1
|
Kirita K, Futagami S, Nakamura K, Agawa S, Ueki N, Higuchi K, Habiro M, Kawawa R, Kato Y, Tada T, Iwakiri K. Combination of artificial intelligence endoscopic diagnosis and Kimura-Takemoto classification determined by endoscopic experts may effectively evaluate the stratification of gastric atrophy in post-eradication status. DEN OPEN 2025; 5:e70029. [PMID: 39534404 PMCID: PMC11555298 DOI: 10.1002/deo2.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
Background Since it is difficult for expert endoscopists to diagnose early gastric cancer in post-eradication status, it may be critical to evaluate the stratification of high-risk groups using the advance of gastric atrophy or intestinal metaplasia. We tried to determine whether the combination of endoscopic artificial intelligence (AI) diagnosis for the evaluation of gastric atrophy could be a useful tool in both pre- and post-eradication status. Methods 270 Helicobacter pylori-positive outpatients (Study I) were enrolled and Study II was planned to compare patients (n = 72) with pre-eradication therapy with post-eradication therapy. Assessment of endoscopic appearance was evaluated by the Kyoto classification and Kimura-Takemoto classification. The trained neural network generated a continuous number between 0 and 1 for gastric atrophy. Results There were significant associations between the severity of gastric atrophy determined by AI endoscopic diagnosis and not having a regular arrangement of collecting venules in angle, visibility of vascular pattern, and mucus using Kyoto classification in H. pylori-positive gastritis. There were significant differences (p = 0.037 and p = 0.014) in the severity of gastric atrophy between the high-risk group and low-risk group based on the combination of Kimura-Takemoto classification and endoscopic AI diagnosis in pre- and post-eradication status. The area under the curve values of the severity of gastric atrophy (0.674) determined by the combination of Kimura-Takemoto classification and gastric atrophy determined by AI diagnosis was higher than that determined by Kimura-Takemoto classification alone in post-eradication status. Conclusion A combination of gastric atrophy determined by AI endoscopic diagnosis and Kimura-Takemoto classification may be a useful tool for the prediction of high-risk groups in post-eradication status.
Collapse
Affiliation(s)
- Kumiko Kirita
- Department of GastroenterologyNippon Medical School HospitalGraduate School of MedicineTokyoJapan
| | - Seiji Futagami
- Department of GastroenterologyNippon Medical School HospitalGraduate School of MedicineTokyoJapan
| | - Ken Nakamura
- Department of GastroenterologyNippon Medical School HospitalGraduate School of MedicineTokyoJapan
| | - Shuhei Agawa
- Department of GastroenterologyNippon Medical School HospitalGraduate School of MedicineTokyoJapan
| | - Nobue Ueki
- Department of GastroenterologyNippon Medical School HospitalGraduate School of MedicineTokyoJapan
| | - Kazutoshi Higuchi
- Department of GastroenterologyNippon Medical School HospitalGraduate School of MedicineTokyoJapan
| | - Mayu Habiro
- Department of GastroenterologyNippon Medical School HospitalGraduate School of MedicineTokyoJapan
| | - Rie Kawawa
- Department of GastroenterologyNippon Medical School HospitalGraduate School of MedicineTokyoJapan
| | | | | | - Katsuhiko Iwakiri
- Department of GastroenterologyNippon Medical School HospitalGraduate School of MedicineTokyoJapan
| |
Collapse
|
2
|
Jiang Y, Yan H, Cui J, Yang K, An Y. Artificial Intelligence in Endoscopy for Predicting Helicobacter pylori Infection: A Systematic Review and Meta-Analysis. Helicobacter 2025; 30:e70026. [PMID: 40116054 DOI: 10.1111/hel.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/23/2025]
Abstract
PURPOSE This meta-analysis aimed to assess the diagnostic performance of artificial intelligence (AI) based on endoscopy for detecting Helicobacter pylori (H. pylori) infection. METHODS A comprehensive literature search was conducted across PubMed, Embase, and Web of Science to identify relevant studies published up to January 10, 2025. The selected studies focused on the diagnostic accuracy of AI in detecting H. pylori. A bivariate random-effects model was employed to calculate pooled sensitivity and specificity, both presented with 95% confidence intervals (CIs). Study heterogeneity was assessed using the I2 statistic. RESULTS Of 604 studies identified, 16 studies (25,002 images or patients) were included. For the internal validation set, the pooled sensitivity, specificity, and area under the curve (AUC) for detecting H. pylori were 0.91 (95% CI: 0.84-0.95), 0.91 (95% CI: 0.86-0.94), and 0.96 (95% CI: 0.94-0.97), respectively. For the external validation set, the pooled sensitivity, specificity, and AUC were 0.91 (95% CI: 0.86-0.95), 0.94 (95% CI: 0.90-0.97), and 0.98 (95% CI: 0.96-0.99). For junior clinicians, the pooled sensitivity, specificity, and AUC were 0.76 (95% CI: 0.66-0.83), 0.75 (95% CI: 0.70-0.80), and 0.81 (95% CI: 0.77-0.84). For senior clinicians, the pooled sensitivity, specificity, and AUC were 0.81 (95% CI: 0.74-0.86), 0.89 (95% CI: 0.86-0.91), and 0.92 (95% CI: 0.90-0.94). CONCLUSIONS Endoscopy-based AI demonstrates higher diagnostic performance compared to both junior and senior endoscopists. However, the high heterogeneity among studies limits the strength of these findings, and further research with external validation datasets is necessary to confirm the results.
Collapse
Affiliation(s)
- Yiwen Jiang
- The First Clinical College, China Medical University, Shenyang, China
| | - Hengxu Yan
- The Second Clinical College, China Medical University, Shenyang, China
| | - Jiatong Cui
- The First Clinical College, China Medical University, Shenyang, China
| | - Kaiqiang Yang
- The First Clinical College, China Medical University, Shenyang, China
| | - Yue An
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Huang H, Li Y, Wu Y, Zhao X, Gao H, Xie X, Wu L, Zhao H, Li L, Zhang J, Chen M, Wu Q. Advances in Helicobacter pylori detection technology: From pathology-based to multi-omic based methods. Trends Analyt Chem 2025; 182:118041. [DOI: 10.1016/j.trac.2024.118041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Zou PY, Zhu JR, Zhao Z, Mei H, Zhao JT, Sun WJ, Wang GH, Chen DF, Fan LL, Lan CH. Development and application of an artificial intelligence-assisted endoscopy system for diagnosis of Helicobacter pylori infection: a multicenter randomized controlled study. BMC Gastroenterol 2024; 24:335. [PMID: 39350033 PMCID: PMC11440712 DOI: 10.1186/s12876-024-03389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND The early diagnosis and treatment of Heliobacter pylori (H.pylori) gastrointestinal infection provide significant benefits to patients. We constructed a convolutional neural network (CNN) model based on an endoscopic system to diagnose H. pylori infection, and then examined the potential benefit of this model to endoscopists in their diagnosis of H. pylori infection. MATERIALS AND METHODS A CNN neural network system for endoscopic diagnosis of H.pylori infection was established by collecting 7377 endoscopic images from 639 patients. The accuracy, sensitivity, and specificity were determined. Then, a randomized controlled study was used to compare the accuracy of diagnosis of H. pylori infection by endoscopists who were assisted or unassisted by this CNN model. RESULTS The deep CNN model for diagnosis of H. pylori infection had an accuracy of 89.6%, a sensitivity of 90.9%, and a specificity of 88.9%. Relative to the group of endoscopists unassisted by AI, the AI-assisted group had better accuracy (92.8% [194/209; 95%CI: 89.3%, 96.4%] vs. 75.6% [158/209; 95%CI: 69.7%, 81.5%]), sensitivity (91.8% [67/73; 95%CI: 85.3%, 98.2%] vs. 78.6% [44/56; 95%CI: 67.5%, 89.7%]), and specificity (93.4% [127/136; 95%CI: 89.2%, 97.6%] vs. 74.5% [114/153; 95%CI: 67.5%, 81.5%]). All of these differences were statistically significant (P < 0.05). CONCLUSION Our AI-assisted system for diagnosis of H. pylori infection has significant ability for diagnostic, and can improve the accuracy of endoscopists in gastroscopic diagnosis. TRIAL REGISTRATION This study was approved by the Ethics Committee of Daping Hospital (10/07/2020) (No.89,2020) and was registered with the Chinese Clinical Trial Registration Center (02/09/2020) ( www.chictr.org.cn ; registration number: ChiCTR2000037801).
Collapse
Affiliation(s)
- Pei-Ying Zou
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive, Malignancies, Daping Hospital, Army Medical University, Third Military Medical University), 10 Changjiang Branch Road, Chongqing, 400000, China
| | - Jian-Ru Zhu
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive, Malignancies, Daping Hospital, Army Medical University, Third Military Medical University), 10 Changjiang Branch Road, Chongqing, 400000, China
| | - Zhe Zhao
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive, Malignancies, Daping Hospital, Army Medical University, Third Military Medical University), 10 Changjiang Branch Road, Chongqing, 400000, China
| | - Hao Mei
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive, Malignancies, Daping Hospital, Army Medical University, Third Military Medical University), 10 Changjiang Branch Road, Chongqing, 400000, China
| | - Jing-Tao Zhao
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive, Malignancies, Daping Hospital, Army Medical University, Third Military Medical University), 10 Changjiang Branch Road, Chongqing, 400000, China
| | - Wen-Jing Sun
- Chongqing 13, People's Hospital, Chongqing, China
| | | | - Dong-Feng Chen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive, Malignancies, Daping Hospital, Army Medical University, Third Military Medical University), 10 Changjiang Branch Road, Chongqing, 400000, China
| | - Li-Lin Fan
- Chongqing Jiulongpo District Second People's Hospital, Chongqing, China
| | - Chun-Hui Lan
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive, Malignancies, Daping Hospital, Army Medical University, Third Military Medical University), 10 Changjiang Branch Road, Chongqing, 400000, China.
| |
Collapse
|
5
|
Hao W, Huang L, Li X, Jia H. Novel endoscopic techniques for the diagnosis of gastric Helicobacter pylori infection: a systematic review and network meta-analysis. Front Microbiol 2024; 15:1377541. [PMID: 39286347 PMCID: PMC11404567 DOI: 10.3389/fmicb.2024.1377541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 08/02/2024] [Indexed: 09/19/2024] Open
Abstract
Objective This study aimed to conduct a network meta-analysis to compare the diagnostic efficacy of diverse novel endoscopic techniques for detecting gastric Helicobacter pylori infection. Methods From inception to August 2023, literature was systematically searched across Pubmed, Embase, and Web of Science databases. Cochrane's risk of bias tool assessed the methodological quality of the included studies. Data analysis was conducted using the R software, employing a ranking chart to determine the most effective diagnostic method comprehensively. Convergence analysis was performed to assess the stability of the results. Results The study encompassed 36 articles comprising 54 observational studies, investigating 14 novel endoscopic techniques and involving 7,230 patients diagnosed with gastric H. pylori infection. Compared with the gold standard, the comprehensive network meta-analysis revealed the superior diagnostic performance of two new endoscopic techniques, Magnifying blue laser imaging endoscopy (M-BLI) and high-definition magnifying endoscopy with i-scan (M-I-SCAN). Specifically, M-BLI demonstrated the highest ranking in both sensitivity (SE) and positive predictive value (PPV), ranking second in negative predictive value (NPV) and fourth in specificity (SP). M-I-SCAN secured the top position in NPV, third in SE and SP, and fifth in PPV. Conclusion After thoroughly analyzing the ranking chart, we conclude that M-BLI and M-I-SCAN stand out as the most suitable new endoscopic techniques for diagnosing gastric H. pylori infection. Systematic review registration https://inplasy.com/inplasy-2023-11-0051/, identifier INPLASY2023110051.
Collapse
Affiliation(s)
- Wenzhe Hao
- The Graduated School, Anhui University of Chinese Medicine, Hefei, China
| | - Lin Huang
- The Graduated School, Anhui University of Chinese Medicine, Hefei, China
| | - Xuejun Li
- Department of Gastroenterology, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Hongyu Jia
- School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
6
|
Matsubayashi CO, Cheng S, Hulchafo I, Zhang Y, Tada T, Buxbaum JL, Ochiai K. Artificial intelligence for gastric cancer in endoscopy: From diagnostic reasoning to market. Dig Liver Dis 2024; 56:1156-1163. [PMID: 38763796 DOI: 10.1016/j.dld.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/21/2024]
Abstract
Recognition of gastric conditions during endoscopy exams, including gastric cancer, usually requires specialized training and a long learning curve. Besides that, the interobserver variability is frequently high due to the different morphological characteristics of the lesions and grades of mucosal inflammation. In this sense, artificial intelligence tools based on deep learning models have been developed to support physicians to detect, classify, and predict gastric lesions more efficiently. Even though a growing number of studies exists in the literature, there are multiple challenges to bring a model to practice in this field, such as the need for more robust validation studies and regulatory hurdles. Therefore, the aim of this review is to provide a comprehensive assessment of the current use of artificial intelligence applied to endoscopic imaging to evaluate gastric precancerous and cancerous lesions and the barriers to widespread implementation of this technology in clinical routine.
Collapse
Affiliation(s)
- Carolina Ogawa Matsubayashi
- Endoscopy Unit, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, University of São Paulo, São Paulo, Brasil; AI Medical Service Inc., Tokyo, Japan.
| | - Shuyan Cheng
- Department of Population Health Science, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ismael Hulchafo
- Columbia University School of Nursing, New York, NY 10032, USA
| | - Yifan Zhang
- Department of Population Health Science, Weill Cornell Medical College, New York, NY 10065, USA
| | - Tomohiro Tada
- AI Medical Service Inc., Tokyo, Japan; Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - James L Buxbaum
- Division of Gastrointestinal and Liver Diseases, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Kentaro Ochiai
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Colon and Rectal Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
7
|
Guo F, Meng H. Application of artificial intelligence in gastrointestinal endoscopy. Arab J Gastroenterol 2024; 25:93-96. [PMID: 38228443 DOI: 10.1016/j.ajg.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/06/2023] [Accepted: 12/30/2023] [Indexed: 01/18/2024]
Abstract
Endoscopy is an important method for diagnosing gastrointestinal (GI) diseases. In this study, we provide an overview of the advances in artificial intelligence (AI) technology in the field of GI endoscopy over recent years, including esophagus, stomach, large intestine, and capsule endoscopy (small intestine). AI-assisted endoscopy shows high accuracy, sensitivity, and specificity in the detection and diagnosis of GI diseases at all levels. Hence, AI will make a breakthrough in the field of GI endoscopy in the near future. However, AI technology currently has some limitations and is still in the preclinical stages.
Collapse
Affiliation(s)
- Fujia Guo
- The first Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Hua Meng
- The first Affiliated Hospital, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
8
|
Ahn JC, Shah VH. Artificial intelligence in gastroenterology and hepatology. ARTIFICIAL INTELLIGENCE IN CLINICAL PRACTICE 2024:443-464. [DOI: 10.1016/b978-0-443-15688-5.00016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Kang D, Lee K, Kim J. Diagnostic usefulness of deep learning methods for Helicobacter pylori infection using esophagogastroduodenoscopy images. JGH Open 2023; 7:875-883. [PMID: 38162866 PMCID: PMC10757494 DOI: 10.1002/jgh3.12995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/02/2023] [Accepted: 10/23/2023] [Indexed: 01/03/2024]
Abstract
Background and Aims We aimed to assess the diagnostic potential of deep convolutional neural networks (DCNNs) for detecting Helicobacter pylori infection in patients who underwent esophagogastroduodenoscopy and Campylobacter-like organism tests. Methods We categorized a total of 13,071 images of various gastric sub-areas and employed five pretrained DCNN architectures: ResNet-101, Xception, Inception-v3, InceptionResnet-v2, and DenseNet-201. Additionally, we created an ensemble model by combining the output probabilities of the best models. We used images of different sub-areas of the stomach for training and evaluated the performance of our models. The diagnostic metrics assessed included area under the curve (AUC), specificity, accuracy, positive predictive value, and negative predictive value. Results When training included images from all sub-areas of the stomach, our ensemble model demonstrated the highest AUC (0.867), with specificity at 78.44%, accuracy at 80.28%, positive predictive value at 82.66%, and negative predictive value at 77.37%. Significant differences were observed in AUC between the ensemble model and the individual DCNN models. When training utilized images from each sub-area separately, the AUC values for the antrum, cardia and fundus, lower body greater curvature and lesser curvature, and upper body greater curvature and lesser curvature regions were 0.842, 0.826, 0.718, and 0.858, respectively, when the ensemble model was used. Conclusions Our study demonstrates that the DCNN model, designed for automated image analysis, holds promise for the evaluation and diagnosis of Helicobacter pylori infection.
Collapse
Affiliation(s)
- Daesung Kang
- Department of Healthcare Information TechnologyInje UniversityGimhaeRepublic of Korea
| | - Kayoung Lee
- Department of Family medicine, Busan Paik HospitalInje University College of MedicineBusanRepublic of Korea
| | - Jinseung Kim
- Department of Family medicine, Busan Paik HospitalInje University College of MedicineBusanRepublic of Korea
| |
Collapse
|
10
|
Shen Y, Chen A, Zhang X, Zhong X, Ma A, Wang J, Wang X, Zheng W, Sun Y, Yue L, Zhang Z, Zhang X, Lin N, Kim JJ, Du Q, Liu J, Hu W. Real-Time Evaluation of Helicobacter pylori Infection by Convolution Neural Network During White-Light Endoscopy: A Prospective, Multicenter Study (With Video). Clin Transl Gastroenterol 2023; 14:e00643. [PMID: 37800683 PMCID: PMC10589579 DOI: 10.14309/ctg.0000000000000643] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023] Open
Abstract
INTRODUCTION Convolutional neural network during endoscopy may facilitate evaluation of Helicobacter pylori infection without obtaining gastric biopsies. The aim of the study was to evaluate the diagnosis accuracy of a computer-aided decision support system for H. pylori infection (CADSS-HP) based on convolutional neural network under white-light endoscopy. METHODS Archived video recordings of upper endoscopy with white-light examinations performed at Sir Run Run Shaw Hospital (January 2019-September 2020) were used to develop CADSS-HP. Patients receiving endoscopy were prospectively enrolled (August 2021-August 2022) from 3 centers to calculate the diagnostic property. Accuracy of CADSS-HP for H. pylori infection was also compared with endoscopic impression, urea breath test (URT), and histopathology. H. pylori infection was defined by positive test on histopathology and/or URT. RESULTS Video recordings of 599 patients who received endoscopy were used to develop CADSS-HP. Subsequently, 456 patients participated in the prospective evaluation including 189 (41.4%) with H. pylori infection. With a threshold of 0.5, CADSS-HP achieved an area under the curve of 0.95 (95% confidence interval [CI], 0.93-0.97) with sensitivity and specificity of 91.5% (95% CI 86.4%-94.9%) and 88.8% (95% CI 84.2%-92.2%), respectively. CADSS-HP demonstrated higher sensitivity (91.5% vs 78.3%; mean difference = 13.2%, 95% CI 5.7%-20.7%) and accuracy (89.9% vs 83.8%, mean difference = 6.1%, 95% CI 1.6%-10.7%) compared with endoscopic diagnosis by endoscopists. Sensitivity of CADSS-HP in diagnosing H. pylori was comparable with URT (91.5% vs 95.2%; mean difference = 3.7%, 95% CI -1.8% to 9.4%), better than histopathology (91.5% vs 82.0%; mean difference = 9.5%, 95% CI 2.3%-16.8%). DISCUSSION CADSS-HP achieved high sensitivity in the diagnosis of H. pylori infection in the real-time test, outperforming endoscopic diagnosis by endoscopists and comparable with URT. Clinicaltrials.gov ; ChiCTR2000030724.
Collapse
Affiliation(s)
- Yuqin Shen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, China
- West China Xiamen Hospital, Sichuan University, Xiamen, China
| | - Angli Chen
- Shaoxing University School of Medicine, Shaoxing, Zhejiang, China
| | - Xinsen Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Xingwei Zhong
- Department of Gastroenterology, Deqing County People's Hospital, Huzhou, China
| | - Ahuo Ma
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, China
| | - Jianping Wang
- Department of Gastroenterology, Deqing County People's Hospital, Huzhou, China
| | - Xinjie Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, China
| | - Wenfang Zheng
- Department of Gastroenterology, Hangzhou First People's Hospital, Hangzhou, China
| | - Yingchao Sun
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, China
| | - Lei Yue
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, China
| | - Zhe Zhang
- Department of Gastroenterology, Longyou County People's Hospital, Quzhou, China
| | - Xiaoyan Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Ne Lin
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, China
| | - John J. Kim
- Division of Gastroenterology and Hepatology, Loma Linda University Health, Loma Linda, California, USA
| | - Qin Du
- Department of Gastroenterology, The Second Affiliated Hospital, Medical School, Zhejiang University, Hangzhou, China
| | - Jiquan Liu
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Weiling Hu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Arif AA, Jiang SX, Byrne MF. Artificial intelligence in endoscopy: Overview, applications, and future directions. Saudi J Gastroenterol 2023; 29:269-277. [PMID: 37787347 PMCID: PMC10644999 DOI: 10.4103/sjg.sjg_286_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023] Open
Abstract
Since the emergence of artificial intelligence (AI) in medicine, endoscopy applications in gastroenterology have been at the forefront of innovations. The ever-increasing number of studies necessitates the need to organize and classify applications in a useful way. Separating AI capabilities by computer aided detection (CADe), diagnosis (CADx), and quality assessment (CADq) allows for a systematic evaluation of each application. CADe studies have shown promise in accurate detection of esophageal, gastric and colonic neoplasia as well as identifying sources of bleeding and Crohn's disease in the small bowel. While more advanced CADx applications employ optical biopsies to give further information to characterize neoplasia and grade inflammatory disease, diverse CADq applications ensure quality and increase the efficiency of procedures. Future applications show promise in advanced therapeutic modalities and integrated systems that provide multimodal capabilities. AI is set to revolutionize clinical decision making and performance of endoscopy.
Collapse
Affiliation(s)
- Arif A. Arif
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Shirley X. Jiang
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Michael F. Byrne
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Satisfai Health, Vancouver, BC, Canada
| |
Collapse
|
12
|
Zha Y, Xue C, Liu Y, Ni J, De La Fuente JM, Cui D. Artificial intelligence in theranostics of gastric cancer, a review. MEDICAL REVIEW (2021) 2023; 3:214-229. [PMID: 37789960 PMCID: PMC10542883 DOI: 10.1515/mr-2022-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/26/2023] [Indexed: 10/05/2023]
Abstract
Gastric cancer (GC) is one of the commonest cancers with high morbidity and mortality in the world. How to realize precise diagnosis and therapy of GC owns great clinical requirement. In recent years, artificial intelligence (AI) has been actively explored to apply to early diagnosis and treatment and prognosis of gastric carcinoma. Herein, we review recent advance of AI in early screening, diagnosis, therapy and prognosis of stomach carcinoma. Especially AI combined with breath screening early GC system improved 97.4 % of early GC diagnosis ratio, AI model on stomach cancer diagnosis system of saliva biomarkers obtained an overall accuracy of 97.18 %, specificity of 97.44 %, and sensitivity of 96.88 %. We also discuss concept, issues, approaches and challenges of AI applied in stomach cancer. This review provides a comprehensive view and roadmap for readers working in this field, with the aim of pushing application of AI in theranostics of stomach cancer to increase the early discovery ratio and curative ratio of GC patients.
Collapse
Affiliation(s)
- Yiqian Zha
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- National Engineering Research Center for Nanotechnology, Shanghai, China
| | - Cuili Xue
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- National Engineering Research Center for Nanotechnology, Shanghai, China
| | - Yanlei Liu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- National Engineering Research Center for Nanotechnology, Shanghai, China
| | - Jian Ni
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- National Engineering Research Center for Nanotechnology, Shanghai, China
| | | | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- National Engineering Research Center for Nanotechnology, Shanghai, China
| |
Collapse
|
13
|
Seo JY, Hong H, Ryu WS, Kim D, Chun J, Kwak MS. Development and validation of a convolutional neural network model for diagnosing Helicobacter pylori infections with endoscopic images: a multicenter study. Gastrointest Endosc 2023; 97:880-888.e2. [PMID: 36641124 DOI: 10.1016/j.gie.2023.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/16/2023]
Abstract
BACKGROUND AND AIMS Insufficient validation limits the generalizability of deep learning in diagnosing Helicobacter pylori infection with endoscopic images. The aim of this study was to develop a deep learning model for the diagnosis of H pylori infection using endoscopic images and validate the model with internal and external datasets. METHODS A convolutional neural network (CNN) model was developed based on a training dataset comprising 13,403 endoscopic images from 952 patients who underwent endoscopy at Seoul National University Hospital Gangnam Center. Internal validation was performed using a separate dataset comprised of images of 411 individuals of Korean descent and 131 of non-Korean descent. External validation was performed with the images of 160 patients in Gangnam Severance Hospital. Gradient-weighted class activation mapping was performed to visually explain the model. RESULTS In predicting H pylori ever-infected status, the sensitivity, specificity, and accuracy of internal validation for people of Korean descent were .96 (95% confidence interval [CI], .93-.98), .90 (95% CI, .85-.95), and .94 (95% CI, .91-.96), respectively. In the internal validation for people of non-Korean descent, the sensitivity, specificity, and accuracy in predicting H pylori ever-infected status were .92 (95% CI, .86-.98), .79 (95% CI, .67-.91), and .88 (95% CI, .82-.93), respectively. In the external validation cohort, sensitivity, specificity, and accuracy were .86 (95% CI, .80-.93), .88 (95% CI, .79-.96), and .87 (95% CI, .82-.92), respectively, when performing 2-group categorization. Gradient-weighted class activation mapping showed that the CNN model captured the characteristic findings of each group. CONCLUSIONS This CNN model for diagnosing H pylori infection showed good overall performance in internal and external validation datasets, particularly in categorizing patients into the never- versus ever-infected groups.
Collapse
Affiliation(s)
- Ji Yeon Seo
- Department of Internal Medicine, Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hotak Hong
- Artificial Intelligence Research Center, JLK Inc, Seoul, Republic of Korea
| | - Wi-Sun Ryu
- Artificial Intelligence Research Center, JLK Inc, Seoul, Republic of Korea
| | - Dongmin Kim
- Artificial Intelligence Research Center, JLK Inc, Seoul, Republic of Korea
| | - Jaeyoung Chun
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min-Sun Kwak
- Department of Internal Medicine, Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
14
|
Dhaliwal J, Walsh CM. Artificial Intelligence in Pediatric Endoscopy: Current Status and Future Applications. Gastrointest Endosc Clin N Am 2023; 33:291-308. [PMID: 36948747 DOI: 10.1016/j.giec.2022.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The application of artificial intelligence (AI) has great promise for improving pediatric endoscopy. The majority of preclinical studies have been undertaken in adults, with the greatest progress being made in the context of colorectal cancer screening and surveillance. This development has only been possible with advances in deep learning, like the convolutional neural network model, which has enabled real-time detection of pathology. Comparatively, the majority of deep learning systems developed in inflammatory bowel disease have focused on predicting disease severity and were developed using still images rather than videos. The application of AI to pediatric endoscopy is in its infancy, thus providing an opportunity to develop clinically meaningful and fair systems that do not perpetuate societal biases. In this review, we provide an overview of AI, summarize the advances of AI in endoscopy, and describe its potential application to pediatric endoscopic practice and education.
Collapse
Affiliation(s)
- Jasbir Dhaliwal
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medictal Center, University of Cincinnati, OH, USA.
| | - Catharine M Walsh
- Division of Gastroenterology, Hepatology, and Nutrition, and the SickKids Research and Learning Institutes, The Hospital for Sick Children, Toronto, ON, Canada; Department of Paediatrics and The Wilson Centre, University of Toronto, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Li YD, Wang HG, Chen SS, Yu JP, Ruan RW, Jin CH, Chen M, Jin JY, Wang S. Assessment of Helicobacter pylori infection by deep learning based on endoscopic videos in real time. Dig Liver Dis 2023; 55:649-654. [PMID: 36872201 DOI: 10.1016/j.dld.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/09/2023] [Accepted: 02/10/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND AND AIMS Endoscopic assessment of Helicobacter pylori infection is a simple and effective method. Here, we aimed to develop a deep learning-based system named Intelligent Detection Endoscopic Assistant-Helicobacter pylori (IDEA-HP) to assess H. pylori infection by using endoscopic videos in real time. METHODS Endoscopic data were retrospectively obtained from Zhejiang Cancer Hospital (ZJCH) for the development, validation, and testing of the system. Stored videos from ZJCH were used for assessing and comparing the performance of IDEA-HP with that of endoscopists. Prospective consecutive patients undergoing esophagogastroduodenoscopy were enrolled to assess the applicability of clinical practice. The urea breath test was used as the gold standard for diagnosing H. pylori infection. RESULTS In 100 videos, IDEA-HP achieved a similar overall accuracy of assessing H. pylori infection to that of experts (84.0% vs. 83.6% [P = 0.729]). Nevertheless, the diagnostic accuracy (84.0% vs. 74.0% [P<0.001]) and sensitivity (82.0% vs. 67.2% [P<0.001]) of IDEA-HP were significantly higher than those of the beginners. In 191 prospective consecutive patients, IDEA-HP achieved accuracy, sensitivity, and specificity of 85.3% (95% CI: 79.0%-89.3%), 83.3% (95% CI: 72.8%-90.5%), and 85.8% (95% CI: 77.7%-91.4%), respectively. CONCLUSIONS Our results show that IDEA-HP has great potential for assisting endoscopists in assessing H. pylori infection status during actual clinical work.
Collapse
Affiliation(s)
- Yan-Dong Li
- Department of Endoscopy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Huo-Gen Wang
- Hithink RoyalFlush Information Network Co., Ltd, Hangzhou, China
| | - Sheng-Sen Chen
- Department of Endoscopy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Jiang-Ping Yu
- Department of Endoscopy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Rong-Wei Ruan
- Department of Endoscopy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Chao-Hui Jin
- Hithink RoyalFlush Information Network Co., Ltd, Hangzhou, China
| | - Ming Chen
- Hithink RoyalFlush Information Network Co., Ltd, Hangzhou, China
| | - Jia-Yan Jin
- Hithink RoyalFlush Information Network Co., Ltd, Hangzhou, China
| | - Shi Wang
- Department of Endoscopy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
16
|
Halvorsen N, Mori Y. Artificial intelligence and upper gastrointestinal endoscopy: what is the optimal study design? Minerva Surg 2023; 78:81-85. [PMID: 36843555 DOI: 10.23736/s2724-5691.22.09810-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Upper gastrointestinal cancers (i.e., esophageal and gastric cancers) are common cancers worldwide with high mortality and morbidity. Although there is no randomized controlled trial-based evidence, early detection with endoscopy is expected to positively affect prognosis and morbidity. However, endoscopic procedures are always accompanied by human-induced errors such as overlooking of neoplasia and cancers. Recently, the use of artificial intelligence (AI) during upper gastrointestinal endoscopy is catching attention because it is expected to reduce human-induced variability of the examination. This review article introduces the overview of the expectation and current status of the AI tools for upper gastrointestinal endoscopy and shares possible challenges and corresponding solutions with readers.
Collapse
Affiliation(s)
- Natalie Halvorsen
- Clinical Effectiveness Research Group, University Hospital of Oslo, University of Oslo, Oslo, Norway
| | - Yuichi Mori
- Clinical Effectiveness Research Group, University Hospital of Oslo, University of Oslo, Oslo, Norway - .,Department of Transplantation Medicine, University Hospital of Oslo, Oslo, Norway.,Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan
| |
Collapse
|
17
|
Yacob YM, Alquran H, Mustafa WA, Alsalatie M, Sakim HAM, Lola MS. H. pylori Related Atrophic Gastritis Detection Using Enhanced Convolution Neural Network (CNN) Learner. Diagnostics (Basel) 2023; 13:diagnostics13030336. [PMID: 36766441 PMCID: PMC9914156 DOI: 10.3390/diagnostics13030336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Atrophic gastritis (AG) is commonly caused by the infection of the Helicobacter pylori (H. pylori) bacteria. If untreated, AG may develop into a chronic condition leading to gastric cancer, which is deemed to be the third primary cause of cancer-related deaths worldwide. Precursory detection of AG is crucial to avoid such cases. This work focuses on H. pylori-associated infection located at the gastric antrum, where the classification is of binary classes of normal versus atrophic gastritis. Existing work developed the Deep Convolution Neural Network (DCNN) of GoogLeNet with 22 layers of the pre-trained model. Another study employed GoogLeNet based on the Inception Module, fast and robust fuzzy C-means (FRFCM), and simple linear iterative clustering (SLIC) superpixel algorithms to identify gastric disease. GoogLeNet with Caffe framework and ResNet-50 are machine learners that detect H. pylori infection. Nonetheless, the accuracy may become abundant as the network depth increases. An upgrade to the current standards method is highly anticipated to avoid untreated and inaccurate diagnoses that may lead to chronic AG. The proposed work incorporates improved techniques revolving within DCNN with pooling as pre-trained models and channel shuffle to assist streams of information across feature channels to ease the training of networks for deeper CNN. In addition, Canonical Correlation Analysis (CCA) feature fusion method and ReliefF feature selection approaches are intended to revamp the combined techniques. CCA models the relationship between the two data sets of significant features generated by pre-trained ShuffleNet. ReliefF reduces and selects essential features from CCA and is classified using the Generalized Additive Model (GAM). It is believed the extended work is justified with a 98.2% testing accuracy reading, thus providing an accurate diagnosis of normal versus atrophic gastritis.
Collapse
Affiliation(s)
- Yasmin Mohd Yacob
- Faculty of Electronic Engineering & Technology, Pauh Putra Campus, Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia
- Centre of Excellence for Advanced Computing, Pauh Putra Campus, Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia
| | - Hiam Alquran
- Department of Biomedical Systems and Informatics Engineering, Yarmouk University, Irbid 21163, Jordan
- Department of Biomedical Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Wan Azani Mustafa
- Centre of Excellence for Advanced Computing, Pauh Putra Campus, Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia
- Faculty of Electrical Engineering & Technology, Pauh Putra Campus, Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia
- Correspondence:
| | - Mohammed Alsalatie
- King Hussein Medical Center, Royal Jordanian Medical Service, The Institute of Biomedical Technology, Amman 11855, Jordan
| | - Harsa Amylia Mat Sakim
- School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 11800, Penang, Malaysia
| | - Muhamad Safiih Lola
- Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia
| |
Collapse
|
18
|
Galati JS, Duve RJ, O'Mara M, Gross SA. Artificial intelligence in gastroenterology: A narrative review. Artif Intell Gastroenterol 2022; 3:117-141. [DOI: 10.35712/aig.v3.i5.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Artificial intelligence (AI) is a complex concept, broadly defined in medicine as the development of computer systems to perform tasks that require human intelligence. It has the capacity to revolutionize medicine by increasing efficiency, expediting data and image analysis and identifying patterns, trends and associations in large datasets. Within gastroenterology, recent research efforts have focused on using AI in esophagogastroduodenoscopy, wireless capsule endoscopy (WCE) and colonoscopy to assist in diagnosis, disease monitoring, lesion detection and therapeutic intervention. The main objective of this narrative review is to provide a comprehensive overview of the research being performed within gastroenterology on AI in esophagogastroduodenoscopy, WCE and colonoscopy.
Collapse
Affiliation(s)
- Jonathan S Galati
- Department of Medicine, NYU Langone Health, New York, NY 10016, United States
| | - Robert J Duve
- Department of Internal Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, United States
| | - Matthew O'Mara
- Division of Gastroenterology, NYU Langone Health, New York, NY 10016, United States
| | - Seth A Gross
- Division of Gastroenterology, NYU Langone Health, New York, NY 10016, United States
| |
Collapse
|
19
|
Ochiai K, Ozawa T, Shibata J, Ishihara S, Tada T. Current Status of Artificial Intelligence-Based Computer-Assisted Diagnosis Systems for Gastric Cancer in Endoscopy. Diagnostics (Basel) 2022; 12:diagnostics12123153. [PMID: 36553160 PMCID: PMC9777622 DOI: 10.3390/diagnostics12123153] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Artificial intelligence (AI) is gradually being utilized in various fields as its performance has been improving with the development of deep learning methods, availability of big data, and the progression of computer processing units. In the field of medicine, AI is mainly implemented in image recognition, such as in radiographic and pathologic diagnoses. In the realm of gastrointestinal endoscopy, although AI-based computer-assisted detection/diagnosis (CAD) systems have been applied in some areas, such as colorectal polyp detection and diagnosis, so far, their implementation in real-world clinical settings is limited. The accurate detection or diagnosis of gastric cancer (GC) is one of the challenges in which performance varies greatly depending on the endoscopist's skill. The diagnosis of early GC is especially challenging, partly because early GC mimics atrophic gastritis in the background mucosa. Therefore, several CAD systems for GC are being actively developed. The development of a CAD system for GC is considered challenging because it requires a large number of GC images. In particular, early stage GC images are rarely available, partly because it is difficult to diagnose gastric cancer during the early stages. Additionally, the training image data should be of a sufficiently high quality to conduct proper CAD training. Recently, several AI systems for GC that exhibit a robust performance, owing to being trained on a large number of high-quality images, have been reported. This review outlines the current status and prospects of AI use in esophagogastroduodenoscopy (EGDS), focusing on the diagnosis of GC.
Collapse
Affiliation(s)
- Kentaro Ochiai
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tsuyoshi Ozawa
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Tomohiro Tada the Institute of Gastroenterology and Proctology, Musashi-Urawa, Saitama 336-0021, Japan
- AI Medical Service Inc. Toshima-ku, Tokyo 104-0061, Japan
| | - Junichi Shibata
- Tomohiro Tada the Institute of Gastroenterology and Proctology, Musashi-Urawa, Saitama 336-0021, Japan
- AI Medical Service Inc. Toshima-ku, Tokyo 104-0061, Japan
| | - Soichiro Ishihara
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomohiro Tada
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Tomohiro Tada the Institute of Gastroenterology and Proctology, Musashi-Urawa, Saitama 336-0021, Japan
- AI Medical Service Inc. Toshima-ku, Tokyo 104-0061, Japan
| |
Collapse
|
20
|
Luo Q, Yang H, Hu B. Application of artificial intelligence in the endoscopic diagnosis of early gastric cancer, atrophic gastritis, and Helicobacter pylori infection. J Dig Dis 2022; 23:666-674. [PMID: 36661411 DOI: 10.1111/1751-2980.13154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/04/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Gastric cancer (GC) is one of the most serious health problems worldwide. Chronic atrophic gastritis (CAG) is most commonly caused by Helicobacter pylori (H. pylori) infection. Currently, endoscopic detection of early gastric cancer (EGC) and CAG remains challenging for endoscopists, and the diagnostic accuracy of H. pylori infection by endoscopy is approximately 70%. Artificial intelligence (AI) can assist endoscopic diagnosis including detection, prediction of depth of invasion, boundary delineation, and anatomical location of EGC, and has achievable diagnostic ability even comparable to experienced endoscopists. In this review we summarized various AI-assisted systems in the diagnosis of EGC, CAG, and H. pylori infection.
Collapse
Affiliation(s)
- Qi Luo
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
21
|
Dilaghi E, Lahner E, Annibale B, Esposito G. Systematic review and meta-analysis: Artificial intelligence for the diagnosis of gastric precancerous lesions and Helicobacter pylori infection. Dig Liver Dis 2022; 54:1630-1638. [PMID: 35382973 DOI: 10.1016/j.dld.2022.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND The endoscopic diagnosis of Helicobacter-pylori(H.pylori) infection and gastric precancerous lesions(GPL), namely atrophic-gastritis and intestinal-metaplasia, still remains challenging. Artificial intelligence(AI) may represent a powerful resource for the endoscopic recognition of these conditions. AIMS To explore the diagnostic performance(DP) of AI in the diagnosis of GPL and H.pylori infection. METHODS A systematic-review was performed by two independent authors up to September 2021. Inclusion criteria were studies focusing on the DP of AI-system in the diagnosis of GPL and H.pylori infection. The pooled accuracy of studies included was reported. RESULTS Overall, 128 studies were found (PubMed-Embase-Cochrane Library) and four and nine studies were finally included regarding GPL and H.pylori infection, respectively. The pooled-accuracy(random effects model) was 90.3%(95%CI 84.3-94.9) and 79.6%(95%CI 66.7-90.0) with a significant heterogeneity[I2=90.4%(95%CI 78.5-95.7);I2=97.9%(97.2-98.6)] for GPL and H.pylori infection, respectively. The Begg's-test showed a significant publication-bias(p = 0.0371) only among studies regarding H.pylori infection. The pooled-accuracy(random-effects-model) was similar considering only studies using CNN-model for the diagnosis of H.pylori infection: 74.1%[(95%CI 51.6-91.3);I2=98.9%(95%CI 98.5-99.3)], Begg's-test(p = 0.1416) did not show publication-bias. CONCLUSION AI-system seems to be a good resource for an easier diagnosis of GPL and H.pylori infection, showing a pooled-diagnostic-accuracy of 90% and 80%, respectively. However, considering the high heterogeneity, these promising data need an external validation by randomized control trials and prospective real-time studies.
Collapse
Affiliation(s)
- E Dilaghi
- Department of Medical-Surgical Sciences and Translational Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Via di Grottarossa, Roma 1035 - 00189, Italy
| | - E Lahner
- Department of Medical-Surgical Sciences and Translational Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Via di Grottarossa, Roma 1035 - 00189, Italy
| | - B Annibale
- Department of Medical-Surgical Sciences and Translational Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Via di Grottarossa, Roma 1035 - 00189, Italy
| | - G Esposito
- Department of Medical-Surgical Sciences and Translational Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Via di Grottarossa, Roma 1035 - 00189, Italy.
| |
Collapse
|
22
|
Cao R, Tang L, Fang M, Zhong L, Wang S, Gong L, Li J, Dong D, Tian J. Artificial intelligence in gastric cancer: applications and challenges. Gastroenterol Rep (Oxf) 2022; 10:goac064. [PMID: 36457374 PMCID: PMC9707405 DOI: 10.1093/gastro/goac064] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/27/2022] [Accepted: 10/18/2022] [Indexed: 08/10/2023] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumors with high mortality. Accurate diagnosis and treatment decisions for GC rely heavily on human experts' careful judgments on medical images. However, the improvement of the accuracy is hindered by imaging conditions, limited experience, objective criteria, and inter-observer discrepancies. Recently, the developments of machine learning, especially deep-learning algorithms, have been facilitating computers to extract more information from data automatically. Researchers are exploring the far-reaching applications of artificial intelligence (AI) in various clinical practices, including GC. Herein, we aim to provide a broad framework to summarize current research on AI in GC. In the screening of GC, AI can identify precancerous diseases and assist in early cancer detection with endoscopic examination and pathological confirmation. In the diagnosis of GC, AI can support tumor-node-metastasis (TNM) staging and subtype classification. For treatment decisions, AI can help with surgical margin determination and prognosis prediction. Meanwhile, current approaches are challenged by data scarcity and poor interpretability. To tackle these problems, more regulated data, unified processing procedures, and advanced algorithms are urgently needed to build more accurate and robust AI models for GC.
Collapse
Affiliation(s)
| | | | - Mengjie Fang
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, P. R. China
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, P. R. China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, P. R. China
| | - Lianzhen Zhong
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, P. R. China
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, P. R. China
| | - Siwen Wang
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, P. R. China
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, P. R. China
| | - Lixin Gong
- College of Medicine and Biological Information Engineering School, Northeastern University, Shenyang, Liaoning, P. R. China
| | - Jiazheng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Radiology Department, Peking University Cancer Hospital & Institute, Beijing, P. R. China
| | - Di Dong
- Corresponding authors. Di Dong, CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing 100190, P. R. China. Tel: +86-13811833760; ; Jie Tian, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, P. R. China. Tel: +86-10-82618465;
| | - Jie Tian
- Corresponding authors. Di Dong, CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing 100190, P. R. China. Tel: +86-13811833760; ; Jie Tian, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, P. R. China. Tel: +86-10-82618465;
| |
Collapse
|
23
|
DeepHP: A New Gastric Mucosa Histopathology Dataset for Helicobacter pylori Infection Diagnosis. Int J Mol Sci 2022; 23:ijms232314581. [PMID: 36498907 PMCID: PMC9739080 DOI: 10.3390/ijms232314581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
Emerging deep learning-based applications in precision medicine include computational histopathological analysis. However, there is a lack of the required training image datasets to generate classification and detection models. This phenomenon occurs mainly due to human factors that make it difficult to obtain well-annotated data. The present study provides a curated public collection of histopathological images (DeepHP) and a convolutional neural network model for diagnosing gastritis. Images from gastric biopsy histopathological exams were used to investigate the performance of the proposed model in detecting gastric mucosa with Helicobacter pylori infection. The DeepHP database comprises 394,926 histopathological images, of which 111 K were labeled as Helicobacter pylori positive and 283 K were Helicobacter pylori negative. We investigated the classification performance of three Convolutional Neural Network architectures. The models were tested and validated with two distinct image sets of 15% (59K patches) chosen randomly. The VGG16 architecture showed the best results with an Area Under the Curve of 0.998%. The results showed that CNN could be used to classify histopathological images from gastric mucosa with marked precision. Our model evidenced high potential and application in the computational pathology field.
Collapse
|
24
|
Yang H, Wu Y, Yang B, Wu M, Zhou J, Liu Q, Lin Y, Li S, Li X, Zhang J, Wang R, Xie Q, Li J, Luo Y, Tu M, Wang X, Lan H, Bai X, Wu H, Zeng F, Zhao H, Yi Z, Zeng F. Identification of upper GI diseases during screening gastroscopy using a deep convolutional neural network algorithm. Gastrointest Endosc 2022; 96:787-795.e6. [PMID: 35718070 DOI: 10.1016/j.gie.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS The clinical application of GI endoscopy for the diagnosis of multiple diseases using artificial intelligence (AI) has been limited by its high false-positive rates. There is an unmet need to develop a GI endoscopy AI-assisted diagnosis system (GEADS) to improve diagnostic accuracy and clinical utility. METHODS In this retrospective, multicenter study, a convolutional neural network was trained to assess upper GI diseases based on 26,228 endoscopic images from Dazhou Central Hospital that were randomly assigned (3:1:1) to a training dataset, validation dataset, and test dataset, respectively. To validate the model, 6 external independent datasets comprising 51,372 images of upper GI diseases were collected. In addition, 1 prospective dataset comprising 27,975 images was collected. The performance of GEADS was compared with endoscopists with 2 professional degrees of expertise: expert and novice. Eight endoscopists were in the expert group with >5 years of experience, whereas 3 endoscopists were in the novice group with 1 to 5 years of experience. RESULTS The GEADS model achieved an accuracy of .918 (95% confidence interval [CI], .914-.922), with an F1 score of .884 (95% CI, .879-.889), recall of .873 (95% CI, .868-.878), and precision of .890 (95% CI, .885-.895) in the internal validation dataset. In the external validation datasets and 1 prospective validation dataset, the diagnostic accuracy of the GEADS ranged from .841 (95% CI, .834-.848) to .949 (95% CI, .935-.963). With the help of the GEADS, the diagnosing accuracies of novice and expert endoscopists were significantly improved (P < .001). CONCLUSIONS The AI system can assist endoscopists in improving the accuracy of diagnosing upper GI diseases.
Collapse
Affiliation(s)
- Hang Yang
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Yu Wu
- Center of Intelligent Medicine, Computer Science, Sichuan University, Chengdu, Sichuan, China
| | - Bo Yang
- Digestive Endoscopy Center, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Min Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jun Zhou
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Qin Liu
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Yifei Lin
- Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shilin Li
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Xue Li
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Jie Zhang
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Rui Wang
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Qianrong Xie
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Jingqi Li
- College of Aulin, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Yue Luo
- College of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Mengjie Tu
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan, China; Department of Surgery, Shantou University Medical College, Shantou, Guangdong, China
| | - Xiao Wang
- Digestive Endoscopy Center, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Haitao Lan
- Department of Sichuan, Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Xuesong Bai
- Digestive Endoscopy Center, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Huaping Wu
- Department of Cardiac &Vascular Surgery, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Fanwei Zeng
- Department of Spinal Surgery, Sichuan Province Orthopedic Hospital, Chengdu, Sichuan, China
| | - Hong Zhao
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhang Yi
- Center of Intelligent Medicine, Computer Science, Sichuan University, Chengdu, Sichuan, China
| | - Fanxin Zeng
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan, China; Center of Intelligent Medicine, Computer Science, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
25
|
Kodaka Y, Futagami S, Watanabe Y, Shichijo S, Uedo N, Aono H, Kirita K, Kato Y, Ueki N, Agawa S, Yamawaki H, Iwakiri K, Tada T. Determination of gastric atrophy with artificial intelligence compared to the assessments of the modified Kyoto and OLGA classifications. JGH Open 2022; 6:704-710. [PMID: 36262541 PMCID: PMC9575326 DOI: 10.1002/jgh3.12810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 07/19/2022] [Accepted: 08/09/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND AND AIM Gastric atrophy is a precancerous lesion. We aimed to clarify whether gastric atrophy determined by artificial intelligence (AI) correlates with the diagnosis made by expert endoscopists using several endoscopic classifications, the Operative Link on Gastritis Assessment (OLGA) classification based on histological findings, and genotypes associated with gastric atrophy and cancer. METHODS Two hundred seventy Helicobacter pylori-positive outpatients were enrolled. All patients' endoscopy data were retrospectively evaluated based on the Kimura-Takemoto, modified Kyoto, and OLGA classifications. The AI-trained neural network generated a continuous number between 0 and 1 for gastric atrophy. Nucleotide variance of some candidate genes was confirmed or selectively assessed for a variety of genotypes, including the COX-21195, IL-1β 511, and mPGES-1 genotypes. RESULTS There were significant correlations between determinations of gastric atrophy by AI and by expert endoscopists using not only the Kimura-Takemoto classification (P < 0.001), but also the modified Kyoto classification (P = 0.046 and P < 0.001 for the two criteria). Moreover, there was a significant correlation with the OLGA classification (P = 0.009). Nucleotide variance of the COX-2, IL-1β, and mPGES-1genes was not significantly associated with gastric atrophy determined by AI. The area under the curve values of the combinations of AI and the modified Kyoto classification (0.746) and AI and the OLGA classification (0.675) were higher than in AI alone (0.665). CONCLUSION Combinations of AI and the modified Kyoto classification or of AI and the OLGA classification could be useful tools for evaluating gastric atrophy in patients with H. pylori infection as the risk of gastric cancer.
Collapse
Affiliation(s)
| | - Seiji Futagami
- Division of GastroenterologyNippon Medical SchoolTokyoJapan
| | | | - Satoki Shichijo
- Department of Gastrointestinal OncologyOsaka International Cancer InstituteOsakaJapan
| | - Noriya Uedo
- Department of Gastrointestinal OncologyOsaka International Cancer InstituteOsakaJapan
| | | | - Kumiko Kirita
- Division of GastroenterologyNippon Medical SchoolTokyoJapan
| | | | - Nobue Ueki
- Division of GastroenterologyNippon Medical SchoolTokyoJapan
| | - Shuhei Agawa
- Division of GastroenterologyNippon Medical SchoolTokyoJapan
| | | | | | - Tomohiro Tada
- AI Medical Service Inc.TokyoJapan
- Tada Tomohiro Institute of Gastroenterology and ProctologySaitamaJapan
| |
Collapse
|
26
|
Yashima K, Shabana M, Kurumi H, Kawaguchi K, Isomoto H. Gastric Cancer Screening in Japan: A Narrative Review. J Clin Med 2022; 11:4337. [PMID: 35893424 PMCID: PMC9332545 DOI: 10.3390/jcm11154337] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 12/16/2022] Open
Abstract
Gastric cancer is the second leading cause of cancer incidence in Japan, although gastric cancer mortality has decreased over the past few decades. This decrease is attributed to a decline in the prevalence of H. pylori infection. Radiographic examination has long been performed as the only method of gastric screening with evidence of reduction in mortality in the past. The revised 2014 Japanese Guidelines for Gastric Cancer Screening approved gastric endoscopy for use in population-based screening, together with radiography. While endoscopic gastric cancer screening has begun, there are some problems associated with its implementation, including endoscopic capacity, equal access, and cost-effectiveness. As H. pylori infection and atrophic gastritis are well-known risk factors for gastric cancer, a different screening method might be considered, depending on its association with the individual's background and gastric cancer risk. In this review, we summarize the current status and problems of gastric cancer screening in Japan. We also introduce and discuss the results of gastric cancer screening using H. pylori infection status in Hoki-cho, Tottori prefecture. Further, we review risk stratification as a system for improving gastric cancer screening in the future.
Collapse
Affiliation(s)
- Kazuo Yashima
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, 36-1 Nishicho, Yonago 683-8504, Japan; (H.K.); (K.K.); (H.I.)
| | - Michiko Shabana
- Sanin Rosai Hospital, 1-8-1 Kaikeshinden, Yonago 683-8605, Japan;
| | - Hiroki Kurumi
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, 36-1 Nishicho, Yonago 683-8504, Japan; (H.K.); (K.K.); (H.I.)
| | - Koichiro Kawaguchi
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, 36-1 Nishicho, Yonago 683-8504, Japan; (H.K.); (K.K.); (H.I.)
| | - Hajime Isomoto
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, 36-1 Nishicho, Yonago 683-8504, Japan; (H.K.); (K.K.); (H.I.)
| |
Collapse
|
27
|
Mărginean CO, Meliț LE, Săsăran MO. Traditional and Modern Diagnostic Approaches in Diagnosing Pediatric Helicobacter pylori Infection. CHILDREN 2022; 9:children9070994. [PMID: 35883980 PMCID: PMC9316053 DOI: 10.3390/children9070994] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 01/10/2023]
Abstract
Helicobacter pylori (H. pylori) is the most common bacterial infection worldwide, is usually acquired during childhood and is related to gastric carcinogenesis during adulthood. Therefore, its early proper diagnosis and subsequent successful eradication represent the cornerstones of gastric cancer prevention. The aim of this narrative review was to assess traditional and modern diagnostic methods in terms of H. pylori diagnosis. Several invasive and non-invasive methods were described, each with its pros and cons. The invasive diagnostic methods comprise endoscopy with biopsy, rapid urease tests, histopathological exams, cultures and biopsy-based molecular tests. Among these, probably the most available, accurate and cost-effective test remains histology, albeit molecular tests definitely remain the most accurate despite their high costs. The non-invasive tests consist of urea breath tests, serology, stool antigens and non-invasive molecular tests. Urea breath tests and stool antigens are the most useful in clinical practice both for the diagnosis of H. pylori infection and for monitoring the eradication of this infection after therapy. The challenges related to accurate diagnosis lead to a choice that must be based on H. pylori virulence, environmental factors and host peculiarities.
Collapse
Affiliation(s)
- Cristina Oana Mărginean
- Department of Pediatrics I, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Gheorghe Marinescu Street No. 38, 540136 Targu Mures, Romania;
| | - Lorena Elena Meliț
- Department of Pediatrics I, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Gheorghe Marinescu Street No. 38, 540136 Targu Mures, Romania;
- Correspondence:
| | - Maria Oana Săsăran
- Department of Pediatrics III, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Gheorghe Marinescu Street No. 38, 540136 Targu Mures, Romania;
| |
Collapse
|
28
|
Abstract
Artificial intelligence (AI) is rapidly developing in various medical fields, and there is an increase in research performed in the field of gastrointestinal (GI) endoscopy. In particular, the advent of convolutional neural network, which is a class of deep learning method, has the potential to revolutionize the field of GI endoscopy, including esophagogastroduodenoscopy (EGD), capsule endoscopy (CE), and colonoscopy. A total of 149 original articles pertaining to AI (27 articles in esophagus, 30 articles in stomach, 29 articles in CE, and 63 articles in colon) were identified in this review. The main focuses of AI in EGD are cancer detection, identifying the depth of cancer invasion, prediction of pathological diagnosis, and prediction of Helicobacter pylori infection. In the field of CE, automated detection of bleeding sites, ulcers, tumors, and various small bowel diseases is being investigated. AI in colonoscopy has advanced with several patient-based prospective studies being conducted on the automated detection and classification of colon polyps. Furthermore, research on inflammatory bowel disease has also been recently reported. Most studies of AI in the field of GI endoscopy are still in the preclinical stages because of the retrospective design using still images. Video-based prospective studies are needed to advance the field. However, AI will continue to develop and be used in daily clinical practice in the near future. In this review, we have highlighted the published literature along with providing current status and insights into the future of AI in GI endoscopy.
Collapse
Affiliation(s)
- Yutaka Okagawa
- Endoscopy Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Department of Gastroenterology, Tonan Hospital, Sapporo, Japan
| | - Seiichiro Abe
- Endoscopy Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Masayoshi Yamada
- Endoscopy Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Ichiro Oda
- Endoscopy Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yutaka Saito
- Endoscopy Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| |
Collapse
|
29
|
Okimoto E, Ishimura N, Adachi K, Kinoshita Y, Ishihara S, Tada T. Application of Convolutional Neural Networks for Diagnosis of Eosinophilic Esophagitis Based on Endoscopic Imaging. J Clin Med 2022; 11:jcm11092529. [PMID: 35566653 PMCID: PMC9105792 DOI: 10.3390/jcm11092529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/17/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
Subjective symptoms associated with eosinophilic esophagitis (EoE), such as dysphagia, are not specific, thus the endoscopic identification of suggestive EoE findings is quite important for facilitating endoscopic biopsy sampling. However, poor inter-observer agreement among endoscopists regarding diagnosis has become a complicated issue, especially with inexperienced practitioners. Therefore, we constructed a computer-assisted diagnosis (CAD) system using a convolutional neural network (CNN) and evaluated its performance as a diagnostic utility. A CNN-based CAD system was developed based on ResNet50 architecture. The CNN was trained using a total of 1192 characteristic endoscopic images of 108 patients histologically proven to be in an active phase of EoE (≥15 eosinophils per high power field) as well as 1192 normal esophagus images. To evaluate diagnostic accuracy, an independent test set of 756 endoscopic images from 35 patients with EoE and 96 subjects with a normal esophagus was examined with the constructed CNN. The CNN correctly diagnosed EoE in 94.7% using a diagnosis per image analysis, with an overall sensitivity of 90.8% and specificity of 96.6%. For each case, the CNN correctly diagnosed 37 of 39 EoE cases with overall sensitivity and specificity of 94.9% and 99.0%, respectively. These findings indicate the usefulness of CNN for diagnosing EoE, especially for aiding inexperienced endoscopists during medical check-up screening.
Collapse
Affiliation(s)
- Eiko Okimoto
- Department of Internal Medicine II, Shimane University Faculty of Medicine, Izumo 693-8501, Japan; (E.O.); (S.I.)
| | - Norihisa Ishimura
- Department of Internal Medicine II, Shimane University Faculty of Medicine, Izumo 693-8501, Japan; (E.O.); (S.I.)
- Correspondence: ; Tel.: +81-853-20-2190
| | - Kyoichi Adachi
- Health Center, Shimane Environment and Health Public Corporation, Matsue 690-0012, Japan;
| | - Yoshikazu Kinoshita
- Department of Medicine, Hyogo Prefectural Harima-Himeji General Medical Center, Himeji 670-8560, Japan;
| | - Shunji Ishihara
- Department of Internal Medicine II, Shimane University Faculty of Medicine, Izumo 693-8501, Japan; (E.O.); (S.I.)
| | - Tomohiro Tada
- AI Medical Service Inc., Toshima, Tokyo 170-0013, Japan;
| |
Collapse
|
30
|
Kim HE, Cosa-Linan A, Santhanam N, Jannesari M, Maros ME, Ganslandt T. Transfer learning for medical image classification: a literature review. BMC Med Imaging 2022; 22:69. [PMID: 35418051 PMCID: PMC9007400 DOI: 10.1186/s12880-022-00793-7] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/30/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Transfer learning (TL) with convolutional neural networks aims to improve performances on a new task by leveraging the knowledge of similar tasks learned in advance. It has made a major contribution to medical image analysis as it overcomes the data scarcity problem as well as it saves time and hardware resources. However, transfer learning has been arbitrarily configured in the majority of studies. This review paper attempts to provide guidance for selecting a model and TL approaches for the medical image classification task. METHODS 425 peer-reviewed articles were retrieved from two databases, PubMed and Web of Science, published in English, up until December 31, 2020. Articles were assessed by two independent reviewers, with the aid of a third reviewer in the case of discrepancies. We followed the PRISMA guidelines for the paper selection and 121 studies were regarded as eligible for the scope of this review. We investigated articles focused on selecting backbone models and TL approaches including feature extractor, feature extractor hybrid, fine-tuning and fine-tuning from scratch. RESULTS The majority of studies (n = 57) empirically evaluated multiple models followed by deep models (n = 33) and shallow (n = 24) models. Inception, one of the deep models, was the most employed in literature (n = 26). With respect to the TL, the majority of studies (n = 46) empirically benchmarked multiple approaches to identify the optimal configuration. The rest of the studies applied only a single approach for which feature extractor (n = 38) and fine-tuning from scratch (n = 27) were the two most favored approaches. Only a few studies applied feature extractor hybrid (n = 7) and fine-tuning (n = 3) with pretrained models. CONCLUSION The investigated studies demonstrated the efficacy of transfer learning despite the data scarcity. We encourage data scientists and practitioners to use deep models (e.g. ResNet or Inception) as feature extractors, which can save computational costs and time without degrading the predictive power.
Collapse
Affiliation(s)
- Hee E Kim
- Department of Biomedical Informatics at the Center for Preventive Medicine and Digital Health (CPD-BW), Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Alejandro Cosa-Linan
- Department of Biomedical Informatics at the Center for Preventive Medicine and Digital Health (CPD-BW), Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Nandhini Santhanam
- Department of Biomedical Informatics at the Center for Preventive Medicine and Digital Health (CPD-BW), Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Mahboubeh Jannesari
- Department of Biomedical Informatics at the Center for Preventive Medicine and Digital Health (CPD-BW), Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Mate E Maros
- Department of Biomedical Informatics at the Center for Preventive Medicine and Digital Health (CPD-BW), Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Thomas Ganslandt
- Department of Biomedical Informatics at the Center for Preventive Medicine and Digital Health (CPD-BW), Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- Chair of Medical Informatics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Wetterkreuz 15, 91058, Erlangen, Germany
| |
Collapse
|
31
|
Nagao S, Tani Y, Shibata J, Tsuji Y, Tada T, Ishihara R, Fujishiro M. Implementation of artificial intelligence in upper gastrointestinal endoscopy. DEN OPEN 2022; 2:e72. [PMID: 35873509 PMCID: PMC9302271 DOI: 10.1002/deo2.72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/11/2021] [Accepted: 10/16/2021] [Indexed: 12/24/2022]
Abstract
The application of artificial intelligence (AI) using deep learning has significantly expanded in the field of esophagogastric endoscopy. Recent studies have shown promising results in detecting and differentiating early gastric cancer using AI tools built using white light, magnified, or image-enhanced endoscopic images. Some studies have reported the use of AI tools to predict the depth of early gastric cancer based on endoscopic images. Similarly, studies based on using AI for detecting early esophageal cancer have also been reported, with an accuracy comparable to that of endoscopy specialists. Moreover, an AI system, developed to diagnose pharyngeal cancer, has shown promising performance with high sensitivity. These reports suggest that, if introduced for regular use in clinical settings, AI systems can significantly reduce the burden on physicians. This review summarizes the current status of AI applications in the upper gastrointestinal tract and presents directions for clinical practice implementation and future research.
Collapse
Affiliation(s)
- Sayaka Nagao
- Department of GastroenterologyGraduate School of Medicinethe University of TokyoTokyoJapan
- Department of Endoscopy and Endoscopic SurgeryGraduate School of Medicinethe University of TokyoTokyoJapan
| | - Yasuhiro Tani
- Department of Gastrointestinal OncologyOsaka International Cancer InstituteOsakaJapan
| | - Junichi Shibata
- Tada Tomohiro Institute of Gastroenterology and ProctologySaitamaJapan
| | - Yosuke Tsuji
- Department of GastroenterologyGraduate School of Medicinethe University of TokyoTokyoJapan
| | - Tomohiro Tada
- Tada Tomohiro Institute of Gastroenterology and ProctologySaitamaJapan
- AI Medical Service Inc.TokyoJapan
- Department of Surgical OncologyGraduate School of Medicinethe University of TokyoTokyoJapan
| | - Ryu Ishihara
- Department of Gastrointestinal OncologyOsaka International Cancer InstituteOsakaJapan
| | - Mitsuhiro Fujishiro
- Department of GastroenterologyGraduate School of Medicinethe University of TokyoTokyoJapan
| |
Collapse
|
32
|
Jin Z, Gan T, Wang P, Fu Z, Zhang C, Yan Q, Zheng X, Liang X, Ye X. Deep learning for gastroscopic images: computer-aided techniques for clinicians. Biomed Eng Online 2022; 21:12. [PMID: 35148764 PMCID: PMC8832738 DOI: 10.1186/s12938-022-00979-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 01/21/2022] [Indexed: 12/13/2022] Open
Abstract
Gastric disease is a major health problem worldwide. Gastroscopy is the main method and the gold standard used to screen and diagnose many gastric diseases. However, several factors, such as the experience and fatigue of endoscopists, limit its performance. With recent advancements in deep learning, an increasing number of studies have used this technology to provide on-site assistance during real-time gastroscopy. This review summarizes the latest publications on deep learning applications in overcoming disease-related and nondisease-related gastroscopy challenges. The former aims to help endoscopists find lesions and characterize them when they appear in the view shed of the gastroscope. The purpose of the latter is to avoid missing lesions due to poor-quality frames, incomplete inspection coverage of gastroscopy, etc., thus improving the quality of gastroscopy. This study aims to provide technical guidance and a comprehensive perspective for physicians to understand deep learning technology in gastroscopy. Some key issues to be handled before the clinical application of deep learning technology and the future direction of disease-related and nondisease-related applications of deep learning to gastroscopy are discussed herein.
Collapse
Affiliation(s)
- Ziyi Jin
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Tianyuan Gan
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Peng Wang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Zuoming Fu
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Chongan Zhang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Qinglai Yan
- Hangzhou Center for Medical Device Quality Supervision and Testing, CFDA, Hangzhou, 310000, People's Republic of China
| | - Xueyong Zheng
- Department of General Surgery, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, People's Republic of China
| | - Xiao Liang
- Department of General Surgery, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, People's Republic of China
| | - Xuesong Ye
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| |
Collapse
|
33
|
Hann A, Meining A. Artificial Intelligence in Endoscopy. Visc Med 2022; 37:471-475. [PMID: 35083312 DOI: 10.1159/000519407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
Background Owing to their rapid development, artificial intelligence (AI) technologies offer a great promise for gastroenterology practice and research. At present, AI-guided image interpretation has already been used with success for endoscopic detection of early malignant lesions. Nonetheless, there are complex challenges and possible shortcomings that must be considered before full implementation can be realized. Summary In this review, the current status of AI in endoscopy is summarized. Future perspectives and open questions for further studies are stressed. Key Messages The usage of AI algorithms for polyp detection in screening colonoscopy results in a significant increase in the adenoma detection rate, mainly attributed to the identification of diminutive polyps. Computer-aided characterization of colorectal polyps accompanies the detection, but further studies are needed to evaluate the clinical benefit. In contrast to colonoscopy, usage of AI in gastroscopy is currently rather limited. Regarding other fields of endoscopic imaging, capsule endoscopy is the ideal imaging platform for AI, due to the potential of saving time in the video analysis.
Collapse
Affiliation(s)
- Alexander Hann
- Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine II, Gastroenterology, University Hospital Würzburg, Würzburg, Germany
| | - Alexander Meining
- Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine II, Gastroenterology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
34
|
Zhuang H, Bao A, Tan Y, Wang H, Xie Q, Qiu M, Xiong W, Liao F. Application and prospect of artificial intelligence in digestive endoscopy. Expert Rev Gastroenterol Hepatol 2022; 16:21-31. [PMID: 34937459 DOI: 10.1080/17474124.2022.2020646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION With the progress of science and technology, artificial intelligence represented by deep learning has gradually begun to be applied in the medical field. Artificial intelligence has been applied to benign gastrointestinal lesions, tumors, early cancer, inflammatory bowel disease, gallbladder, pancreas, and other diseases. This review summarizes the latest research results on artificial intelligence in digestive endoscopy and discusses the prospect of artificial intelligence in digestive system diseases. AREAS COVERED We retrieved relevant documents on artificial intelligence in digestive tract diseases from PubMed and Medline. This review elaborates on the knowledge of computer-aided diagnosis in digestive endoscopy. EXPERT OPINION Artificial intelligence significantly improves diagnostic accuracy, reduces physicians' workload, and provides a shred of evidence for clinical diagnosis and treatment. Shortly, artificial intelligence will have high application value in the field of medicine.
Collapse
Affiliation(s)
- Huangming Zhuang
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Anyu Bao
- Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yulin Tan
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hanyu Wang
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qingfang Xie
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Meiqi Qiu
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wanli Xiong
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Fei Liao
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
35
|
Zhao PY, Han K, Yao RQ, Ren C, Du XH. Application Status and Prospects of Artificial Intelligence in Peptic Ulcers. Front Surg 2022; 9:894775. [PMID: 35784921 PMCID: PMC9244632 DOI: 10.3389/fsurg.2022.894775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/31/2022] [Indexed: 02/05/2023] Open
Abstract
Peptic ulcer (PU) is a common and frequently occurring disease. Although PU seriously threatens the lives and health of global residents, the applications of artificial intelligence (AI) have strongly promoted diversification and modernization in the diagnosis and treatment of PU. This minireview elaborates on the research progress of AI in the field of PU, from PU's pathogenic factor Helicobacter pylori (Hp) infection, diagnosis and differential diagnosis, to its management and complications (bleeding, obstruction, perforation and canceration). Finally, the challenges and prospects of AI application in PU are prospected and expounded. With the in-depth understanding of modern medical technology, AI remains a promising option in the management of PU patients and plays a more indispensable role. How to realize the robustness, versatility and diversity of multifunctional AI systems in PU and conduct multicenter prospective clinical research as soon as possible are the top priorities in the future.
Collapse
Affiliation(s)
- Peng-yue Zhao
- Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Ke Han
- Department of Gastroenterology, First Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Ren-qi Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
- Correspondence: Xiao-hui Du Chao Ren Ren-qi Yao
| | - Chao Ren
- Department of Pulmonary and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Correspondence: Xiao-hui Du Chao Ren Ren-qi Yao
| | - Xiao-hui Du
- Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, Beijing, China
- Correspondence: Xiao-hui Du Chao Ren Ren-qi Yao
| |
Collapse
|
36
|
Visaggi P, de Bortoli N, Barberio B, Savarino V, Oleas R, Rosi EM, Marchi S, Ribolsi M, Savarino E. Artificial Intelligence in the Diagnosis of Upper Gastrointestinal Diseases. J Clin Gastroenterol 2022; 56:23-35. [PMID: 34739406 PMCID: PMC9988236 DOI: 10.1097/mcg.0000000000001629] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Artificial intelligence (AI) has enormous potential to support clinical routine workflows and therefore is gaining increasing popularity among medical professionals. In the field of gastroenterology, investigations on AI and computer-aided diagnosis (CAD) systems have mainly focused on the lower gastrointestinal (GI) tract. However, numerous CAD tools have been tested also in upper GI disorders showing encouraging results. The main application of AI in the upper GI tract is endoscopy; however, the need to analyze increasing loads of numerical and categorical data in short times has pushed researchers to investigate applications of AI systems in other upper GI settings, including gastroesophageal reflux disease, eosinophilic esophagitis, and motility disorders. AI and CAD systems will be increasingly incorporated into daily clinical practice in the coming years, thus at least basic notions will be soon required among physicians. For noninsiders, the working principles and potential of AI may be as fascinating as obscure. Accordingly, we reviewed systematic reviews, meta-analyses, randomized controlled trials, and original research articles regarding the performance of AI in the diagnosis of both malignant and benign esophageal and gastric diseases, also discussing essential characteristics of AI.
Collapse
Affiliation(s)
- Pierfrancesco Visaggi
- Gastroenterology Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa
| | - Nicola de Bortoli
- Gastroenterology Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa
| | - Brigida Barberio
- Department of Surgery, Oncology, and Gastroenterology, Division of Gastroenterology, University of Padua, Padua
| | - Vincenzo Savarino
- Gastroenterology Unit, Department of Internal Medicine, University of Genoa, Genoa
| | - Roberto Oleas
- Ecuadorean Institute of Digestive Diseases, Guayaquil, Ecuador
| | - Emma M. Rosi
- Gastroenterology Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa
| | - Santino Marchi
- Gastroenterology Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa
| | - Mentore Ribolsi
- Department of Digestive Diseases, Campus Bio Medico University of Rome, Roma, Italy
| | - Edoardo Savarino
- Department of Surgery, Oncology, and Gastroenterology, Division of Gastroenterology, University of Padua, Padua
| |
Collapse
|
37
|
Bang CS. Artificial Intelligence in the Analysis of Upper Gastrointestinal Disorders. THE KOREAN JOURNAL OF HELICOBACTER AND UPPER GASTROINTESTINAL RESEARCH 2021. [DOI: 10.7704/kjhugr.2021.0030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the past, conventional machine learning was applied to analyze tabulated medical data while deep learning was applied to study afflictions such as gastrointestinal disorders. Neural networks were used to detect, classify, and delineate various images of lesions because the local feature selection and optimization of the deep learning model enabled accurate image analysis. With the accumulation of medical records, the evolution of computational power and graphics processing units, and the widespread use of open-source libraries in large-scale machine learning processes, medical artificial intelligence (AI) is overcoming its limitations. While early studies prioritized the automatic diagnosis of cancer or pre-cancerous lesions, the current expanded scope of AI includes benign lesions, quality control, and machine learning analysis of big data. However, the limited commercialization of medical AI and the need to justify its application in each field of research are restricting factors. Modeling assumes that observations follow certain statistical rules, and external validation checks whether assumption is correct or generalizable. Therefore, unused data are essential in the training or internal testing process to validate the performance of the established AI models. This article summarizes the studies on the application of AI models in upper gastrointestinal disorders. The current limitations and the perspectives on future development have also been discussed.
Collapse
|
38
|
Analysis of Helicobacter pylori's Antibiotic Resistance Rate and Research on Its Eradication Treatment Plan. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:6009602. [PMID: 34899967 PMCID: PMC8664512 DOI: 10.1155/2021/6009602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/08/2021] [Accepted: 11/20/2021] [Indexed: 01/10/2023]
Abstract
How to choose the right plan is the key to treatment, and this must take into account the local eradication of Helicobacter pylori and the drug resistance of Helicobacter pylori. In order to better eradicate Helicobacter pylori, in the current clinical treatment process, most of the combined treatments of triple drugs are used, but the therapeutic effect is still not ideal. In addition, many studies have focused on changing the types and dosages of drugs, but they have not yet achieved good results. This paper combines experimental research to analyze the drug resistance rate of Helicobacter pylori and obtains gastric mucosal specimens of patients through gastroscopy to cultivate clinical isolates of H. pylori.. Furthermore, this study used the Kirby-Bauer drug susceptibility disc technique to determine the sensitivity of H. pylori clinical isolates to a range of regularly used clinical antibiotics, as well as a set of instances of H. pylori antibiotic resistance. Finally, this research integrates experimental analyses and various successful eradication treatment plans to provide a unique eradication treatment strategy.
Collapse
|
39
|
Automated Detection of Gastric Cancer by Retrospective Endoscopic Image Dataset Using U-Net R-CNN. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Upper gastrointestinal endoscopy is widely performed to detect early gastric cancers. As an automated detection method for early gastric cancer from endoscopic images, a method involving an object detection model, which is a deep learning technique, was proposed. However, there were challenges regarding the reduction in false positives in the detected results. In this study, we proposed a novel object detection model, U-Net R-CNN, based on a semantic segmentation technique that extracts target objects by performing a local analysis of the images. U-Net was introduced as a semantic segmentation method to detect early candidates for gastric cancer. These candidates were classified as gastric cancer cases or false positives based on box classification using a convolutional neural network. In the experiments, the detection performance was evaluated via the 5-fold cross-validation method using 1208 images of healthy subjects and 533 images of gastric cancer patients. When DenseNet169 was used as the convolutional neural network for box classification, the detection sensitivity and the number of false positives evaluated on a lesion basis were 98% and 0.01 per image, respectively, which improved the detection performance compared to the previous method. These results indicate that the proposed method will be useful for the automated detection of early gastric cancer from endoscopic images.
Collapse
|
40
|
Tanaka K, Nakada TA, Takahashi N, Dozono T, Yoshimura Y, Yokota H, Horikoshi T, Nakaguchi T, Shinozaki K. Superiority of Supervised Machine Learning on Reading Chest X-Rays in Intensive Care Units. Front Med (Lausanne) 2021; 8:676277. [PMID: 34722558 PMCID: PMC8554032 DOI: 10.3389/fmed.2021.676277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/22/2021] [Indexed: 11/26/2022] Open
Abstract
Purpose: Portable chest radiographs are diagnostically indispensable in intensive care units (ICU). This study aimed to determine if the proposed machine learning technique increased in accuracy as the number of radiograph readings increased and if it was accurate in a clinical setting. Methods: Two independent data sets of portable chest radiographs (n = 380, a single Japanese hospital; n = 1,720, The National Institution of Health [NIH] ChestX-ray8 dataset) were analyzed. Each data set was divided training data and study data. Images were classified as atelectasis, pleural effusion, pneumonia, or no emergency. DenseNet-121, as a pre-trained deep convolutional neural network was used and ensemble learning was performed on the best-performing algorithms. Diagnostic accuracy and processing time were compared to those of ICU physicians. Results: In the single Japanese hospital data, the area under the curve (AUC) of diagnostic accuracy was 0.768. The area under the curve (AUC) of diagnostic accuracy significantly improved as the number of radiograph readings increased from 25 to 100% in the NIH data set. The AUC was higher than 0.9 for all categories toward the end of training with a large sample size. The time to complete 53 radiographs by machine learning was 70 times faster than the time taken by ICU physicians (9.66 s vs. 12 min). The diagnostic accuracy was higher by machine learning than by ICU physicians in most categories (atelectasis, AUC 0.744 vs. 0.555, P < 0.05; pleural effusion, 0.856 vs. 0.706, P < 0.01; pneumonia, 0.720 vs. 0.744, P = 0.88; no emergency, 0.751 vs. 0.698, P = 0.47). Conclusions: We developed an automatic detection system for portable chest radiographs in ICU setting; its performance was superior and quite faster than ICU physicians.
Collapse
Affiliation(s)
- Kumiko Tanaka
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Taka-Aki Nakada
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Nozomi Takahashi
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takahiro Dozono
- Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
| | | | - Hajime Yokota
- Department of Diagnostic Radiology and Radiation Oncology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takuro Horikoshi
- Department of Diagnostic Radiology and Radiation Oncology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Toshiya Nakaguchi
- Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
| | - Koichiro Shinozaki
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|
41
|
Kröner PT, Engels MML, Glicksberg BS, Johnson KW, Mzaik O, van Hooft JE, Wallace MB, El-Serag HB, Krittanawong C. Artificial intelligence in gastroenterology: A state-of-the-art review. World J Gastroenterol 2021; 27:6794-6824. [PMID: 34790008 PMCID: PMC8567482 DOI: 10.3748/wjg.v27.i40.6794] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/15/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
The development of artificial intelligence (AI) has increased dramatically in the last 20 years, with clinical applications progressively being explored for most of the medical specialties. The field of gastroenterology and hepatology, substantially reliant on vast amounts of imaging studies, is not an exception. The clinical applications of AI systems in this field include the identification of premalignant or malignant lesions (e.g., identification of dysplasia or esophageal adenocarcinoma in Barrett’s esophagus, pancreatic malignancies), detection of lesions (e.g., polyp identification and classification, small-bowel bleeding lesion on capsule endoscopy, pancreatic cystic lesions), development of objective scoring systems for risk stratification, predicting disease prognosis or treatment response [e.g., determining survival in patients post-resection of hepatocellular carcinoma), determining which patients with inflammatory bowel disease (IBD) will benefit from biologic therapy], or evaluation of metrics such as bowel preparation score or quality of endoscopic examination. The objective of this comprehensive review is to analyze the available AI-related studies pertaining to the entirety of the gastrointestinal tract, including the upper, middle and lower tracts; IBD; the hepatobiliary system; and the pancreas, discussing the findings and clinical applications, as well as outlining the current limitations and future directions in this field.
Collapse
Affiliation(s)
- Paul T Kröner
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
| | - Megan ML Engels
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
- Cancer Center Amsterdam, Department of Gastroenterology and Hepatology, Amsterdam UMC, Location AMC, Amsterdam 1105, The Netherlands
| | - Benjamin S Glicksberg
- The Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Kipp W Johnson
- The Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Obaie Mzaik
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
| | - Jeanin E van Hooft
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Amsterdam 2300, The Netherlands
| | - Michael B Wallace
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
- Division of Gastroenterology and Hepatology, Sheikh Shakhbout Medical City, Abu Dhabi 11001, United Arab Emirates
| | - Hashem B El-Serag
- Section of Gastroenterology and Hepatology, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX 77030, United States
- Section of Health Services Research, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX 77030, United States
| | - Chayakrit Krittanawong
- Section of Health Services Research, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX 77030, United States
- Section of Cardiology, Michael E. DeBakey VA Medical Center, Houston, TX 77030, United States
| |
Collapse
|
42
|
Oka A, Ishimura N, Ishihara S. A New Dawn for the Use of Artificial Intelligence in Gastroenterology, Hepatology and Pancreatology. Diagnostics (Basel) 2021; 11:1719. [PMID: 34574060 PMCID: PMC8468082 DOI: 10.3390/diagnostics11091719] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
Artificial intelligence (AI) is rapidly becoming an essential tool in the medical field as well as in daily life. Recent developments in deep learning, a subfield of AI, have brought remarkable advances in image recognition, which facilitates improvement in the early detection of cancer by endoscopy, ultrasonography, and computed tomography. In addition, AI-assisted big data analysis represents a great step forward for precision medicine. This review provides an overview of AI technology, particularly for gastroenterology, hepatology, and pancreatology, to help clinicians utilize AI in the near future.
Collapse
Affiliation(s)
- Akihiko Oka
- Department of Internal Medicine II, Faculty of Medicine, Shimane University, Izumo 693-8501, Shimane, Japan; (N.I.); (S.I.)
| | | | | |
Collapse
|
43
|
Pecere S, Milluzzo SM, Esposito G, Dilaghi E, Telese A, Eusebi LH. Applications of Artificial Intelligence for the Diagnosis of Gastrointestinal Diseases. Diagnostics (Basel) 2021; 11:diagnostics11091575. [PMID: 34573917 PMCID: PMC8469485 DOI: 10.3390/diagnostics11091575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022] Open
Abstract
The development of convolutional neural networks has achieved impressive advances of machine learning in recent years, leading to an increasing use of artificial intelligence (AI) in the field of gastrointestinal (GI) diseases. AI networks have been trained to differentiate benign from malignant lesions, analyze endoscopic and radiological GI images, and assess histological diagnoses, obtaining excellent results and high overall diagnostic accuracy. Nevertheless, there data are lacking on side effects of AI in the gastroenterology field, and high-quality studies comparing the performance of AI networks to health care professionals are still limited. Thus, large, controlled trials in real-time clinical settings are warranted to assess the role of AI in daily clinical practice. This narrative review gives an overview of some of the most relevant potential applications of AI for gastrointestinal diseases, highlighting advantages and main limitations and providing considerations for future development.
Collapse
Affiliation(s)
- Silvia Pecere
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00135 Rome, Italy;
- Center for Endoscopic Research Therapeutics and Training (CERTT), Catholic University, 00168 Rome, Italy
- Correspondence: (S.P.); (L.H.E.)
| | - Sebastian Manuel Milluzzo
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00135 Rome, Italy;
- Fondazione Poliambulanza Istituto Ospedaliero, 25121 Brescia, Italy
| | - Gianluca Esposito
- Department of Medical-Surgical Sciences and Translational Medicine, Sant’Andrea Hospital, Sapienza University of Rome, 00168 Rome, Italy; (G.E.); (E.D.)
| | - Emanuele Dilaghi
- Department of Medical-Surgical Sciences and Translational Medicine, Sant’Andrea Hospital, Sapienza University of Rome, 00168 Rome, Italy; (G.E.); (E.D.)
| | - Andrea Telese
- Department of Gastroenterology, University College London Hospital (UCLH), London NW1 2AF, UK;
| | - Leonardo Henry Eusebi
- Division of Gastroenterology and Endoscopy, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40121 Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40121 Bologna, Italy
- Correspondence: (S.P.); (L.H.E.)
| |
Collapse
|
44
|
Zhou J, Hu N, Huang ZY, Song B, Wu CC, Zeng FX, Wu M. Application of artificial intelligence in gastrointestinal disease: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1188. [PMID: 34430629 PMCID: PMC8350704 DOI: 10.21037/atm-21-3001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/29/2021] [Indexed: 02/05/2023]
Abstract
Objective We collected evidence on the application of artificial intelligence (AI) in gastroenterology field. The review was carried out from two aspects of endoscopic types and gastrointestinal diseases, and briefly summarized the challenges and future directions in this field. Background Due to the advancement of computational power and a surge of available data, a solid foundation has been laid for the growth of AI. Specifically, varied machine learning (ML) techniques have been emerging in endoscopic image analysis. To improve the accuracy and efficiency of clinicians, AI has been widely applied to gastrointestinal endoscopy. Methods PubMed electronic database was searched using the keywords containing “AI”, “ML”, “deep learning (DL)”, “convolution neural network”, “endoscopy (such as white light endoscopy (WLE), narrow band imaging (NBI) endoscopy, magnifying endoscopy with narrow band imaging (ME-NBI), chromoendoscopy, endocytoscopy (EC), and capsule endoscopy (CE))”. Search results were assessed for relevance and then used for detailed discussion. Conclusions This review described the basic knowledge of AI, ML, and DL, and summarizes the application of AI in various endoscopes and gastrointestinal diseases. Finally, the challenges and directions of AI in clinical application were discussed. At present, the application of AI has solved some clinical problems, but more still needs to be done.
Collapse
Affiliation(s)
- Jun Zhou
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Na Hu
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Zhi-Yin Huang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Song
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Chun-Cheng Wu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Fan-Xin Zeng
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Min Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| |
Collapse
|
45
|
Tokat M, van Tilburg L, Koch AD, Spaander MCW. Artificial Intelligence in Upper Gastrointestinal Endoscopy. Dig Dis 2021; 40:395-408. [PMID: 34348267 DOI: 10.1159/000518232] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/23/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Over the past decade, several artificial intelligence (AI) systems are developed to assist in endoscopic assessment of (pre-)cancerous lesions of the gastrointestinal (GI) tract. In this review, we aimed to provide an overview of the possible indications of AI technology in upper GI endoscopy and hypothesize about potential challenges for its use in clinical practice. SUMMARY Application of AI in upper GI endoscopy has been investigated for several indications: (1) detection, characterization, and delineation of esophageal and gastric cancer (GC) and their premalignant conditions; (2) prediction of tumor invasion; and (3) detection of Helicobacter pylori. AI systems show promising results with an accuracy of up to 99% for the detection of superficial and advanced upper GI cancers. AI outperformed trainee and experienced endoscopists for the detection of esophageal lesions and atrophic gastritis. For GC, AI outperformed mid-level and trainee endoscopists but not expert endoscopists. KEY MESSAGES Application of artificial intelligence (AI) in upper gastrointestinal endoscopy may improve early diagnosis of esophageal and gastric cancer and may enable endoscopists to better identify patients eligible for endoscopic resection. The benefit of AI on the quality of upper endoscopy still needs to be demonstrated, while prospective trials are needed to confirm accuracy and feasibility during real-time daily endoscopy.
Collapse
Affiliation(s)
- Meltem Tokat
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Laurelle van Tilburg
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Arjun D Koch
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Manon C W Spaander
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
46
|
Lu YF, Lyu B. Current situation and prospect of artificial intelligence application in endoscopic diagnosis of Helicobacter pylori infection. Artif Intell Gastrointest Endosc 2021; 2:50-62. [DOI: 10.37126/aige.v2.i3.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/01/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
With the appearance and prevalence of deep learning, artificial intelligence (AI) has been broadly studied and made great progress in various fields of medicine, including gastroenterology. Helicobacter pylori (H. pylori), closely associated with various digestive and extradigestive diseases, has a high infection rate worldwide. Endoscopic surveillance can evaluate H. pylori infection situations and predict the risk of gastric cancer, but there is no objective diagnostic criteria to eliminate the differences between operators. The computer-aided diagnosis system based on AI technology has demonstrated excellent performance for the diagnosis of H. pylori infection, which is superior to novice endoscopists and similar to skilled. Compared with the visual diagnosis of H. pylori infection by endoscopists, AI possesses voluminous advantages: High accuracy, high efficiency, high quality control, high objectivity, and high-effect teaching. This review summarizes the previous and recent studies on AI-assisted diagnosis of H. pylori infection, points out the limitations, and puts forward prospect for future research.
Collapse
Affiliation(s)
- Yi-Fan Lu
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| | - Bin Lyu
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| |
Collapse
|
47
|
Hsiao YJ, Wen YC, Lai WY, Lin YY, Yang YP, Chien Y, Yarmishyn AA, Hwang DK, Lin TC, Chang YC, Lin TY, Chang KJ, Chiou SH, Jheng YC. Application of artificial intelligence-driven endoscopic screening and diagnosis of gastric cancer. World J Gastroenterol 2021; 27:2979-2993. [PMID: 34168402 PMCID: PMC8192292 DOI: 10.3748/wjg.v27.i22.2979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/10/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
The landscape of gastrointestinal endoscopy continues to evolve as new technologies and techniques become available. The advent of image-enhanced and magnifying endoscopies has highlighted the step toward perfecting endoscopic screening and diagnosis of gastric lesions. Simultaneously, with the development of convolutional neural network, artificial intelligence (AI) has made unprecedented breakthroughs in medical imaging, including the ongoing trials of computer-aided detection of colorectal polyps and gastrointestinal bleeding. In the past demi-decade, applications of AI systems in gastric cancer have also emerged. With AI's efficient computational power and learning capacities, endoscopists can improve their diagnostic accuracies and avoid the missing or mischaracterization of gastric neoplastic changes. So far, several AI systems that incorporated both traditional and novel endoscopy technologies have been developed for various purposes, with most systems achieving an accuracy of more than 80%. However, their feasibility, effectiveness, and safety in clinical practice remain to be seen as there have been no clinical trials yet. Nonetheless, AI-assisted endoscopies shed light on more accurate and sensitive ways for early detection, treatment guidance and prognosis prediction of gastric lesions. This review summarizes the current status of various AI applications in gastric cancer and pinpoints directions for future research and clinical practice implementation from a clinical perspective.
Collapse
Affiliation(s)
- Yu-Jer Hsiao
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yuan-Chih Wen
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Education, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Wei-Yi Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yi-Ying Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Internal Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Critical Center, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | | | - De-Kuang Hwang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei 112201, Taiwan
| | - Tai-Chi Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei 112201, Taiwan
| | - Yun-Chia Chang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Ting-Yi Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Kao-Jung Chang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Ying-Chun Jheng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Big Data Center, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| |
Collapse
|
48
|
Bang CS. [Deep Learning in Upper Gastrointestinal Disorders: Status and Future Perspectives]. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2021; 75:120-131. [PMID: 32209800 DOI: 10.4166/kjg.2020.75.3.120] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 12/18/2022]
Abstract
Artificial intelligence using deep learning has been applied to gastrointestinal disorders for the detection, classification, and delineation of various lesion images. With the accumulation of enormous medical records, the evolution of computation power with graphic processing units, and the widespread use of open-source libraries in large-scale machine learning processes, medical artificial intelligence is overcoming its traditional limitations. This paper explains the basic concepts of deep learning model establishment and summarizes previous studies on upper gastrointestinal disorders. The limitations and perspectives on future development are also discussed.
Collapse
Affiliation(s)
- Chang Seok Bang
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Korea
| |
Collapse
|
49
|
Lazăr DC, Avram MF, Faur AC, Romoşan I, Goldiş A. The role of computer-assisted systems for upper-endoscopy quality monitoring and assessment of gastric lesions. Gastroenterol Rep (Oxf) 2021; 9:185-204. [PMID: 34316369 PMCID: PMC8309682 DOI: 10.1093/gastro/goab008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/05/2020] [Accepted: 12/20/2020] [Indexed: 12/24/2022] Open
Abstract
This article analyses the literature regarding the value of computer-assisted systems in esogastroduodenoscopy-quality monitoring and the assessment of gastric lesions. Current data show promising results in upper-endoscopy quality control and a satisfactory detection accuracy of gastric premalignant and malignant lesions, similar or even exceeding that of experienced endoscopists. Moreover, artificial systems enable the decision for the best treatment strategies in gastric-cancer patient care, namely endoscopic vs surgical resection according to tumor depth. In so doing, unnecessary surgical interventions would be avoided whilst providing a better quality of life and prognosis for these patients. All these performance data have been revealed by numerous studies using different artificial intelligence (AI) algorithms in addition to white-light endoscopy or novel endoscopic techniques that are available in expert endoscopy centers. It is expected that ongoing clinical trials involving AI and the embedding of computer-assisted diagnosis systems into endoscopic devices will enable real-life implementation of AI endoscopic systems in the near future and at the same time will help to overcome the current limits of the computer-assisted systems leading to an improvement in performance. These benefits should lead to better diagnostic and treatment strategies for gastric-cancer patients. Furthermore, the incorporation of AI algorithms in endoscopic tools along with the development of large electronic databases containing endoscopic images might help in upper-endoscopy assistance and could be used for telemedicine purposes and second opinion for difficult cases.
Collapse
Affiliation(s)
- Daniela Cornelia Lazăr
- Department V of Internal Medicine I, Discipline of Internal Medicine IV, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Romania,Timișoara, Romania
| | - Mihaela Flavia Avram
- Department of Surgery X, 1st Surgery Discipline, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Romania, Timișoara, Romania
| | - Alexandra Corina Faur
- Department I, Discipline of Anatomy and Embriology, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Romania, Timișoara, Romania
| | - Ioan Romoşan
- Department V of Internal Medicine I, Discipline of Internal Medicine IV, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Romania,Timișoara, Romania
| | - Adrian Goldiş
- Department VII of Internal Medicine II, Discipline of Gastroenterology and Hepatology, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Romania, Timișoara, Romania
| |
Collapse
|
50
|
Ueyama H, Kato Y, Akazawa Y, Yatagai N, Komori H, Takeda T, Matsumoto K, Ueda K, Matsumoto K, Hojo M, Yao T, Nagahara A, Tada T. Application of artificial intelligence using a convolutional neural network for diagnosis of early gastric cancer based on magnifying endoscopy with narrow-band imaging. J Gastroenterol Hepatol 2021; 36:482-489. [PMID: 32681536 PMCID: PMC7984440 DOI: 10.1111/jgh.15190] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIM Magnifying endoscopy with narrow-band imaging (ME-NBI) has made a huge contribution to clinical practice. However, acquiring skill at ME-NBI diagnosis of early gastric cancer (EGC) requires considerable expertise and experience. Recently, artificial intelligence (AI), using deep learning and a convolutional neural network (CNN), has made remarkable progress in various medical fields. Here, we constructed an AI-assisted CNN computer-aided diagnosis (CAD) system, based on ME-NBI images, to diagnose EGC and evaluated the diagnostic accuracy of the AI-assisted CNN-CAD system. METHODS The AI-assisted CNN-CAD system (ResNet50) was trained and validated on a dataset of 5574 ME-NBI images (3797 EGCs, 1777 non-cancerous mucosa and lesions). To evaluate the diagnostic accuracy, a separate test dataset of 2300 ME-NBI images (1430 EGCs, 870 non-cancerous mucosa and lesions) was assessed using the AI-assisted CNN-CAD system. RESULTS The AI-assisted CNN-CAD system required 60 s to analyze 2300 test images. The overall accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of the CNN were 98.7%, 98%, 100%, 100%, and 96.8%, respectively. All misdiagnosed images of EGCs were of low-quality or of superficially depressed and intestinal-type intramucosal cancers that were difficult to distinguish from gastritis, even by experienced endoscopists. CONCLUSIONS The AI-assisted CNN-CAD system for ME-NBI diagnosis of EGC could process many stored ME-NBI images in a short period of time and had a high diagnostic ability. This system may have great potential for future application to real clinical settings, which could facilitate ME-NBI diagnosis of EGC in practice.
Collapse
Affiliation(s)
- Hiroya Ueyama
- Department of GastroenterologyJuntendo University School of MedicineTokyoJapan
| | | | - Yoichi Akazawa
- Department of GastroenterologyJuntendo University School of MedicineTokyoJapan
| | - Noboru Yatagai
- Department of GastroenterologyJuntendo University School of MedicineTokyoJapan
| | - Hiroyuki Komori
- Department of GastroenterologyJuntendo University School of MedicineTokyoJapan
| | - Tsutomu Takeda
- Department of GastroenterologyJuntendo University School of MedicineTokyoJapan
| | - Kohei Matsumoto
- Department of GastroenterologyJuntendo University School of MedicineTokyoJapan
| | - Kumiko Ueda
- Department of GastroenterologyJuntendo University School of MedicineTokyoJapan
| | - Kenshi Matsumoto
- Department of GastroenterologyJuntendo University School of MedicineTokyoJapan
| | - Mariko Hojo
- Department of GastroenterologyJuntendo University School of MedicineTokyoJapan
| | - Takashi Yao
- Department of Human PathologyJuntendo University School of MedicineTokyoJapan
| | - Akihito Nagahara
- Department of GastroenterologyJuntendo University School of MedicineTokyoJapan
| | - Tomohiro Tada
- AI Medical Service Inc.TokyoJapan,Tada Tomohiro Institute of Gastroenterology and ProctologySaitamaJapan
| |
Collapse
|