scores (p < 0.001). There were significant changes in gut microbiota such as increases in Bifidobacterium animalis and Dialister in both groups over time. In conclusion, synbiotics with or without GDH may help support standard care for autistic children who suffer comorbid DGBI. The trial was prospectively registered at clinicialtrials.gov on 16 November 2020 (NCTO4639141).
Collapse
Affiliation(s)
- Leanne K Mitchell
- Child Health Research Centre, Faculty of Medicine, The University of Queensland, South Brisbane, QLD, Australia.
| | - Helen S Heussler
- Child Health Research Centre, Faculty of Medicine, The University of Queensland, South Brisbane, QLD, Australia
- Child Development Program, Children's Health Queensland, Brisbane, QLD, Australia
- Centre for Clinical Trials in Rare Neuro Developmental Disorders, Children's Health Queensland, Brisbane, QLD, Australia
| | - Christopher J Burgess
- Child Health Research Centre, Faculty of Medicine, The University of Queensland, South Brisbane, QLD, Australia
- Department of Gastroenterology, Hepatology and Liver Transplant, Queensland Children's Hospital, Brisbane, QLD, Australia
| | - Ateequr Rehman
- DSM-Firmenich, Health, Nutrition & Care (HNC), Kaiseraugst, Switzerland
| | - Robert E Steinert
- DSM-Firmenich, Health, Nutrition & Care (HNC), Kaiseraugst, Switzerland
- Department of Surgery, Division of Visceral and Transplantation Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Peter S W Davies
- Child Health Research Centre, Faculty of Medicine, The University of Queensland, South Brisbane, QLD, Australia
| |
Collapse
|
36
|
Hsu CY, Khachatryan LG, Younis NK, Mustafa MA, Ahmad N, Athab ZH, Polyanskaya AV, Kasanave EV, Mirzaei R, Karampoor S. Microbiota-derived short chain fatty acids in pediatric health and diseases: from gut development to neuroprotection. Front Microbiol 2024; 15:1456793. [PMID: 39439941 PMCID: PMC11493746 DOI: 10.3389/fmicb.2024.1456793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/12/2024] [Indexed: 10/25/2024] Open
Abstract
The infant gut microbiota undergoes significant changes during early life, which are essential for immune system maturation, nutrient absorption, and metabolic programming. Among the various microbial metabolites, short-chain fatty acids (SCFAs), primarily acetate, propionate, and butyrate, produced through the fermentation of dietary fibers by gut bacteria, have emerged as critical modulators of host-microbiota interactions. SCFAs serve as energy sources for colonic cells and play pivotal roles in regulating immune responses, maintaining gut barrier integrity, and influencing systemic metabolic pathways. Recent research highlights the potential neuroprotective effects of SCFAs in pediatric populations. Disruptions in gut microbiota composition and SCFA production are increasingly associated with a range of pediatric health issues, including obesity, allergic disorders, inflammatory bowel disease (IBD), and neurodevelopmental disorders. This review synthesizes current knowledge on the role of microbiota-derived SCFAs in pediatric health, emphasizing their contributions from gut development to neuroprotection. It also underscores the need for further research to unravel the precise mechanisms by which SCFAs influence pediatric health and to develop targeted interventions that leverage SCFAs for therapeutic benefits.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, United States
| | - Lusine G. Khachatryan
- Department of Pediatric Diseases, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Techniques, University of Imam Jafar Al-Sadiq, College of Technology, Baghdad, Iraq
| | - Nabeel Ahmad
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
- Department of Biotechnology, School of Allied Sciences, Dev Bhoomi Uttarakhand University Dehradun, Uttarakhand, India
| | - Zainab H. Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Angelina V. Polyanskaya
- Department of Pediatric Diseases, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Elena Victorovna Kasanave
- Department of Pediatric Diseases, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Samulėnaitė S, García-Blanco A, Mayneris-Perxachs J, Domingo-Rodríguez L, Cabana-Domínguez J, Fernàndez-Castillo N, Gago-García E, Pineda-Cirera L, Burokas A, Espinosa-Carrasco J, Arboleya S, Latorre J, Stanton C, Hosomi K, Kunisawa J, Cormand B, Fernández-Real JM, Maldonado R, Martín-García E. Gut microbiota signatures of vulnerability to food addiction in mice and humans. Gut 2024; 73:1799-1815. [PMID: 38926079 PMCID: PMC11503113 DOI: 10.1136/gutjnl-2023-331445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/01/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE Food addiction is a multifactorial disorder characterised by a loss of control over food intake that may promote obesity and alter gut microbiota composition. We have investigated the potential involvement of the gut microbiota in the mechanisms underlying food addiction. DESIGN We used the Yale Food Addiction Scale (YFAS) 2.0 criteria to classify extreme food addiction in mouse and human subpopulations to identify gut microbiota signatures associated with vulnerability to this disorder. RESULTS Both animal and human cohorts showed important similarities in the gut microbiota signatures linked to food addiction. The signatures suggested possible non-beneficial effects of bacteria belonging to the Proteobacteria phylum and potential protective effects of Actinobacteria against the development of food addiction in both cohorts of humans and mice. A decreased relative abundance of the species Blautia wexlerae was observed in addicted humans and of Blautia genus in addicted mice. Administration of the non-digestible carbohydrates, lactulose and rhamnose, known to favour Blautia growth, led to increased relative abundance of Blautia in mice faeces in parallel with dramatic improvements in food addiction. A similar improvement was revealed after oral administration of Blautia wexlerae as a beneficial microbe. CONCLUSION By understanding the crosstalk between this behavioural alteration and gut microbiota, these findings constitute a step forward to future treatments for food addiction and related eating disorders.
Collapse
Affiliation(s)
- Solveiga Samulėnaitė
- Laboratory of Neuropharmacology-Neurophar, Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Alejandra García-Blanco
- Laboratory of Neuropharmacology-Neurophar, Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Jordi Mayneris-Perxachs
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Diabetes, Endocrinology and Nutrition, Dr Josep Trueta University Hospital, Girona, Spain
| | - Laura Domingo-Rodríguez
- Laboratory of Neuropharmacology-Neurophar, Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Judit Cabana-Domínguez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, (CIBERER), Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona, (IBUB), Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Barcelona, Spain
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, (CIBERER), Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona, (IBUB), Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Barcelona, Spain
| | - Edurne Gago-García
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, (CIBERER), Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona, (IBUB), Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Barcelona, Spain
| | - Laura Pineda-Cirera
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, (CIBERER), Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona, (IBUB), Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Barcelona, Spain
| | - Aurelijus Burokas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Silvia Arboleya
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Jessica Latorre
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Diabetes, Endocrinology and Nutrition, Dr Josep Trueta University Hospital, Girona, Spain
| | - Catherine Stanton
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Co, Cork, Ireland
| | - Koji Hosomi
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan. (NIBIOHN), Ibaraki, Osaka, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan. (NIBIOHN), Ibaraki, Osaka, Japan
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, (CIBERER), Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona, (IBUB), Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Barcelona, Spain
| | - Jose Manuel Fernández-Real
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Diabetes, Endocrinology and Nutrition, Dr Josep Trueta University Hospital, Girona, Spain
- Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology-Neurophar, Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Elena Martín-García
- Laboratory of Neuropharmacology-Neurophar, Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
38
|
Gerges P, Bangarusamy DK, Bitar T, Alameddine A, Nemer G, Hleihel W. Turicibacter and Catenibacterium as potential biomarkers in autism spectrum disorders. Sci Rep 2024; 14:23184. [PMID: 39369020 PMCID: PMC11455930 DOI: 10.1038/s41598-024-73700-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/19/2024] [Indexed: 10/07/2024] Open
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental disorders characterized by social, behavioral, and cognitive impairments. Several comorbidities, including gastrointestinal (GI) dysregulations, are frequently reported in ASD children. Although studies in animals have shown the crucial role of the microbiota in key aspects of neurodevelopment, there is currently no consensus on how the alteration of microbial composition affects the pathogenesis of ASD. Moreover, disruption of the gut-brain axis (GBA) has been reported in ASD although with limited studies conducted on the Mediterranean population. In our study, we aimed to investigate gut microbiota composition in Lebanese ASD subjects, their unaffected siblings, and a control group from various regions in Lebanon using the 16 S-rRNA sequencing (NGS). Our study revealed a lower abundance of Turicibacter and a significant enrichment on Proteobacteria in the ASD and siblings' groups compared to the controls, indicating that gut microbiota is probably affected by dietary habits, living conditions together with host genetic factors. The study also showed evidence of changes in the gut microbiome of ASD children compared to their siblings and the unrelated control. Bacteroidetes revealed a lower abundance in the ASD group compared to controls and siblings, conversely, Catenibacterium and Tenericutes revealed an increased abundance in the ASD group. Notably, our study identifies alterations in the abundance of Turicibacter and Catenibacterium in ASD children suggesting a possible link between these bacterial taxa and ASD and contributing to the growing body of evidence linking the microbiome to ASD.
Collapse
Affiliation(s)
- Perla Gerges
- Faculty of Arts and Sciences, Holy Spirit University of Kaslik (USEK), P.O. Box 446, Jounieh, Lebanon
| | | | - Tania Bitar
- Faculty of Arts and Sciences, Holy Spirit University of Kaslik (USEK), P.O. Box 446, Jounieh, Lebanon.
| | - Abbas Alameddine
- North Autism Center (NAC), Zgharta, 1304, Lebanon
- Department of Psychiatry, Hôtel-Dieu de France Hospital, A. Naccache Avenue - Achrafieh, PO Box 166830, Beirut, Lebanon
| | - Georges Nemer
- Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| | - Walid Hleihel
- Faculty of Arts and Sciences, Holy Spirit University of Kaslik (USEK), P.O. Box 446, Jounieh, Lebanon
| |
Collapse
|
39
|
Alba C, Herranz C, Monroy MA, Aragón A, Jurado R, Díaz-Regañón D, Sánchez C, Tolín M, Miranda C, Gómez-Taylor B, Sempere F, Álvarez-Calatayud G, Rodríguez JM. Metataxonomic and Immunological Analysis of Feces from Children with or without Phelan-McDermid Syndrome. Microorganisms 2024; 12:2006. [PMID: 39458315 PMCID: PMC11509408 DOI: 10.3390/microorganisms12102006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Phelan-McDermid syndrome (PMS) is a neurodevelopmental disorder characterized by a developmental delay and autism spectrum disorder (ASD)-like behaviors. Emerging research suggests a link between gut microbiota and neuropsychiatric conditions, including PMS. This study aimed to investigate the fecal microbiota and immune profiles of children with PMS compared to healthy controls. Fecal samples were collected from children diagnosed with PMS and age-matched healthy controls. The bacterial composition was analyzed using 16S rRNA gene sequencing, while short-chain fatty acids (SCFAs) were quantified through gas chromatography. Immunological profiling was conducted using a multiplex cytokine assay. Significant differences were observed in the gut microbiota composition between PMS patients and controls, including a lower abundance of key bacterial genera such as Faecalibacterium and Agathobacter in PMS patients. SCFA levels were also reduced in PMS patients. Immunological analysis revealed higher levels of several pro-inflammatory cytokines in the PMS group, although these differences were not statistically significant. The findings indicate that children with PMS have distinct gut microbiota and SCFA profiles, which may contribute to the gastrointestinal and neurodevelopmental symptoms observed in this syndrome. These results suggest potential avenues for microbiota-targeted therapies in PMS.
Collapse
Affiliation(s)
- Claudio Alba
- Department Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (D.D.-R.); (J.M.R.)
- Instituto Pluridisciplinar, Complutense University of Madrid, 28040 Madrid, Spain; (A.A.); (R.J.)
| | - Carmen Herranz
- Department Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (D.D.-R.); (J.M.R.)
- Instituto Pluridisciplinar, Complutense University of Madrid, 28040 Madrid, Spain; (A.A.); (R.J.)
| | | | - Alberto Aragón
- Instituto Pluridisciplinar, Complutense University of Madrid, 28040 Madrid, Spain; (A.A.); (R.J.)
- Department Galenic Pharmacy and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Rubén Jurado
- Instituto Pluridisciplinar, Complutense University of Madrid, 28040 Madrid, Spain; (A.A.); (R.J.)
- Department Galenic Pharmacy and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain
| | - David Díaz-Regañón
- Department Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (D.D.-R.); (J.M.R.)
| | - César Sánchez
- Departamento de Nutrición Humana, Universidad Católica de Valencia, 46001 Valencia, Spain; (C.S.); (M.T.); (C.M.); (B.G.-T.); (F.S.)
| | - Mar Tolín
- Departamento de Nutrición Humana, Universidad Católica de Valencia, 46001 Valencia, Spain; (C.S.); (M.T.); (C.M.); (B.G.-T.); (F.S.)
| | - Carmen Miranda
- Departamento de Nutrición Humana, Universidad Católica de Valencia, 46001 Valencia, Spain; (C.S.); (M.T.); (C.M.); (B.G.-T.); (F.S.)
| | - Bárbara Gómez-Taylor
- Departamento de Nutrición Humana, Universidad Católica de Valencia, 46001 Valencia, Spain; (C.S.); (M.T.); (C.M.); (B.G.-T.); (F.S.)
| | - Francisca Sempere
- Departamento de Nutrición Humana, Universidad Católica de Valencia, 46001 Valencia, Spain; (C.S.); (M.T.); (C.M.); (B.G.-T.); (F.S.)
| | | | - Juan M. Rodríguez
- Department Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (D.D.-R.); (J.M.R.)
- Instituto Pluridisciplinar, Complutense University of Madrid, 28040 Madrid, Spain; (A.A.); (R.J.)
| |
Collapse
|
40
|
Ignatiou A, Pitsouli C. Host-diet-microbiota interplay in intestinal nutrition and health. FEBS Lett 2024; 598:2482-2517. [PMID: 38946050 DOI: 10.1002/1873-3468.14966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
The intestine is populated by a complex and dynamic assortment of microbes, collectively called gut microbiota, that interact with the host and contribute to its metabolism and physiology. Diet is considered a key regulator of intestinal microbiota, as ingested nutrients interact with and shape the resident microbiota composition. Furthermore, recent studies underscore the interplay of dietary and microbiota-derived nutrients, which directly impinge on intestinal stem cells regulating their turnover to ensure a healthy gut barrier. Although advanced sequencing methodologies have allowed the characterization of the human gut microbiome, mechanistic studies assessing diet-microbiota-host interactions depend on the use of genetically tractable models, such as Drosophila melanogaster. In this review, we first discuss the similarities between the human and fly intestines and then we focus on the effects of diet and microbiota on nutrient-sensing signaling cascades controlling intestinal stem cell self-renewal and differentiation, as well as disease. Finally, we underline the use of the Drosophila model in assessing the role of microbiota in gut-related pathologies and in understanding the mechanisms that mediate different whole-body manifestations of gut dysfunction.
Collapse
Affiliation(s)
- Anastasia Ignatiou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Chrysoula Pitsouli
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
41
|
Bjørklund G, Meguid NA, Hemimi M, Sahakyan E, Fereshetyan K, Yenkoyan K. The Role of Dietary Peptides Gluten and Casein in the Development of Autism Spectrum Disorder: Biochemical Perspectives. Mol Neurobiol 2024; 61:8144-8155. [PMID: 38472652 DOI: 10.1007/s12035-024-04099-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
This paper examines the role of dietary peptides gluten and casein in modulating brain function in individuals with autism spectrum disorder (ASD) from a biochemical perspective. Neurotransmitter systems and neural networks are crucial for brain function, and alterations at the biochemical level can contribute to the characteristic symptoms and behaviors of ASD. The paper explores how dietary peptides influence neurotransmitter systems and neural networks, highlighting their potential as interventions to improve brain function in ASD. The evidence suggests that dietary peptides can impact neurotransmitter synthesis, release, and receptor interactions, disrupting the balance of neurotransmitter systems and affecting neural network function. The findings underscore the potential of dietary interventions in modulating brain function in ASD and call for further research to elucidate the underlying mechanisms and optimize clinical practice. Considering individual dietary sensitivities and preferences, personalized dietary approaches may be necessary for optimal outcomes. Dietary interventions' timing, duration, and integration with other evidence-based treatments are crucial considerations. Safety considerations and regular monitoring are important to ensure the implementation of dietary interventions safely and effectively.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo i Rana, Norway.
| | - Nagwa A Meguid
- Research on Children with Special Needs Department, National Research Centre, Giza, Egypt
- CONEM Egypt Child Brain Research Group, National Research Centre, Giza, Egypt
| | - Maha Hemimi
- Research on Children with Special Needs Department, National Research Centre, Giza, Egypt
| | - Elen Sahakyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, 2 Koryun, 0025, Yerevan, Armenia
- Department of Pharmacy, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Katarine Fereshetyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, 2 Koryun, 0025, Yerevan, Armenia
- Department of Biochemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Konstantin Yenkoyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, 2 Koryun, 0025, Yerevan, Armenia.
- Department of Biochemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia.
| |
Collapse
|
42
|
Yu R, Hafeez R, Ibrahim M, Alonazi WB, Li B. The complex interplay between autism spectrum disorder and gut microbiota in children: A comprehensive review. Behav Brain Res 2024; 473:115177. [PMID: 39098397 DOI: 10.1016/j.bbr.2024.115177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Autism spectrum disorder (ASD) is characterized by defects in social communication and interaction along with restricted interests and/or repetitive behavior. Children with ASD often also experience gastrointestinal (GI) problems in fact incidence of GI problems in ASD is estimated up to 80 percent. Intestinal microbiota, which is a collection of trillions of microorganisms both beneficial and potentially harmful bacteria living inside the gut, has been considered one of the key elements of gut disorders. The goal of this review is to explore potential link between gut microbiota and ASD in children, based on the recently available data. This review discusses recent advances in this rapidly expanding area of neurodevelopmental disorders, which focuses on what is known about the changes in composition of gut bacteria in children with ASD, exploration of possible mechanisms via which gut microbiota might influence the brain and thus lead to appearance of ASD symptoms, as well as potential treatments that involve modulation of gut flora to improve symptoms in children with ASD, i.e., probiotics, postbiotics or changes in the diet. Of course, it's important to keep in mind inherent difficulties in proving of existence of causal relationships between gut bacteria and ASD. There are significant gaps in understanding of the mechanism of gut-brain axis and the mechanisms that underlie ASD. Standardized approaches for research in this area are needed. This review would provide an overview of this exciting emerging field of research.
Collapse
Affiliation(s)
- Rongrong Yu
- College of Education, Zhejiang University of Technology, Hangzhou 310023, China.
| | - Rahila Hafeez
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Ibrahim
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Wadi B Alonazi
- Health Administration Department, College of Business Administration, King Saud University, Riyadh, Saudi Arabia
| | - Bin Li
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
43
|
Lin CH, Zeng T, Lu CW, Li DY, Liu YY, Li BM, Chen SQ, Deng YH. Efficacy and safety of Bacteroides fragilis BF839 for pediatric autism spectrum disorder: a randomized clinical trial. Front Nutr 2024; 11:1447059. [PMID: 39290561 PMCID: PMC11407114 DOI: 10.3389/fnut.2024.1447059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Background The clinical utility of Bacteroides fragilis in treating autism spectrum disorder (ASD) remains unclear. Therefore, this randomized, double-blind, placebo-controlled study aimed to explore the therapeutic effects and safety of B. fragilis BF839 in the treatment of pediatric ASD. Methods We examined 60 children aged 2-10 years diagnosed with ASD, and participants received either BF839 powder (10 g/bar with ≥106 CFU/bar of viable bacteria, two bars/day) or placebo for 16 weeks. The primary outcomes was Autism Behavior Checklist (ABC) score. The secondary outcomes were Childhood Autism Rating Scale (CARS), Social Responsiveness Scale (SRS), Normal Development of Social Skills from Infants to Junior High School Children (S-M), Gastrointestinal Symptom Rating Scale (GSRS) scores, and fecal microbiome composition. Assessments were performed on day 0 and at weeks 8 and 16. Results Compared with the placebo group, the BF839 group showed significant improvement in the ABC body and object use scores at week 16, which was more pronounced in children with ASD aged <4 years. Among children with a baseline CARS score ≥30, the BF839 group showed significant improvements at week 16 in the ABC total score, ABC body and object use score, CARS score, and GSRS score compared to the placebo group. Only two patients (6.67%) in the BF839 group experienced mild diarrhea. Compared with baseline and placebo group levels, the BF839 group showed a significant post-intervention increase in abundance of bifidobacteria and change in the metabolic function of neuroactive compounds encoded by intestinal microorganisms. Conclusion BF839 significantly and safely improved abnormal behavior and gastrointestinal symptoms in children with ASD.
Collapse
Affiliation(s)
- Chu-Hui Lin
- Department of Clinical Nutrition, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ting Zeng
- Department of Clinical Nutrition, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cui-Wei Lu
- Medical Administration College, Guangzhou Medical University, Guangzhou, China
| | - De-Yang Li
- Medical Administration College, Guangzhou Medical University, Guangzhou, China
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Yi-Ying Liu
- Weierkang Specialist Outpatient Department, Guangzhou, China
| | - Bing-Mei Li
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Sheng-Qiang Chen
- Medical Administration College, Guangzhou Medical University, Guangzhou, China
| | - Yu-Hong Deng
- Department of Clinical Nutrition, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| |
Collapse
|
44
|
Zarimeidani F, Rahmati R, Mostafavi M, Darvishi M, Khodadadi S, Mohammadi M, Shamlou F, Bakhtiyari S, Alipourfard I. Gut Microbiota and Autism Spectrum Disorder: A Neuroinflammatory Mediated Mechanism of Pathogenesis? Inflammation 2024:10.1007/s10753-024-02061-y. [PMID: 39093342 DOI: 10.1007/s10753-024-02061-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/28/2024] [Accepted: 05/21/2024] [Indexed: 08/04/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in social communication and behavior, frequently accompanied by restricted and repetitive patterns of interests or activities. The gut microbiota has been implicated in the etiology of ASD due to its impact on the bidirectional communication pathway known as the gut-brain axis. However, the precise involvement of the gut microbiota in the causation of ASD is unclear. This study critically examines recent evidence to rationalize a probable mechanism in which gut microbiota symbiosis can induce neuroinflammation through intermediator cytokines and metabolites. To develop ASD, loss of the integrity of the intestinal barrier, activation of microglia, and dysregulation of neurotransmitters are caused by neural inflammatory factors. It has emphasized the potential role of neuroinflammatory intermediates linked to gut microbiota alterations in individuals with ASD. Specifically, cytokines like brain-derived neurotrophic factor, calprotectin, eotaxin, and some metabolites and microRNAs have been considered etiological biomarkers. We have also overviewed how probiotic trials may be used as a therapeutic strategy in ASD to reestablish a healthy balance in the gut microbiota. Evidence indicates neuroinflammation induced by dysregulated gut microbiota in ASD, yet there is little clarity based on analysis of the circulating immune profile. It deems the repair of microbiota load would lower inflammatory chaos in the GI tract, correct neuroinflammatory mediators, and modulate the neurotransmitters to attenuate autism. The interaction between the gut and the brain, along with alterations in microbiota and neuroinflammatory biomarkers, serves as a foundational background for understanding the etiology, diagnosis, prognosis, and treatment of autism spectrum disorder.
Collapse
Affiliation(s)
- Fatemeh Zarimeidani
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rahem Rahmati
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehrnaz Mostafavi
- Faculty of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Darvishi
- School of Aerospace and Subaquatic Medicine, Infectious Diseases & Tropical Medicine Research Center (IDTMC), AJA University of Medical Sciences, Tehran, Iran
| | - Sanaz Khodadadi
- Student Research Committee, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mahya Mohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farid Shamlou
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Salar Bakhtiyari
- Feinberg Cardiovascular and Renal Research Institute, North Western University, Chicago. Illinois, USA
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Marcin Kasprzaka 44/52, 01-224, Warsaw, Poland.
| |
Collapse
|
45
|
Reeves KD, Figuereo YF, Weis VG, Hsu FC, Engevik MA, Krigsman A, Walker SJ. Mapping the geographical distribution of the mucosa-associated gut microbiome in GI-symptomatic children with autism spectrum disorder. Am J Physiol Gastrointest Liver Physiol 2024; 327:G217-G234. [PMID: 38887795 PMCID: PMC11637567 DOI: 10.1152/ajpgi.00101.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/16/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by cognitive, behavioral, and communication impairments. In the past few years, it has been proposed that alterations in the gut microbiota may contribute to an aberrant communication between the gut and brain in children with ASD. Consistent with this notion, several studies have demonstrated that children with ASD have an altered fecal microbiota compared with typically developing (TD) children. However, it is unclear where along the length of the gastrointestinal (GI) tract these alterations in microbial communities occur. In addition, the variation between specific mucosa-associated communities remains unknown. To address this gap in knowledge of the microbiome associated with ASD, biopsies from the antrum, duodenum, ileum, right colon, and rectum of children with ASD and age- and sex-matched TD children were examined by 16S rRNA sequencing. We observed an overall elevated abundance of Bacillota and Bacteroidota and a decreased abundance of Pseudomonadota in all GI tract regions of both male and female children with ASD compared with TD children. Further analysis at the genera level revealed unique differences in the microbiome in the different regions of the GI tract in children with ASD compared with TD children. We also observed sex-specific differences in the gut microbiota composition in children with ASD. These data indicate that the microbiota of children with ASD is altered in multiple regions of the GI tract and that different anatomic locations have unique alterations in mucosa-associated bacterial genera.NEW & NOTEWORTHY Analysis in stool samples has shown gut microbiota alterations in children with autism spectrum disorder (ASD) compared with typically developing (TD) children. However, it is unclear which segment(s) of the gut exhibit alterations in microbiome composition. In this study, we examined microbiota composition along the gastrointestinal (GI) tract in the stomach, duodenum, ileum, right colon, and rectum. We found site-specific and sex-specific differences in the gut microbiota of children with ASD, compared with controls.
Collapse
Affiliation(s)
- Kimberly D Reeves
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem North Carolina, United States
| | - Yosauri F Figuereo
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Victoria G Weis
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Melinda A Engevik
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Arthur Krigsman
- Pediatric Gastroenterology Resources, Georgetown, Texas, United States
| | - Stephen J Walker
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| |
Collapse
|
46
|
Wu Y, Su Q. Harnessing the Gut Microbiome: To What Extent Can Pre-/Probiotics Alleviate Immune Activation in Autism Spectrum Disorder? Nutrients 2024; 16:2382. [PMID: 39125263 PMCID: PMC11314583 DOI: 10.3390/nu16152382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Children diagnosed with autism spectrum disorder (ASD) are at an increased risk of experiencing gastrointestinal (GI) discomfort, which has been linked to dysfunctions in the microbiome-gut-brain axis. The bidirectional communication between gut and brain plays a crucial role in the overall health of individuals, and alterations in the gut microbiome can contribute to immune activation and gut-brain dysfunction in ASD. Despite the limited and controversial results of pre-/probiotic applications in ASD, this review comprehensively maps the association between ASD clinical symptoms and specific bacterial taxa and evaluates the efficacy of pre-/probiotics in modulating microbiota composition, reducing inflammatory biomarkers, alleviating difficulties in GI distress, sleep problems, core and other ASD-associated symptoms, as well as relieving parental concerns, separately, in individuals with ASD. Beyond simply targeting core ASD symptoms, this review highlights the potential of pre-/probiotic supplementations as a strategy to modulate gut homeostasis and immune response, and to delineate the potential mechanisms by which its direct or mediating effects can alleviate gut-brain dysfunction and poor nutritional status in ASD management. Further well-designed randomized controlled trials are needed to strengthen the existing evidence and establish optimal protocols for the use of pre-/probiotics in the context of ASD.
Collapse
Affiliation(s)
- Yuqi Wu
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qi Su
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
47
|
Yang C, Xiao H, Zhu H, Du Y, Wang L. Revealing the gut microbiome mystery: A meta-analysis revealing differences between individuals with autism spectrum disorder and neurotypical children. Biosci Trends 2024; 18:233-249. [PMID: 38897955 DOI: 10.5582/bst.2024.01123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The brain-gut axis intricately links gut microbiota (GM) dysbiosis to the development or worsening of autism spectrum disorder (ASD). However, the precise GM composition in ASD and the effectiveness of probiotics are unclear. To address this, we performed a thorough meta-analysis of 28 studies spanning PubMed, PsycINFO, Web of Science, Scopus, and MEDLINE, involving 1,256 children with ASD and 1042 neurotypical children, up to February 2024. Using Revman 5.3, we analyzed the relative abundance of 8 phyla and 64 genera. While individuals with ASD did not exhibit significant differences in included phyla, they exhibited elevated levels of Parabacteroides, Anaerostipes, Faecalibacterium, Clostridium, Dorea, Phascolarctobacterium, Lachnoclostridium, Catenibacterium, and Collinsella along with reduced percentages of Barnesiella, Odoribacter, Paraprevotella, Blautia, Turicibacter, Lachnospira, Pseudomonas, Parasutterella, Haemophilus, and Bifidobacterium. Notably, discrepancies in Faecalibacterium, Clostridium, Dorea, Phascolarctobacterium, Catenibacterium, Odoribacter, and Bifidobacterium persisted even upon systematic exclusion of individual studies. Consequently, the GM of individuals with ASD demonstrates an imbalance, with potential increases or decreases in both beneficial and harmful bacteria. Therefore, personalized probiotic interventions tailored to ASD specifics are imperative, rather than a one-size-fits-all approach.
Collapse
Affiliation(s)
- Changjiang Yang
- Faculty of Education, East China Normal University, Shanghai, China
| | - Hongli Xiao
- Faculty of Education, East China Normal University, Shanghai, China
| | - Han Zhu
- Faculty of Education, East China Normal University, Shanghai, China
| | - Yijie Du
- Qingpu Traditional Chinese Medicine Hospital, Shanghai, China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| |
Collapse
|
48
|
Evenepoel M, Daniels N, Moerkerke M, Van de Vliet M, Prinsen J, Tuerlinckx E, Steyaert J, Boets B, Alaerts K, Joossens M. Oral microbiota in autistic children: Diagnosis-related differences and associations with clinical characteristics. Brain Behav Immun Health 2024; 38:100801. [PMID: 38882715 PMCID: PMC11180306 DOI: 10.1016/j.bbih.2024.100801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
Similar to the gut microbiome, oral microbiome compositions have been suggested to play an important role in the etiology of autism. However, empirical research on how variations in the oral microbiome relate to clinical-behavioral difficulties associated with autism remains sparse. Furthermore, it is largely unknown how potentially confounding lifestyle variables, such as oral health and nutrition, may impact these associations. To fill this gap, the current study examined diagnosis-related differences in oral microbiome composition between 80 school-aged autistic children (8-12 years; 64 boys, 16 girls) versus 40 age-matched typically developing peers (32 boys, 8 girls). In addition, associations with individual differences in social functioning (SRS-2), repetitive behavior (RBS-R) and anxiety (SCARED) were explored, as well as the impact of several lifestyle variables regarding nutrition and oral health. Results provide important indications that the bacterial genera Solobacterium, Stomatobaculum, Ruminococcaceae UCG.014, Tannerella and Campylobacter were significantly more abundant in autistic compared to non-autistic children. Furthermore, the former four bacteria that were significantly more abundant in the autistic children showed significant associations with parent-reported social difficulties, repetitive and restrictive behavior and with parent-reported anxiety-like behavior. Importantly, associations among oral microbiome and quantitative diagnostic characteristics were not significantly driven by differences in lifestyle variables. This exploratory study reveals significant differences in oral microbiome composition between autistic and non-autistic children, even while controlling for potential confounding lifestyle variables. Furthermore, the significant associations with clinical characteristics suggest that individual differences in microbiome composition might be involved in shaping the clinical phenotype of autism. However, these associations warrant further exploration of the oral microbiome's potential beyond the oral cavity and specifically with respect to neuropsychiatric conditions.
Collapse
Affiliation(s)
- Margaux Evenepoel
- KU Leuven, Department of Rehabilitation Sciences, Research Group for Neurorehabilitation, Leuven, Belgium
- Ghent University, Department of Biochemistry and Microbiology, Laboratory of Microbiology, Ghent, Belgium
- KU Leuven, Leuven Autism Research (LAuRes), Leuven, Belgium
| | - Nicky Daniels
- KU Leuven, Department of Rehabilitation Sciences, Research Group for Neurorehabilitation, Leuven, Belgium
- KU Leuven, Leuven Autism Research (LAuRes), Leuven, Belgium
| | - Matthijs Moerkerke
- KU Leuven, Leuven Autism Research (LAuRes), Leuven, Belgium
- KU Leuven, Department of Neurosciences, Center for Developmental Psychiatry, Leuven, Belgium
| | - Michiel Van de Vliet
- Ghent University, Department of Biochemistry and Microbiology, Laboratory of Microbiology, Ghent, Belgium
| | - Jellina Prinsen
- KU Leuven, Department of Rehabilitation Sciences, Research Group for Neurorehabilitation, Leuven, Belgium
- KU Leuven, Leuven Autism Research (LAuRes), Leuven, Belgium
| | - Elise Tuerlinckx
- KU Leuven, Department of Rehabilitation Sciences, Research Group for Neurorehabilitation, Leuven, Belgium
- KU Leuven, Leuven Autism Research (LAuRes), Leuven, Belgium
| | - Jean Steyaert
- KU Leuven, Leuven Autism Research (LAuRes), Leuven, Belgium
- KU Leuven, Department of Neurosciences, Center for Developmental Psychiatry, Leuven, Belgium
| | - Bart Boets
- KU Leuven, Leuven Autism Research (LAuRes), Leuven, Belgium
- KU Leuven, Department of Neurosciences, Center for Developmental Psychiatry, Leuven, Belgium
| | - Kaat Alaerts
- KU Leuven, Department of Rehabilitation Sciences, Research Group for Neurorehabilitation, Leuven, Belgium
- KU Leuven, Leuven Autism Research (LAuRes), Leuven, Belgium
| | - Marie Joossens
- Ghent University, Department of Biochemistry and Microbiology, Laboratory of Microbiology, Ghent, Belgium
| |
Collapse
|
49
|
Zeng P, Zhang CZ, Fan ZX, Yang CJ, Cai WY, Huang YF, Xiang ZJ, Wu JY, Zhang J, Yang J. Effect of probiotics on children with autism spectrum disorders: a meta-analysis. Ital J Pediatr 2024; 50:120. [PMID: 38902804 PMCID: PMC11191217 DOI: 10.1186/s13052-024-01692-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Researches have found that alteration of intestinal flora may be closely related to the development of autism spectrum disorder (ASD). However, whether probiotics supplementation has a protective effect on ASD remains controversial. This meta-analysis aimed to analyze the outcome of probiotics in the treatment of ASD children. METHODS The Pubmed, Cochrane Library, Web of Science and Embase were searched until Sep 2022. Randomized controlled trials (RCTs) relevant to the probiotics and placebo treatment on ASD children were screened. Quality assessment of the included RCTs was evaluated by the Cochrane collaboration's tool. The primary outcomes were ASD assessment scales, including ABC (aberrant behavior checklist) and CBCL (child behavior checklist) for evaluating the behavior improvement, SRS (social responsiveness scale) for social assessment, DQ (developmental quotient) for physical and mental development and CGI-I (clinical global impression improvement) for overall improvement. The secondary outcome was total 6-GSI (gastrointestinal severity index). RESULTS In total, 6 RCTs from 6 studies with 302 children were included in the systemic review. Total 6-GSI (MD=-0.59, 95%CI [-1.02,-0.17], P < 0.05) decreased significantly after oral administration of probiotics. Whereas, there was no statistical difference in ABC, CBCL, SRS, DQ and CGI-I between probiotics and placebo groups in ASD children. CONCLUSION Probiotics treatment could improve gastrointestinal symptoms, but there was no significant improvement in ASD.
Collapse
Affiliation(s)
- Ping Zeng
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
- Institute of Cardiovascular Diseases, Three Gorges University, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease and HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Cheng-Zhi Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
- Institute of Cardiovascular Diseases, Three Gorges University, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease and HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Zhi-Xing Fan
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
- Institute of Cardiovascular Diseases, Three Gorges University, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease and HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Chao-Jun Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
- Institute of Cardiovascular Diseases, Three Gorges University, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease and HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Wan-Yin Cai
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
- Institute of Cardiovascular Diseases, Three Gorges University, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease and HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Yi-Fan Huang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
- Institute of Cardiovascular Diseases, Three Gorges University, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease and HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Zu-Jin Xiang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
- Institute of Cardiovascular Diseases, Three Gorges University, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease and HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jing-Yi Wu
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
- Institute of Cardiovascular Diseases, Three Gorges University, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease and HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jing Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China.
- Institute of Cardiovascular Diseases, Three Gorges University, Yichang, China.
- Hubei Key Laboratory of Ischemic Cardiovascular Disease and HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China.
| | - Jian Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China.
- Institute of Cardiovascular Diseases, Three Gorges University, Yichang, China.
- Hubei Key Laboratory of Ischemic Cardiovascular Disease and HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China.
| |
Collapse
|
50
|
Zheng L, Jiao Y, Zhong H, Tan Y, Yin Y, Liu Y, Liu D, Wu M, Wang G, Huang J, Wang P, Qin M, Wang M, Xiao Y, Lv T, Luo Y, Hu H, Hou ST, Kui L. Human-derived fecal microbiota transplantation alleviates social deficits of the BTBR mouse model of autism through a potential mechanism involving vitamin B 6 metabolism. mSystems 2024; 9:e0025724. [PMID: 38780265 PMCID: PMC11237617 DOI: 10.1128/msystems.00257-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental condition characterized by social communication deficiencies and stereotypic behaviors influenced by hereditary and/or environmental risk factors. There are currently no approved medications for treating the core symptoms of ASD. Human fecal microbiota transplantation (FMT) has emerged as a potential intervention to improve autistic symptoms, but the underlying mechanisms are not fully understood. In this study, we evaluated the effects of human-derived FMT on behavioral and multi-omics profiles of the BTBR mice, an established model for ASD. FMT effectively alleviated the social deficits in the BTBR mice and normalized their distinct plasma metabolic profile, notably reducing the elevated long-chain acylcarnitines. Integrative analysis linked these phenotypic changes to specific Bacteroides species and vitamin B6 metabolism. Indeed, vitamin B6 supplementation improved the social behaviors in BTBR mice. Collectively, these findings shed new light on the interplay between FMT and vitamin B6 metabolism and revealed a potential mechanism underlying the therapeutic role of FMT in ASD.IMPORTANCEAccumulating evidence supports the beneficial effects of human fecal microbiota transplantation (FMT) on symptoms associated with autism spectrum disorder (ASD). However, the precise mechanism by which FMT induces a shift in the microbiota and leads to symptom improvement remains incompletely understood. This study integrated data from colon-content metagenomics, colon-content metabolomics, and plasma metabolomics to investigate the effects of FMT treatment on the BTBR mouse model for ASD. The analysis linked the amelioration of social deficits following FMT treatment to the restoration of mitochondrial function and the modulation of vitamin B6 metabolism. Bacterial species and compounds with beneficial roles in vitamin B6 metabolism and mitochondrial function may further contribute to improving FMT products and designing novel therapies for ASD treatment.
Collapse
Affiliation(s)
- Lifeng Zheng
- Brain Research Centre and Department of Neuroscience, Southern University of Science and Technology, Shenzhen, China
- Xbiome Co. Ltd., Shenzhen, China
| | - Yinming Jiao
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Haolin Zhong
- Brain Research Centre and Department of Neuroscience, Southern University of Science and Technology, Shenzhen, China
| | - Yan Tan
- Xbiome Co. Ltd., Shenzhen, China
| | | | | | - Ding Liu
- Xbiome Co. Ltd., Shenzhen, China
| | - Manli Wu
- Xbiome Co. Ltd., Shenzhen, China
| | - Guoyun Wang
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | | | - Ping Wang
- Shenzhen Institute for Drug Control, Shenzhen, China
| | - Meirong Qin
- Shenzhen Institute for Drug Control, Shenzhen, China
| | - Mingbang Wang
- Microbiome Therapy Center, South China Hospital, Medical School, Shenzhen University, Shenzhen, China
- Shanghai Key Laboratory of Birth Defects, Division of Neonatology, Children’s Hospital of Fudan University, National Center for Children’s Health, Shanghai, China
| | - Yang Xiao
- Department of Hematology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Tiying Lv
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yangzi Luo
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Han Hu
- Xbiome Co. Ltd., Shenzhen, China
| | - Sheng-Tao Hou
- Brain Research Centre and Department of Neuroscience, Southern University of Science and Technology, Shenzhen, China
| | - Ling Kui
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| |
Collapse
|