Santos-Buitrago B, Santos-García G, Hernández-Galilea E. Artificial intelligence for modeling uveal melanoma. Artif Intell Cancer 2020; 1(4): 51-65 [DOI: 10.35713/aic.v1.i4.51]
Corresponding Author of This Article
Gustavo Santos-García, PhD, Professor, IME, University of Salamanca, FES Building, Campus Miguel de Unamuno, Salamanca 37007, Spain. santos@usal.es
Research Domain of This Article
Cell Biology
Article-Type of This Article
Minireviews
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Beatriz Santos-Buitrago, Bio and Health Informatics Lab, Seoul National University, Seoul 151-742, South Korea
Gustavo Santos-García, IME, University of Salamanca, Salamanca 37007, Spain
Gustavo Santos-García, FADoSS Research Unit, Universidad Complutense de Madrid, Madrid 28040, Spain
Emiliano Hernández-Galilea, Department of Ophthalmology, Institute of Biomedicine Investigation of Salamanca (IBSAL), University Hospital of Salamanca, University of Salamanca, Salamanca 37007, Spain
Author contributions: The authors contributed equally to this work.
Conflict-of-interest statement: The authors declare no conflicts of interest.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Gustavo Santos-García, PhD, Professor, IME, University of Salamanca, FES Building, Campus Miguel de Unamuno, Salamanca 37007, Spain. santos@usal.es
Received: September 26, 2020 Peer-review started: September 26, 2020 First decision: October 22, 2020 Revised: November 5, 2020 Accepted: November 21, 2020 Article in press: November 21, 2020 Published online: November 28, 2020 Processing time: 64 Days and 19.3 Hours
Abstract
Understanding of the cellular signaling pathways involved in cancer disease is of great importance. These complex biological mechanisms can be thoroughly revealed by their structure, dynamics, and control methods. Artificial intelligence offers rule-based models that favor the research of human signaling processes. In this paper, we give an overview of the advantages of the formalism of symbolic models in medical biology and cell biology of the uveal melanoma. A language is described that allows us: (1) To define the system states and elements with their alterations; (2) To model the dynamics of the cellular system; and (3) To perform inference-based analysis with the logical tools of the language.
Core Tip: Artificial intelligence offers rule-based models that favor the understanding of cell biology (signaling pathways) involved in the uveal melanoma.