1
|
Shah SA, Taj I, Usman SM, Hassan Shah SN, Imran AS, Khalid S. A hybrid approach of vision transformers and CNNs for detection of ulcerative colitis. Sci Rep 2024; 14:24771. [PMID: 39433818 PMCID: PMC11494132 DOI: 10.1038/s41598-024-75901-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024] Open
Abstract
Ulcerative Colitis is an Inflammatory Bowel disease caused by a variety of factors that lead to a serious impact on the quality of life of the patients if left untreated. Due to complexities in the identification procedures of this disease, the treatment timeline and quality can be severely affected, leading to further consequences for the sufferer. The difficulties in identification are due to high patients to healthcare professionals ratio. Researchers have proposed variety of machine/deep learning methods for automated detection of ulcerative colitis, however, several challenges exists including class imbalance problem, comprehensive feature extraction and accurate classification. We propose a novel method for accurate detection of ulcerative colitis with augmentation techniques to overcome class imbalance issue, a comprehensive feature vector extraction using custom architecture of Vision Transformer (ViT) and accurate classification using customized Convolutional Neural Network (CNN). We used the TMC-UCM and LIMUC datasets in this research for training and testing of proposed method and achieved accuracy of 90% with AUC-ROC scores of 0.91, 0.81, 0.94, and 0.94 for the endoscopic classes of Mayo 0, Mayo 1, Mayo 2, and Mayo 3 respectively. We have compared the proposed method with existing state of the art methods and conclude that the proposed method outperforms the existing methods.
Collapse
Affiliation(s)
- Syed Abdullah Shah
- Department of Creative Technologies, Faculty of Computing and Artificial Intelligence, Air University, Islamabad, 44000, Pakistan
| | - Imran Taj
- College of Interdisciplinary Studies, Zayed University, 144534, Abu Dhabi, United Arab Emirates
| | - Syed Muhammad Usman
- Department of Computer Science, Bahria School of Engineering and Applied Sciences, Bahria University, Islamabad, 44000, Pakistan
| | - Syed Nehal Hassan Shah
- Department of Creative Technologies, Faculty of Computing and Artificial Intelligence, Air University, Islamabad, 44000, Pakistan
| | - Ali Shariq Imran
- Department of Computer Science, Norwegian University of Science and Technology, Gjøvik, 2815, Norway.
| | - Shehzad Khalid
- Department of Computer Engineering, Bahria School of Engineering and Applied Sciences, Bahria University, Islamabad, 44000, Pakistan
| |
Collapse
|
2
|
Kulkarni C, Liu D, Fardeen T, Dickson ER, Jang H, Sinha SR, Gubatan J. Artificial intelligence and machine learning technologies in ulcerative colitis. Therap Adv Gastroenterol 2024; 17:17562848241272001. [PMID: 39247718 PMCID: PMC11378191 DOI: 10.1177/17562848241272001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/17/2024] [Indexed: 09/10/2024] Open
Abstract
Interest in artificial intelligence (AI) applications for ulcerative colitis (UC) has grown tremendously in recent years. In the past 5 years, there have been over 80 studies focused on machine learning (ML) tools to address a wide range of clinical problems in UC, including diagnosis, prognosis, identification of new UC biomarkers, monitoring of disease activity, and prediction of complications. AI classifiers such as random forest, support vector machines, neural networks, and logistic regression models have been used to model UC clinical outcomes using molecular (transcriptomic) and clinical (electronic health record and laboratory) datasets with relatively high performance (accuracy, sensitivity, and specificity). Application of ML algorithms such as computer vision, guided image filtering, and convolutional neural networks have also been utilized to analyze large and high-dimensional imaging datasets such as endoscopic, histologic, and radiological images for UC diagnosis and prediction of complications (post-surgical complications, colorectal cancer). Incorporation of these ML tools to guide and optimize UC clinical practice is promising but will require large, high-quality validation studies that overcome the risk of bias as well as consider cost-effectiveness compared to standard of care.
Collapse
Affiliation(s)
- Chiraag Kulkarni
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Derek Liu
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Touran Fardeen
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Eliza Rose Dickson
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Hyunsu Jang
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Sidhartha R Sinha
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, 300 Pasteur Drive, M211, Stanford, CA 94305, USA
| | - John Gubatan
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, 300 Pasteur Drive, M211, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Syed AH, Abujabal HAS, Ahmad S, Malebary SJ, Alromema N. Advances in Inflammatory Bowel Disease Diagnostics: Machine Learning and Genomic Profiling Reveal Key Biomarkers for Early Detection. Diagnostics (Basel) 2024; 14:1182. [PMID: 38893707 PMCID: PMC11172026 DOI: 10.3390/diagnostics14111182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/25/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
This study, utilizing high-throughput technologies and Machine Learning (ML), has identified gene biomarkers and molecular signatures in Inflammatory Bowel Disease (IBD). We could identify significant upregulated or downregulated genes in IBD patients by comparing gene expression levels in colonic specimens from 172 IBD patients and 22 healthy individuals using the GSE75214 microarray dataset. Our ML techniques and feature selection methods revealed six Differentially Expressed Gene (DEG) biomarkers (VWF, IL1RL1, DENND2B, MMP14, NAAA, and PANK1) with strong diagnostic potential for IBD. The Random Forest (RF) model demonstrated exceptional performance, with accuracy, F1-score, and AUC values exceeding 0.98. Our findings were rigorously validated with independent datasets (GSE36807 and GSE10616), further bolstering their credibility and showing favorable performance metrics (accuracy: 0.841, F1-score: 0.734, AUC: 0.887). Our functional annotation and pathway enrichment analysis provided insights into crucial pathways associated with these dysregulated genes. DENND2B and PANK1 were identified as novel IBD biomarkers, advancing our understanding of the disease. The validation in independent cohorts enhances the reliability of these findings and underscores their potential for early detection and personalized treatment of IBD. Further exploration of these genes is necessary to fully comprehend their roles in IBD pathogenesis and develop improved diagnostic tools and therapies. This study significantly contributes to IBD research with valuable insights, potentially greatly enhancing patient care.
Collapse
Affiliation(s)
- Asif Hassan Syed
- Department of Computer Science, Faculty of Computing and Information Technology-Rabigh, King Abdulaziz University, Jeddah 22254, Saudi Arabia;
| | - Hamza Ali S. Abujabal
- Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
| | - Shakeel Ahmad
- Department of Computer Science, Faculty of Computing and Information Technology-Rabigh, King Abdulaziz University, Jeddah 22254, Saudi Arabia;
| | - Sharaf J. Malebary
- Department of Information Technology, Faculty of Computing and Information Technology-Rabigh, King Abdulaziz University, P.O. Box 344, Rabigh 21911, Saudi Arabia;
| | - Nashwan Alromema
- Department of Computer Science, Faculty of Computing and Information Technology-Rabigh, King Abdulaziz University, P.O. Box 344, Rabigh 21911, Saudi Arabia;
| |
Collapse
|
4
|
Uchikov P, Khalid U, Vankov N, Kraeva M, Kraev K, Hristov B, Sandeva M, Dragusheva S, Chakarov D, Petrov P, Dobreva-Yatseva B, Novakov I. The Role of Artificial Intelligence in the Diagnosis and Treatment of Ulcerative Colitis. Diagnostics (Basel) 2024; 14:1004. [PMID: 38786302 PMCID: PMC11119852 DOI: 10.3390/diagnostics14101004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND AND OBJECTIVES This review aims to delve into the role of artificial intelligence in medicine. Ulcerative colitis (UC) is a chronic, inflammatory bowel disease (IBD) characterized by superficial mucosal inflammation, rectal bleeding, diarrhoea and abdominal pain. By identifying the challenges inherent in UC diagnosis, we seek to highlight the potential impact of artificial intelligence on enhancing both diagnosis and treatment methodologies for this condition. METHOD A targeted, non-systematic review of literature relating to ulcerative colitis was undertaken. The PubMed and Scopus databases were searched to categorize a well-rounded understanding of the field of artificial intelligence and its developing role in the diagnosis and treatment of ulcerative colitis. Articles that were thought to be relevant were included. This paper only included articles published in English. RESULTS Artificial intelligence (AI) refers to computer algorithms capable of learning, problem solving and decision-making. Throughout our review, we highlighted the role and importance of artificial intelligence in modern medicine, emphasizing its role in diagnosis through AI-assisted endoscopies and histology analysis and its enhancements in the treatment of ulcerative colitis. Despite these advances, AI is still hindered due to its current lack of adaptability to real-world scenarios and its difficulty in widespread data availability, which hinders the growth of AI-led data analysis. CONCLUSIONS When considering the potential of artificial intelligence, its ability to enhance patient care from a diagnostic and therapeutic perspective shows signs of promise. For the true utilization of artificial intelligence, some roadblocks must be addressed. The datasets available to AI may not truly reflect the real-world, which would prevent its impact in all clinical scenarios when dealing with a spectrum of patients with different backgrounds and presenting factors. Considering this, the shift in medical diagnostics and therapeutics is coinciding with evolving technology. With a continuous advancement in artificial intelligence programming and a perpetual surge in patient datasets, these networks can be further enhanced and supplemented with a greater cohort, enabling better outcomes and prediction models for the future of modern medicine.
Collapse
Affiliation(s)
- Petar Uchikov
- Department of Special Surgery, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (P.U.); (I.N.)
| | - Usman Khalid
- Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Nikola Vankov
- University Multiprofile Hospital for Active Treatment “Saint George”, 4000 Plovdiv, Bulgaria;
| | - Maria Kraeva
- Department of Otorhynolaryngology, Medical Faculty, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Krasimir Kraev
- Department of Propedeutics of Internal Diseases, Medical Faculty, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Bozhidar Hristov
- Section “Gastroenterology”, Second Department of Internal Diseases, Medical Faculty, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Milena Sandeva
- Department of Midwifery, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Snezhanka Dragusheva
- Department of Nursing Care, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
- Department of Anesthesiology, Emergency and Intensive Care Medicine, Medical Faculty, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Dzhevdet Chakarov
- Department of Propaedeutics of Surgical Diseases, Section of General Surgery, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Petko Petrov
- Department of Maxillofacial Surgery, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Bistra Dobreva-Yatseva
- Section “Cardiology”, First Department of Internal Diseases, Medical Faculty, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Ivan Novakov
- Department of Special Surgery, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (P.U.); (I.N.)
| |
Collapse
|
5
|
Zhu J, Yin J, Chen J, Hu M, Lu W, Wang H, Zhang H, Chen W. Integrative analysis with microbial modelling and machine learning uncovers potential alleviators for ulcerative colitis. Gut Microbes 2024; 16:2336877. [PMID: 38563656 PMCID: PMC10989691 DOI: 10.1080/19490976.2024.2336877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024] Open
Abstract
Ulcerative colitis (UC) is a challenging form of inflammatory bowel disease, and its etiology is intricately linked to disturbances in the gut microbiome. To identify the potential alleviators of UC, we employed an integrative analysis combining microbial community modeling with advanced machine learning techniques. Using metagenomics data sourced from the Integrated Human Microbiome Project, we constructed individualized microbiome community models for each participant. Our analysis highlighted a significant decline in both α and β-diversity of strain-level microbial populations in UC subjects compared to controls. Distinct differences were also observed in the predicted fecal metabolite profiles and strain-to-metabolite contributions between the two groups. Using tree-based machine learning models, we successfully identified specific microbial strains and their associated metabolites as potential alleviators of UC. Notably, our experimental validation using a dextran sulfate sodium-induced UC mouse model demonstrated that the administration of Parabacteroides merdae ATCC 43,184 and N-acetyl-D-mannosamine provided notable relief from colitis symptoms. In summary, our study underscores the potential of an integrative approach to identify novel therapeutic avenues for UC, paving the way for future targeted interventions.
Collapse
Affiliation(s)
- Jinlin Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jialin Yin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jing Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Mingyi Hu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi People’s Hospital, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Wang Z, Wang Y, Yan J, Wei Y, Zhang Y, Wang X, Leng X. Analysis of cuproptosis-related genes in Ulcerative colitis and immunological characterization based on machine learning. Front Med (Lausanne) 2023; 10:1115500. [PMID: 37529244 PMCID: PMC10389668 DOI: 10.3389/fmed.2023.1115500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 07/03/2023] [Indexed: 08/03/2023] Open
Abstract
Cuproptosis is a novel form of cell death, mediated by protein lipid acylation and highly associated with mitochondrial metabolism, which is regulated in the cell. Ulcerative colitis (UC) is a chronic inflammatory bowel disease that recurs frequently, and its incidence is increasing worldwide every year. Currently, a growing number of studies have shown that cuproptosis-related genes (CRGs) play a crucial role in the development and progression of a variety of tumors. However, the regulatory role of CRGs in UC has not been fully elucidated. Firstly, we identified differentially expressed genes in UC, Likewise, CRGs expression profiles and immunological profiles were evaluated. Using 75 UC samples, we typed UC based on the expression profiles of CRGs, followed by correlative immune cell infiltration analysis. Using the weighted gene co-expression network analysis (WGCNA) methodology, the cluster's differentially expressed genes (DEGs) were produced. Then, the performances of extreme gradient boosting models (XGB), support vector machine models (SVM), random forest models (RF), and generalized linear models (GLM) were constructed and predicted. Finally, the effectiveness of the best machine learning model was evaluated using five external datasets, receiver operating characteristic curve (ROC), the area under the curve of ROC (AUC), a calibration curve, a nomogram, and a decision curve analysis (DCA). A total of 13 CRGs were identified as significantly different in UC and control samples. Two subtypes were identified in UC based on CRGs expression profiles. Immune cell infiltration analysis of subtypes showed significant differences between immune cells of different subtypes. WGCNA results showed a total of 8 modules with significant differences between subtypes, with the turquoise module being the most specific. The machine learning results showed satisfactory performance of the XGB model (AUC = 0.981). Finally, the construction of the final 5-gene-based XGB model, validated by the calibration curve, nomogram, decision curve analysis, and five external datasets (GSE11223: AUC = 0.987; GSE38713: AUC = 0.815; GSE53306: AUC = 0.946; GSE94648: AUC = 0.809; GSE87466: AUC = 0.981), also proved to predict subtypes of UC with accuracy. Our research presents a trustworthy model that can predict the likelihood of developing UC and methodically outlines the complex relationship between CRGs and UC.
Collapse
Affiliation(s)
- Zhengyan Wang
- Changchun University of Chinese Medicine, Changchun, China
| | - Ying Wang
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Jing Yan
- Changchun University of Chinese Medicine, Changchun, China
| | - Yuchi Wei
- Changchun University of Chinese Medicine, Changchun, China
| | - Yinzhen Zhang
- Changchun University of Chinese Medicine, Changchun, China
| | - Xukai Wang
- Department of Orthopedics, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyang Leng
- Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
7
|
Cai W, Xu J, Chen Y, Wu X, Zeng Y, Yu F. Performance of Machine Learning Algorithms for Predicting Disease Activity in Inflammatory Bowel Disease. Inflammation 2023:10.1007/s10753-023-01827-0. [PMID: 37171693 DOI: 10.1007/s10753-023-01827-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/13/2023]
Abstract
This study aimed to explore the effectiveness of predicting disease activity in patients with inflammatory bowel disease (IBD), using machine learning (ML) models. A retrospective research was undertaken on IBD patients who were admitted into the First Affiliated Hospital of Wenzhou Medical University between September 2011 and September 2019. At first, data were randomly split into a 3:1 ratio of training to test set. The least absolute shrinkage and selection operator (LASSO) algorithm was applied to reduce the dimension of variables. These variables were used to generate seven ML algorithms, namely random forests (RFs), adaptive boosting (AdaBoost), K-nearest neighbors (KNNs), support vector machines (SVMs), naïve Bayes (NB), ridge regression, and eXtreme gradient boosting (XGBoost) to train to predict disease activity in IBD patients. SHapley Additive exPlanation (SHAP) analysis was performed to rank variable importance. A total of 876 participants with IBD, consisting of 275 ulcerative colitis (UC) and 601 Crohn's disease (CD), were retrospectively enrolled in the study. Thirty-three variables were obtained from the clinical characteristics and laboratory tests of the participants. Finally, after LASSO analysis, 11 and 5 variables were screened out to construct ML models for CD and UC, respectively. All seven ML models performed well in predicting disease activity in the CD and UC test sets. Among these ML models, SVM was more effective in predicting disease activity in the CD group, whose AUC reached 0.975, sensitivity 0.947, specificity 0.920, and accuracy 0.933. AdaBoost performed best for the UC group, with an AUC of 0.911, sensitivity 0.844, specificity 0.875, and accuracy 0.855. ML algorithms were available and capable of predicting disease activity in IBD patients. Based on clinical and laboratory variables, ML algorithms demonstrate great promise in guiding physicians' decision-making.
Collapse
Affiliation(s)
- Weimin Cai
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, No. 2, Fuxue Lane, Wenzhou, 325000, China
| | - Jun Xu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, No. 2, Fuxue Lane, Wenzhou, 325000, China
| | - Yihan Chen
- Department of Gastroenterology and Hepatology, Wenzhou Central Hospital, Wenzhou, 325000, China
| | - Xiao Wu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, No. 2, Fuxue Lane, Wenzhou, 325000, China
| | - Yuan Zeng
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, No. 2, Fuxue Lane, Wenzhou, 325000, China
| | - Fujun Yu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, No. 2, Fuxue Lane, Wenzhou, 325000, China.
| |
Collapse
|
8
|
Diaconu C, State M, Birligea M, Ifrim M, Bajdechi G, Georgescu T, Mateescu B, Voiosu T. The Role of Artificial Intelligence in Monitoring Inflammatory Bowel Disease-The Future Is Now. Diagnostics (Basel) 2023; 13:735. [PMID: 36832222 PMCID: PMC9954871 DOI: 10.3390/diagnostics13040735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Crohn's disease and ulcerative colitis remain debilitating disorders, characterized by progressive bowel damage and possible lethal complications. The growing number of applications for artificial intelligence in gastrointestinal endoscopy has already shown great potential, especially in the field of neoplastic and pre-neoplastic lesion detection and characterization, and is currently under evaluation in the field of inflammatory bowel disease management. The application of artificial intelligence in inflammatory bowel diseases can range from genomic dataset analysis and risk prediction model construction to the disease grading severity and assessment of the response to treatment using machine learning. We aimed to assess the current and future role of artificial intelligence in assessing the key outcomes in inflammatory bowel disease patients: endoscopic activity, mucosal healing, response to treatment, and neoplasia surveillance.
Collapse
Affiliation(s)
- Claudia Diaconu
- Gastroenterology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Monica State
- Gastroenterology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Internal Medicine Department, Carol Davila University of Medicine and Pharmacy, 50474 Bucharest, Romania
| | - Mihaela Birligea
- Gastroenterology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Madalina Ifrim
- Gastroenterology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Georgiana Bajdechi
- Gastroenterology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Teodora Georgescu
- Gastroenterology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Bogdan Mateescu
- Gastroenterology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Internal Medicine Department, Carol Davila University of Medicine and Pharmacy, 50474 Bucharest, Romania
| | - Theodor Voiosu
- Gastroenterology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Internal Medicine Department, Carol Davila University of Medicine and Pharmacy, 50474 Bucharest, Romania
| |
Collapse
|
9
|
Yu S, Zhang M, Ye Z, Wang Y, Wang X, Chen YG. Development of a 32-gene signature using machine learning for accurate prediction of inflammatory bowel disease. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:8. [PMID: 36600111 PMCID: PMC9813306 DOI: 10.1186/s13619-022-00143-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/09/2022] [Indexed: 01/06/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition caused by multiple genetic and environmental factors. Numerous genes are implicated in the etiology of IBD, but the diagnosis of IBD is challenging. Here, XGBoost, a machine learning prediction model, has been used to distinguish IBD from healthy cases following elaborative feature selection. Using combined unsupervised clustering analysis and the XGBoost feature selection method, we successfully identified a 32-gene signature that can predict IBD occurrence in new cohorts with 0.8651 accuracy. The signature shows enrichment in neutrophil extracellular trap formation and cytokine signaling in the immune system. The probability threshold of the XGBoost-based classification model can be adjusted to fit personalized lifestyle and health status. Therefore, this study reveals potential IBD-related biomarkers that facilitate an effective personalized diagnosis of IBD.
Collapse
Affiliation(s)
- Shicheng Yu
- grid.9227.e0000000119573309Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou Science Park, Luogang District, Guangzhou, 510530 China ,Guangzhou Laboratory, Guangzhou, 510700 China
| | - Mengxian Zhang
- grid.12527.330000 0001 0662 3178The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Zhaofeng Ye
- grid.12527.330000 0001 0662 3178School of Medicine, Tsinghua University, Beijing, 100084 China
| | - Yalong Wang
- grid.9227.e0000000119573309Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou Science Park, Luogang District, Guangzhou, 510530 China ,Guangzhou Laboratory, Guangzhou, 510700 China
| | - Xu Wang
- Guangzhou Laboratory, Guangzhou, 510700 China
| | - Ye-Guang Chen
- Guangzhou Laboratory, Guangzhou, 510700 China ,grid.12527.330000 0001 0662 3178The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084 China ,grid.260463.50000 0001 2182 8825School of Basic Medicine, Nanchang University, Nanchang, 330031 China
| |
Collapse
|
10
|
Stafford IS, Gosink MM, Mossotto E, Ennis S, Hauben M. A Systematic Review of Artificial Intelligence and Machine Learning Applications to Inflammatory Bowel Disease, with Practical Guidelines for Interpretation. Inflamm Bowel Dis 2022; 28:1573-1583. [PMID: 35699597 PMCID: PMC9527612 DOI: 10.1093/ibd/izac115] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a gastrointestinal chronic disease with an unpredictable disease course. Computational methods such as machine learning (ML) have the potential to stratify IBD patients for the provision of individualized care. The use of ML methods for IBD was surveyed, with an additional focus on how the field has changed over time. METHODS On May 6, 2021, a systematic review was conducted through a search of MEDLINE and Embase databases, with the search structure ("machine learning" OR "artificial intelligence") AND ("Crohn* Disease" OR "Ulcerative Colitis" OR "Inflammatory Bowel Disease"). Exclusion criteria included studies not written in English, no human patient data, publication before 2001, studies that were not peer reviewed, nonautoimmune disease comorbidity research, and record types that were not primary research. RESULTS Seventy-eight (of 409) records met the inclusion criteria. Random forest methods were most prevalent, and there was an increase in neural networks, mainly applied to imaging data sets. The main applications of ML to clinical tasks were diagnosis (18 of 78), disease course (22 of 78), and disease severity (16 of 78). The median sample size was 263. Clinical and microbiome-related data sets were most popular. Five percent of studies used an external data set after training and testing for additional model validation. DISCUSSION Availability of longitudinal and deep phenotyping data could lead to better modeling. Machine learning pipelines that consider imbalanced data and that feature selection only on training data will generate more generalizable models. Machine learning models are increasingly being applied to more complex clinical tasks for specific phenotypes, indicating progress towards personalized medicine for IBD.
Collapse
Affiliation(s)
- Imogen S Stafford
- Human Genetics and Genomic Medicine, University of Southampton, Southampton, UK
- Institute for Life Sciences, University Of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research, University HospitalSouthampton, Southampton, UK
| | | | - Enrico Mossotto
- Human Genetics and Genomic Medicine, University of Southampton, Southampton, UK
| | - Sarah Ennis
- Human Genetics and Genomic Medicine, University of Southampton, Southampton, UK
| | - Manfred Hauben
- Pfizer Inc, New York, NY, USA
- NYU Langone Health, Department of Medicine, New York, NY, USA
| |
Collapse
|
11
|
Wu C, Zheng T, Chen H, Zou P, Zhang M, Wang J, Li N, Zhang Y, Li Y, Dong Z. Effect and Mechanism of Pharmaceutical Excipients on Berberine to Alleviate Ulcerative Colitis via Regulating Gut Microbiota. Molecules 2022; 27:molecules27185997. [PMID: 36144733 PMCID: PMC9503871 DOI: 10.3390/molecules27185997] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Various potential effect of drugs on alleviating diseases by regulating intestinal microbiome as well as the pharmaceutical excipients on gut microbiota has been revealed. However, the interaction between them is rarely investigated. Methods: Histological analysis, immunohistochemistry analysis, enzyme-linked immunosorbent assay (ELISA) analysis, RT-qPCR, and 16S rRNA analysis were utilized to explore the effect mechanism of the five excipients including hydroxypropyl methylcellulose (HPMC) F4M, Eudragit (EU) S100, chitosan (CT), pectin (PT), and rheum officinale polysaccharide (DHP) on berberine (BBR) to cure UC. Results: The combined BBR with PT and DHP group exhibited better therapeutic efficacy of UC with significantly increased colon length, and decreased hematoxylin-eosin (H&E) scores than other groups. Furthermore, the expression of tight junction ZO-1 and occludin in colon tissue were upregulated, and claudin-2 was downregulated. Ultimately, the serum content of tumor necrosis (TNF)-α, interleukin (IL)-1β, and IL-6 was decreased. Moreover, the combined BBR with PT significantly promoted the restoration of gut microbiota. The relative abundance of Firmicutes and Lactobacillus was significantly increased by the supplement of PT and DHP, and the relative abundance of Proteobacteria was downregulated. Conclusions: Our study may provide a new perspective that the selection of pharmaceutical excipients could be a crucial factor affecting the drugs’ therapeutic efficiency outcome.
Collapse
Affiliation(s)
- Chenyang Wu
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Tingting Zheng
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Huan Chen
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Department of Pharmacy, Faculty of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Peizhi Zou
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Mengxue Zhang
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jinrui Wang
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Faculty of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Nan Li
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yun Zhang
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Ying Li
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Correspondence: (Y.L.); (Z.D.)
| | - Zhengqi Dong
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Correspondence: (Y.L.); (Z.D.)
| |
Collapse
|
12
|
Zhang L, Mao R, Lau CT, Chung WC, Chan JCP, Liang F, Zhao C, Zhang X, Bian Z. Identification of useful genes from multiple microarrays for ulcerative colitis diagnosis based on machine learning methods. Sci Rep 2022; 12:9962. [PMID: 35705632 PMCID: PMC9200771 DOI: 10.1038/s41598-022-14048-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/31/2022] [Indexed: 12/11/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic relapsing inflammatory bowel disease with an increasing incidence and prevalence worldwide. The diagnosis for UC mainly relies on clinical symptoms and laboratory examinations. As some previous studies have revealed that there is an association between gene expression signature and disease severity, we thereby aim to assess whether genes can help to diagnose UC and predict its correlation with immune regulation. A total of ten eligible microarrays (including 387 UC patients and 139 healthy subjects) were included in this study, specifically with six microarrays (GSE48634, GSE6731, GSE114527, GSE13367, GSE36807, and GSE3629) in the training group and four microarrays (GSE53306, GSE87473, GSE74265, and GSE96665) in the testing group. After the data processing, we found 87 differently expressed genes. Furthermore, a total of six machine learning methods, including support vector machine, least absolute shrinkage and selection operator, random forest, gradient boosting machine, principal component analysis, and neural network were adopted to identify potentially useful genes. The synthetic minority oversampling (SMOTE) was used to adjust the imbalanced sample size for two groups (if any). Consequently, six genes were selected for model establishment. According to the receiver operating characteristic, two genes of OLFM4 and C4BPB were finally identified. The average values of area under curve for these two genes are higher than 0.8, either in the original datasets or SMOTE-adjusted datasets. Besides, these two genes also significantly correlated to six immune cells, namely Macrophages M1, Macrophages M2, Mast cells activated, Mast cells resting, Monocytes, and NK cells activated (P < 0.05). OLFM4 and C4BPB may be conducive to identifying patients with UC. Further verification studies could be conducted.
Collapse
Affiliation(s)
- Lin Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Mao
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chung Tai Lau
- Chinese Clinical Trial Registry (Hong Kong), Hong Kong Chinese Medicine Clinical Study Centre, Chinese EQUATOR Centre, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Wai Chak Chung
- Chinese Clinical Trial Registry (Hong Kong), Hong Kong Chinese Medicine Clinical Study Centre, Chinese EQUATOR Centre, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Jacky C P Chan
- Department of Computer Science, HKBU Faculty of Science, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Feng Liang
- Chinese Clinical Trial Registry (Hong Kong), Hong Kong Chinese Medicine Clinical Study Centre, Chinese EQUATOR Centre, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Chenchen Zhao
- Oncology Department, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuan Zhang
- Chinese Clinical Trial Registry (Hong Kong), Hong Kong Chinese Medicine Clinical Study Centre, Chinese EQUATOR Centre, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China. .,Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong, SAR, China.
| | - Zhaoxiang Bian
- Chinese Clinical Trial Registry (Hong Kong), Hong Kong Chinese Medicine Clinical Study Centre, Chinese EQUATOR Centre, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China. .,Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong, SAR, China.
| |
Collapse
|
13
|
Jaddi NS, Saniee Abadeh M. Cell separation algorithm with enhanced search behaviour in miRNA feature selection for cancer diagnosis. INFORM SYST 2022. [DOI: 10.1016/j.is.2021.101906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Artificial Endoscopy and Inflammatory Bowel Disease: Welcome to the Future. J Clin Med 2022; 11:jcm11030569. [PMID: 35160021 PMCID: PMC8836846 DOI: 10.3390/jcm11030569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
Artificial intelligence (AI) is assuming an increasingly important and central role in several medical fields. Its application in endoscopy provides a powerful tool supporting human experiences in the detection, characterization, and classification of gastrointestinal lesions. Lately, the potential of AI technology has been emerging in the field of inflammatory bowel disease (IBD), where the current cornerstone is the treat-to-target strategy. A sensible and specific tool able to overcome human limitations, such as AI, could represent a great ally and guide precision medicine decisions. Here we reviewed the available literature on the endoscopic applications of AI in order to properly describe the current state-of-the-art and identify the research gaps in IBD at the dawn of 2022.
Collapse
|
15
|
Kröner PT, Engels MML, Glicksberg BS, Johnson KW, Mzaik O, van Hooft JE, Wallace MB, El-Serag HB, Krittanawong C. Artificial intelligence in gastroenterology: A state-of-the-art review. World J Gastroenterol 2021; 27:6794-6824. [PMID: 34790008 PMCID: PMC8567482 DOI: 10.3748/wjg.v27.i40.6794] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/15/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
The development of artificial intelligence (AI) has increased dramatically in the last 20 years, with clinical applications progressively being explored for most of the medical specialties. The field of gastroenterology and hepatology, substantially reliant on vast amounts of imaging studies, is not an exception. The clinical applications of AI systems in this field include the identification of premalignant or malignant lesions (e.g., identification of dysplasia or esophageal adenocarcinoma in Barrett’s esophagus, pancreatic malignancies), detection of lesions (e.g., polyp identification and classification, small-bowel bleeding lesion on capsule endoscopy, pancreatic cystic lesions), development of objective scoring systems for risk stratification, predicting disease prognosis or treatment response [e.g., determining survival in patients post-resection of hepatocellular carcinoma), determining which patients with inflammatory bowel disease (IBD) will benefit from biologic therapy], or evaluation of metrics such as bowel preparation score or quality of endoscopic examination. The objective of this comprehensive review is to analyze the available AI-related studies pertaining to the entirety of the gastrointestinal tract, including the upper, middle and lower tracts; IBD; the hepatobiliary system; and the pancreas, discussing the findings and clinical applications, as well as outlining the current limitations and future directions in this field.
Collapse
Affiliation(s)
- Paul T Kröner
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
| | - Megan ML Engels
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
- Cancer Center Amsterdam, Department of Gastroenterology and Hepatology, Amsterdam UMC, Location AMC, Amsterdam 1105, The Netherlands
| | - Benjamin S Glicksberg
- The Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Kipp W Johnson
- The Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Obaie Mzaik
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
| | - Jeanin E van Hooft
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Amsterdam 2300, The Netherlands
| | - Michael B Wallace
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
- Division of Gastroenterology and Hepatology, Sheikh Shakhbout Medical City, Abu Dhabi 11001, United Arab Emirates
| | - Hashem B El-Serag
- Section of Gastroenterology and Hepatology, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX 77030, United States
- Section of Health Services Research, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX 77030, United States
| | - Chayakrit Krittanawong
- Section of Health Services Research, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX 77030, United States
- Section of Cardiology, Michael E. DeBakey VA Medical Center, Houston, TX 77030, United States
| |
Collapse
|
16
|
Kraszewski S, Szczurek W, Szymczak J, Reguła M, Neubauer K. Machine Learning Prediction Model for Inflammatory Bowel Disease Based on Laboratory Markers. Working Model in a Discovery Cohort Study. J Clin Med 2021; 10:jcm10204745. [PMID: 34682868 PMCID: PMC8539616 DOI: 10.3390/jcm10204745] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/07/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, incurable disease involving the gastrointestinal tract. It is characterized by complex, unclear pathogenesis, increased prevalence worldwide, and a wide spectrum of extraintestinal manifestations and comorbidities. Recognition of IBD remains challenging and delays in disease diagnosis still poses a significant clinical problem as it negatively impacts disease outcome. The main diagnostic tool in IBD continues to be invasive endoscopy. We aimed to create an IBD machine learning prediction model based on routinely performed blood, urine, and fecal tests. Based on historical patients’ data (702 medical records: 319 records from 180 patients with ulcerative colitis (UC) and 383 records from 192 patients with Crohn’s disease (CD)), and using a few simple machine learning classificators, we optimized necessary hyperparameters in order to get reliable few-features prediction models separately for CD and UC. Most robust classificators belonging to the random forest family obtained 97% and 91% mean average precision for CD and UC, respectively. For comparison, the commonly used one-parameter approach based on the C-reactive protein (CRP) level demonstrated only 81% and 61% average precision for CD and UC, respectively. Results of our study suggest that machine learning prediction models based on basic blood, urine, and fecal markers may with high accuracy support the diagnosis of IBD. However, the test requires validation in a prospective cohort.
Collapse
Affiliation(s)
- Sebastian Kraszewski
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Pl. Grunwaldzki 13, 50-377 Wroclaw, Poland
- Correspondence: (S.K.); (K.N.)
| | - Witold Szczurek
- Doctoral School, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland;
| | - Julia Szymczak
- Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland; (J.S.); (M.R.)
| | - Monika Reguła
- Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland; (J.S.); (M.R.)
| | - Katarzyna Neubauer
- Divison of Dietetics, Department of Gastroenterology and Hepatology, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland
- Correspondence: (S.K.); (K.N.)
| |
Collapse
|
17
|
Chen D, Fulmer C, Gordon IO, Syed S, Stidham RW, Vande Casteele N, Qin Y, Falloon K, Cohen BL, Wyllie R, Rieder F. Application of Artificial Intelligence to Clinical Practice in Inflammatory Bowel Disease - What the Clinician Needs to Know. J Crohns Colitis 2021; 16:460-471. [PMID: 34558619 PMCID: PMC8919817 DOI: 10.1093/ecco-jcc/jjab169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Artificial intelligence [AI] techniques are quickly spreading across medicine as an analytical method to tackle challenging clinical questions. What were previously thought of as highly complex data sources, such as images or free text, are now becoming manageable. Novel analytical methods merge the latest developments in information technology infrastructure with advances in computer science. Once primarily associated with Silicon Valley, AI techniques are now making their way into medicine, including in the field of inflammatory bowel diseases [IBD]. Understanding potential applications and limitations of these techniques can be difficult, in particular for busy clinicians. In this article, we explain the basic terminologies and provide a particular focus on the foundations behind state-of-the-art AI methodologies in both imaging and text. We explore the growing applications of AI in medicine, with a specific focus on IBD to inform the practising gastroenterologist and IBD specialist. Finally, we outline possible future uses of these technologies in daily clinical practice.
Collapse
Affiliation(s)
- David Chen
- Medical Operations, Cleveland Clinic Foundation, Cleveland, OH, USA,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Clifton Fulmer
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Ilyssa O Gordon
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Sana Syed
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, School of Medicine, University of Virginia, Charlottesville, VA, USA,School of Data Science, University of Virginia, Charlottesville, VA, USA
| | - Ryan W Stidham
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, USA,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | | | - Yi Qin
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Katherine Falloon
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Benjamin L Cohen
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Robert Wyllie
- Medical Operations, Cleveland Clinic Foundation, Cleveland, OH, USA,Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Florian Rieder
- Corresponding author: Florian Rieder, MD, Department of Inflammation and Immunity, and Department of Gastroenterology, Hepatology, & Nutrition, Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland, OH 44195, USA. Tel: (216) 445-5631; Fax: (216) 636-0104; E-mail:
| |
Collapse
|
18
|
Machine Learning Modeling from Omics Data as Prospective Tool for Improvement of Inflammatory Bowel Disease Diagnosis and Clinical Classifications. Genes (Basel) 2021; 12:genes12091438. [PMID: 34573420 PMCID: PMC8466305 DOI: 10.3390/genes12091438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/21/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
Research of inflammatory bowel disease (IBD) has identified numerous molecular players involved in the disease development. Even so, the understanding of IBD is incomplete, while disease treatment is still far from the precision medicine. Reliable diagnostic and prognostic biomarkers in IBD are limited which may reduce efficient therapeutic outcomes. High-throughput technologies and artificial intelligence emerged as powerful tools in search of unrevealed molecular patterns that could give important insights into IBD pathogenesis and help to address unmet clinical needs. Machine learning, a subtype of artificial intelligence, uses complex mathematical algorithms to learn from existing data in order to predict future outcomes. The scientific community has been increasingly employing machine learning for the prediction of IBD outcomes from comprehensive patient data-clinical records, genomic, transcriptomic, proteomic, metagenomic, and other IBD relevant omics data. This review aims to present fundamental principles behind machine learning modeling and its current application in IBD research with the focus on studies that explored genomic and transcriptomic data. We described different strategies used for dealing with omics data and outlined the best-performing methods. Before being translated into clinical settings, the developed machine learning models should be tested in independent prospective studies as well as randomized controlled trials.
Collapse
|
19
|
Javaid A, Shahab O, Adorno W, Fernandes P, May E, Syed S. Machine Learning Predictive Outcomes Modeling in Inflammatory Bowel Diseases. Inflamm Bowel Dis 2021; 28:819-829. [PMID: 34417815 PMCID: PMC9165557 DOI: 10.1093/ibd/izab187] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Indexed: 12/14/2022]
Abstract
There is a rising interest in use of big data approaches to personalize treatment of inflammatory bowel diseases (IBDs) and to predict and prevent outcomes such as disease flares and therapeutic nonresponse. Machine learning (ML) provides an avenue to identify and quantify features across vast quantities of data to produce novel insights in disease management. In this review, we cover current approaches in ML-driven predictive outcomes modeling for IBD and relate how advances in other fields of medicine may be applied to improve future IBD predictive models. Numerous studies have incorporated clinical, laboratory, or omics data to predict significant outcomes in IBD, including hospitalizations, outpatient corticosteroid use, biologic response, and refractory disease after colectomy, among others, with considerable health care dollars saved as a result. Encouraging results in other fields of medicine support efforts to use ML image analysis-including analysis of histopathology, endoscopy, and radiology-to further advance outcome predictions in IBD. Though obstacles to clinical implementation include technical barriers, bias within data sets, and incongruence between limited data sets preventing model validation in larger cohorts, ML-predictive analytics have the potential to transform the clinical management of IBD. Future directions include the development of models that synthesize all aforementioned approaches to produce more robust predictive metrics.
Collapse
Affiliation(s)
- Aamir Javaid
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | - Omer Shahab
- Division of Gastroenterology and Hepatology, Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - William Adorno
- School of Data Science, University of Virginia, Charlottesville, VA, USA
| | - Philip Fernandes
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | - Eve May
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Children’s National Hospital, Washington, DC, USA
| | - Sana Syed
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, University of Virginia, Charlottesville, VA, USA,School of Data Science, University of Virginia, Charlottesville, VA, USA,Address Correspondence to: Sana Syed, MD, MSCR, MSDS, Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, University of Virginia, 409 Lane Rd, Room 2035B, Charlottesville, VA, 22908, USA ()
| |
Collapse
|
20
|
Chen L, Li DC. Artificial intelligence and inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2021; 29:684-689. [DOI: 10.11569/wcjd.v29.i13.684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
With the development of artificial intelligence (AI) and its gradual application in the medical field, AI has brought new ideas to the medical development. The research and application of AI in inflammatory l bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD), are increasing. Selecting appropriate models and methods through machine learning can help diagnose, treat, and predict the prognosis of IBD. In recent years, AI combined with endoscopy has made an appearance in the diagnosis of IBD and achieved satisfactory results. At the same time, AI plays an important role in the process of disease prediction and treatment evaluation for patients with IBD. However, we should also be aware that there are still some problems with AI. This paper gives a brief review of the practical application value of AI in IBD.
Collapse
Affiliation(s)
- Lei Chen
- Graduate School of Bengbu Medical College, Bengbu 233030, Anhui Province, China
| | - De-Chun Li
- Department of Radiology, Xuzhou Central Hospital Affiliated to Medical School of Southeast University, Xuzhou 221009, Jiangsu Province, China
| |
Collapse
|
21
|
Almomani A, Hitawala A, Abureesh M, Qapaja T, Alshaikh D, Zmaili M, Saleh MA, Alkhayyat M. Implications of artificial intelligence in inflammatory bowel disease: Diagnosis, prognosis and treatment follow up. Artif Intell Gastroenterol 2021; 2:85-93. [DOI: 10.35712/aig.v2.i3.85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/18/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Driven by the tremendous availability of data, artificial intelligence (AI) using deep learning has emerged as a breakthrough computer technology in the last few decades and has recently been acknowledged by the Task Force on AI as a golden opportunity for research. With its ability to understand, learn from and build on non-linear relationships, AI aims to individualize medical care in an attempt to save time, cost, effort and improve patient’s safety. AI has been applied in multiple medical fields with substantial progress made in gastroenterology mainly to facilitate accurate detection of pathology in different disease processes, among which inflammatory bowel disease (IBD) seems to drag significant attention, specifically by interpreting imaging studies, endoscopic images and videos and -to a lesser extent- disease genomics. Moreover, models have been built to predict IBD occurrence, flare ups, persistence of histological inflammation, disease-related structural abnormalities as well as disease remission. In this article, we will review the applications of AI in IBD in the present medical literature at multiple points of IBD timeline, starting from disease prediction via genomic assessment, diagnostic phase via interpretation of radiological studies and AI-assisted endoscopy, and the role of AI in the evaluation of therapy response and prognosis of IBD patients.
Collapse
Affiliation(s)
- Ashraf Almomani
- Department of Internal Medicine, Cleveland Clinic Fairview Hospital, Cleveland, OH 44111, United States
| | - Asif Hitawala
- Department of Internal Medicine, Cleveland Clinic Fairview Hospital, Cleveland, OH 44111, United States
| | - Mohammad Abureesh
- Department of Internal Medicine, Staten Island University Hospital, New York City, NY 10305, United States
| | - Thabet Qapaja
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195, United States
| | - Dana Alshaikh
- School of Medicine, Mutah University, Alkarak 61710, Jordan
| | - Mohammad Zmaili
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195, United States
| | - Mohannad Abou Saleh
- Department of Gastroenterology and Hepatology, Cleveland Clinic Foundation, Cleveland, OH 44195, United States
| | - Motasem Alkhayyat
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195, United States
| |
Collapse
|
22
|
Gubatan J, Levitte S, Patel A, Balabanis T, Wei MT, Sinha SR. Artificial intelligence applications in inflammatory bowel disease: Emerging technologies and future directions. World J Gastroenterol 2021; 27:1920-1935. [PMID: 34007130 PMCID: PMC8108036 DOI: 10.3748/wjg.v27.i17.1920] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/04/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a complex and multifaceted disorder of the gastrointestinal tract that is increasing in incidence worldwide and associated with significant morbidity. The rapid accumulation of large datasets from electronic health records, high-definition multi-omics (including genomics, proteomics, transcriptomics, and metagenomics), and imaging modalities (endoscopy and endomicroscopy) have provided powerful tools to unravel novel mechanistic insights and help address unmet clinical needs in IBD. Although the application of artificial intelligence (AI) methods has facilitated the analysis, integration, and interpretation of large datasets in IBD, significant heterogeneity in AI methods, datasets, and clinical outcomes and the need for unbiased prospective validations studies are current barriers to incorporation of AI into clinical practice. The purpose of this review is to summarize the most recent advances in the application of AI and machine learning technologies in the diagnosis and risk prediction, assessment of disease severity, and prediction of clinical outcomes in patients with IBD.
Collapse
Affiliation(s)
- John Gubatan
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Redwood City, CA 94063, United States
| | - Steven Levitte
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Redwood City, CA 94063, United States
| | - Akshar Patel
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Redwood City, CA 94063, United States
| | - Tatiana Balabanis
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Redwood City, CA 94063, United States
| | - Mike T Wei
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Redwood City, CA 94063, United States
| | - Sidhartha R Sinha
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Redwood City, CA 94063, United States
| |
Collapse
|
23
|
Jha D, Ali S, Hicks S, Thambawita V, Borgli H, Smedsrud PH, de Lange T, Pogorelov K, Wang X, Harzig P, Tran MT, Meng W, Hoang TH, Dias D, Ko TH, Agrawal T, Ostroukhova O, Khan Z, Atif Tahir M, Liu Y, Chang Y, Kirkerød M, Johansen D, Lux M, Johansen HD, Riegler MA, Halvorsen P. A comprehensive analysis of classification methods in gastrointestinal endoscopy imaging. Med Image Anal 2021; 70:102007. [PMID: 33740740 DOI: 10.1016/j.media.2021.102007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 01/20/2021] [Accepted: 02/16/2021] [Indexed: 12/24/2022]
Abstract
Gastrointestinal (GI) endoscopy has been an active field of research motivated by the large number of highly lethal GI cancers. Early GI cancer precursors are often missed during the endoscopic surveillance. The high missed rate of such abnormalities during endoscopy is thus a critical bottleneck. Lack of attentiveness due to tiring procedures, and requirement of training are few contributing factors. An automatic GI disease classification system can help reduce such risks by flagging suspicious frames and lesions. GI endoscopy consists of several multi-organ surveillance, therefore, there is need to develop methods that can generalize to various endoscopic findings. In this realm, we present a comprehensive analysis of the Medico GI challenges: Medical Multimedia Task at MediaEval 2017, Medico Multimedia Task at MediaEval 2018, and BioMedia ACM MM Grand Challenge 2019. These challenges are initiative to set-up a benchmark for different computer vision methods applied to the multi-class endoscopic images and promote to build new approaches that could reliably be used in clinics. We report the performance of 21 participating teams over a period of three consecutive years and provide a detailed analysis of the methods used by the participants, highlighting the challenges and shortcomings of the current approaches and dissect their credibility for the use in clinical settings. Our analysis revealed that the participants achieved an improvement on maximum Mathew correlation coefficient (MCC) from 82.68% in 2017 to 93.98% in 2018 and 95.20% in 2019 challenges, and a significant increase in computational speed over consecutive years.
Collapse
Affiliation(s)
- Debesh Jha
- SimulaMet, Oslo, Norway; UiT The Arctic University of Norway, Tromsø, Norway.
| | - Sharib Ali
- Department of Engineering Science, University of Oxford, Oxford, UK; Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Steven Hicks
- SimulaMet, Oslo, Norway; Oslo Metropolitan University, Oslo, Norway
| | | | - Hanna Borgli
- SimulaMet, Oslo, Norway; University of Oslo, Oslo, Norway
| | - Pia H Smedsrud
- SimulaMet, Oslo, Norway; University of Oslo, Oslo, Norway; Augere Medical AS, Oslo, Norway
| | - Thomas de Lange
- SimulaMet, Oslo, Norway; Augere Medical AS, Oslo, Norway; Sahlgrenska University Hospital, Molndal, Sweden; Bærum Hospital, Vestre Viken, Oslo, Norway
| | | | | | | | | | | | | | | | | | | | - Olga Ostroukhova
- Research Institute of Multiprocessor Computation Systems, Russia
| | - Zeshan Khan
- School of Computer Science, National University of Computer and Emerging Sciences, Karachi Campus, Pakistan
| | - Muhammad Atif Tahir
- School of Computer Science, National University of Computer and Emerging Sciences, Karachi Campus, Pakistan
| | - Yang Liu
- Hong Kong Baptist University, Hong Kong
| | - Yuan Chang
- Beijing University of Posts and Telecom., China
| | | | - Dag Johansen
- UiT The Arctic University of Norway, Tromsø, Norway
| | - Mathias Lux
- Alpen-Adria-Universität Klagenfurt, Klagenfurt, Austria
| | | | | | - Pål Halvorsen
- SimulaMet, Oslo, Norway; Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
24
|
Akay M, Du Y, Sershen CL, Wu M, Chen TY, Assassi S, Mohan C, Akay YM. Deep Learning Classification of Systemic Sclerosis Skin Using the MobileNetV2 Model. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2021; 2:104-110. [PMID: 35402975 PMCID: PMC8901014 DOI: 10.1109/ojemb.2021.3066097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 11/21/2022] Open
Abstract
Goal: Systemic sclerosis (SSc) is a rare autoimmune, systemic disease with prominent fibrosis of skin and internal organs. Early diagnosis of the disease is crucial for designing effective therapy and management plans. Machine learning algorithms, especially deep learning, have been found to be greatly useful in biology, medicine, healthcare, and biomedical applications, in the areas of medical image processing and speech recognition. However, the need for a large training data set and the requirement for a graphics processing unit (GPU) have hindered the wide application of machine learning algorithms as a diagnostic tool in resource-constrained environments (e.g., clinics). Methods: In this paper, we propose a novel mobile deep learning network for the characterization of SSc skin. The proposed network architecture consists of the UNet, a dense connectivity convolutional neural network (CNN) with added classifier layers that when combined with limited training data, yields better image segmentation and more accurate classification, and a mobile training module. In addition, to improve the computational efficiency and diagnostic accuracy, the highly efficient training model called "MobileNetV2," which is designed for mobile and embedded applications, was used to train the network. Results: The proposed network was implemented using a standard laptop (2.5 GHz Intel Core i7). After fine tuning, our results showed the proposed network reached 100% accuracy on the training image set, 96.8% accuracy on the validation image set, and 95.2% on the testing image set. The training time was less than 5 hours. We also analyzed the same normal vs SSc skin image sets using the CNN using the same laptop. The CNN reached 100% accuracy on the training image set, 87.7% accuracy on the validation image set, and 82.9% on the testing image set. Additionally, it took more than 14 hours to train the CNN architecture. We also utilized the MobileNetV2 model to analyze an additional dataset of images and classified them as normal, early (mid and moderate) SSc or late (severe) SSc skin images. The network reached 100% accuracy on the training image set, 97.2% on the validation set, and 94.8% on the testing image set. Using the same normal, early and late phase SSc skin images, the CNN reached 100% accuracy on the training image set, 87.7% accuracy on the validation image set, and 82.9% on the testing image set. These results indicated that the MobileNetV2 architecture is more accurate and efficient compared to the CNN to classify normal, early and late phase SSc skin images. Conclusions: Our preliminary study, intended to show the efficacy of the proposed network architecture, holds promise in the characterization of SSc. We believe that the proposed network architecture could easily be implemented in a clinical setting, providing a simple, inexpensive, and accurate screening tool for SSc.
Collapse
Affiliation(s)
- Metin Akay
- Biomedical Engineering DepartmentUniversity of HoustonHoustonTX77204USA
| | - Yong Du
- Biomedical Engineering DepartmentUniversity of HoustonHoustonTX77204USA
| | - Cheryl L. Sershen
- Biomedical Engineering DepartmentUniversity of HoustonHoustonTX77204USA
| | - Minghua Wu
- Division of Rheumatology and Clinical Immunogenetics, Department of Internal Medicine UTHealthHoustonTX77030USA
| | - Ting Y. Chen
- Biomedical Engineering DepartmentUniversity of HoustonHoustonTX77204USA
| | - Shervin Assassi
- Division of Rheumatology and Clinical Immunogenetics, Department of Internal Medicine UTHealthHoustonTX77030USA
| | - Chandra Mohan
- Biomedical Engineering DepartmentUniversity of HoustonHoustonTX77204USA
| | - Yasemin M. Akay
- Biomedical Engineering DepartmentUniversity of HoustonHoustonTX77204USA
| |
Collapse
|
25
|
Pitfalls in training and validation of deep learning systems. Best Pract Res Clin Gastroenterol 2020; 52-53:101712. [PMID: 34172245 DOI: 10.1016/j.bpg.2020.101712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/30/2020] [Indexed: 01/31/2023]
Abstract
The number of publications in endoscopic journals that present deep learning applications has risen tremendously over the past years. Deep learning has shown great promise for automated detection, diagnosis and quality improvement in endoscopy. However, the interdisciplinary nature of these works has undoubtedly made it more difficult to estimate their value and applicability. In this review, the pitfalls and common misconducts when training and validating deep learning systems are discussed and some practical guidelines are proposed that should be taken into account when acquiring data and handling it to ensure an unbiased system that will generalize for application in routine clinical practice. Finally, some considerations are presented to ensure correct validation and comparison of AI systems.
Collapse
|
26
|
Kohli A, Holzwanger EA, Levy AN. Emerging use of artificial intelligence in inflammatory bowel disease. World J Gastroenterol 2020; 26:6923-6928. [PMID: 33311940 PMCID: PMC7701951 DOI: 10.3748/wjg.v26.i44.6923] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/24/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a complex, immune-mediated gastrointestinal disorder with ill-defined etiology, multifaceted diagnostic criteria, and unpredictable treatment response. Innovations in IBD diagnostics, including developments in genomic sequencing and molecular analytics, have generated tremendous interest in leveraging these large data platforms into clinically meaningful tools. Artificial intelligence, through machine learning facilitates the interpretation of large arrays of data, and may provide insight to improving IBD outcomes. While potential applications of machine learning models are vast, further research is needed to generate standardized models that can be adapted to target IBD populations.
Collapse
Affiliation(s)
- Arushi Kohli
- Department of Internal Medicine, Tufts Medical Center, Boston, MA 02111, United States
| | - Erik A Holzwanger
- Division of Gastroenterology and Hepatology, Tufts Medical Center, Boston, MA 02111, United States
| | - Alexander N Levy
- Division of Gastroenterology and Hepatology, Tufts Medical Center, Boston, MA 02111, United States
| |
Collapse
|