1
|
Fusco A, Guarnieri A, Scieuzo C, Triunfo M, Salvia R, Donnarumma G, Falabella P. Hermetia illucens-Derived Chitosan: A Promising Immunomodulatory Agent for Applications in Biomedical Fields. Biomacromolecules 2025; 26:3224-3233. [PMID: 40300853 PMCID: PMC12076490 DOI: 10.1021/acs.biomac.5c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 05/01/2025]
Abstract
Chitosan, renowned for its important biological properties, is a valuable pharmaceutical excipient for different therapeutic approaches. Currently, the demand for the biopolymer on the market is growing, and, for this reason, it is important to biologically characterize the biopolymer produced from an alternative source to crustaceans, specifically the bioconverter insect Hermetia illucens. In this work, insect chitosan, yielded via heterogeneous and homogeneous deacetylation from larvae, pupal exuviae, and adults, was studied as an immunomodulatory agent. The inflammatory response of immortalized human keratinocyte cells was induced by Salmonella enterica subsp. enterica serovar Typhimurium lipopolysaccharide. After that, the ability of the biopolymer to reduce the expression of the pro-inflammatory cytokines IL-6, IL-8, IL-1α, and TNF-α was tested after 6 and 24 h of treatment. Insect chitosan samples effectively downregulated cytokine expression, with improved activity obtained from heterogeneous chitosan treatments.
Collapse
Affiliation(s)
- Alessandra Fusco
- Department
of Life Sciences, Health and Health Professions, Link Campus University, 00165 Rome, Italy
- Department
of Experimental Medicine, University of
Campania “Luigi Vanvitelli”, Naples 80138, Italy
| | - Anna Guarnieri
- Department
of Basic and Applied Sciences, University
of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Carmen Scieuzo
- Department
of Basic and Applied Sciences, University
of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
- Spinoff
XFlies s.r.l, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Micaela Triunfo
- Department
of Basic and Applied Sciences, University
of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Rosanna Salvia
- Department
of Basic and Applied Sciences, University
of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
- Spinoff
XFlies s.r.l, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Giovanna Donnarumma
- Department
of Experimental Medicine, University of
Campania “Luigi Vanvitelli”, Naples 80138, Italy
| | - Patrizia Falabella
- Department
of Basic and Applied Sciences, University
of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
- Spinoff
XFlies s.r.l, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
2
|
Mirata S, Almonti V, Passalacqua M, Vernazza S, Bassi AM, Di Giuseppe D, Gualtieri AF, Scarfì S. Toxicity of size separated chrysotile fibres: The relevance of the macrophage-endothelial axis crosstalk. Toxicology 2025; 511:154032. [PMID: 39674395 DOI: 10.1016/j.tox.2024.154032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Asbestos minerals have been widely exploited due to their physical-chemical properties, and chrysotile asbestos has accounted for about 95% of all asbestos commercially employed worldwide. The exposure to chrysotile, classified like other five amphibole asbestos species as carcinogenic to humans, represents a serious occupational and environmental hazard. Nevertheless, this mineral is still largely employed in about 65% of the countries worldwide, which still allow its "safe use". The complex mechanisms through which the mineral fibres induce toxicity are not yet completely understood. In this regard, the morphometric parameters of asbestos fibres (e.g., length, width, aspect ratio) are known for their fundamental role in determining the degree of pathogenicity. In this context, the potential toxicity of short chrysotile fibres remains widely debated due to the contradictory results from countless studies. Thus, the present study investigated the different toxicity mechanisms of two representative batches of short (length ≤5 µm) and long (length >5 µm) chrysotile fibres obtained by cryogenic milling. The fibre doses were based upon equal mass and size, since due to chrysotile ability to form bundles, it was not possible to calculate the number of fibers applied per cell. The cytotoxic, genotoxic, and pro-inflammatory potential of the two size-separated chrysotile fractions was investigated on human THP-1-derived macrophages and HECV endothelial cells, both separately and in a co-culture setup, mimicking the alveolar pro-inflammatory microenvironment, in time course experiments up to 1 week. Both chrysotile fractions displayed cytotoxic, genotoxic, and pro-inflammatory effects, with results comparable to the well-known damaging effects of crocidolite asbestos, or higher, as in the case of the longer chrysotile fraction. Furthermore, in presence of HECV, fibre-treated macrophages showed prolonged inflammation, indicating an interesting crosstalk between these cells able to sustain a low-grade chronic inflammation in the lung. In conclusion, these results help to shed light on some important open questions on the mechanisms of toxicity of chrysotile asbestos fibres.
Collapse
Affiliation(s)
- Serena Mirata
- Department Earth, Environment and Life Sciences, University of Genova, Genova 16132, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa 56122, Italy
| | - Vanessa Almonti
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa 56122, Italy; Department Experimental Medicine, University of Genova, Genova 16132, Italy
| | - Mario Passalacqua
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa 56122, Italy; Department Experimental Medicine, University of Genova, Genova 16132, Italy.
| | - Stefania Vernazza
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa 56122, Italy; Department Experimental Medicine, University of Genova, Genova 16132, Italy
| | - Anna Maria Bassi
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa 56122, Italy; Department Experimental Medicine, University of Genova, Genova 16132, Italy
| | - Dario Di Giuseppe
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Alessandro F Gualtieri
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Sonia Scarfì
- Department Earth, Environment and Life Sciences, University of Genova, Genova 16132, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa 56122, Italy
| |
Collapse
|
3
|
Olivares-Martínez E, Hernández-Ramírez DF, Núñez-Álvarez CA, Meza-Sánchez DE, Chapa M, Méndez-Flores S, Priego-Ranero Á, Azamar-Llamas D, Olvera-Prado H, Rivas-Redonda KI, Ochoa-Hein E, López-Mosqueda LG, Rojas-Castañeda E, Urbina-Terán S, Septién-Stute L, Hernández-Gilsoul T, Aguilar-León D, Torres-Villalobos G, Furuzawa-Carballeda J. Polymerized Type I Collagen Downregulates STAT-1 Phosphorylation Through Engagement with LAIR-1 in Circulating Monocytes, Avoiding Long COVID. Int J Mol Sci 2025; 26:1018. [PMID: 39940787 PMCID: PMC11817110 DOI: 10.3390/ijms26031018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 02/16/2025] Open
Abstract
The intramuscular administration of polymerized type I collagen (PTIC) for adult symptomatic COVID-19 outpatients downregulated hyperinflammation and improved symptoms. We inferred that LAIR1 is a potential receptor for PTIC. Thus, a binding assay and surface plasmon resonance binding assay were performed to estimate the affinity of the interaction between LAIR1 and PTIC. M1 macrophages derived from THP-1 cells were cultured with 2-10% PTIC for 24 h. Lysates from PTIC-treated THP-1 cells, macrophage-like cells (MLCs), M1, M1 + IFN-γ, and M1 + LPS were analyzed by Western blot for NF-κB (p65), p38, STAT1, and pSTAT1 (tyrosine701). Serum cytokine levels and monocyte LAIR1 expressions (Mo1 and Mo2) were analyzed by luminometry and flow cytometry in symptomatic COVID-19 outpatients on PTIC treatment. PTIC-bound LAIR1 had a similar affinity to collagen in M1 macrophages. It downregulated pSTAT1 in IFN-γ-induced M1. COVID-19 patients under PTIC treatment showed a significant decrease in Mo1 percentages and cytokines (IP-10/MIF/eotaxin/IL-8/IL-1RA/M-CSF) associated with STAT1 and an increase in the Mo2 subset. The inflammatory mediators and Mo1 downregulation were related to better oxygen saturation and decreased dyspnea, chest pain, cough, and chronic fatigue syndrome in the acute and long-term phase of infection. PTIC is an agonist of LAIR1 and downregulates STAT-1 phosphorylation. PTIC could be relevant for treating STAT1-mediated inflammatory diseases, including COVID-19 and long COVID.
Collapse
Affiliation(s)
- Elizabeth Olivares-Martínez
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (E.O.-M.); (D.F.H.-R.); (C.A.N.-Á.); (K.I.R.-R.); (L.G.L.-M.)
| | - Diego Francisco Hernández-Ramírez
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (E.O.-M.); (D.F.H.-R.); (C.A.N.-Á.); (K.I.R.-R.); (L.G.L.-M.)
| | - Carlos Alberto Núñez-Álvarez
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (E.O.-M.); (D.F.H.-R.); (C.A.N.-Á.); (K.I.R.-R.); (L.G.L.-M.)
| | - David Eduardo Meza-Sánchez
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico;
| | - Mónica Chapa
- Department of Radiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico;
| | - Silvia Méndez-Flores
- Department of Dermatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico;
| | - Ángel Priego-Ranero
- Department of Internal Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (Á.P.-R.); (D.A.-L.); (E.R.-C.)
| | - Daniel Azamar-Llamas
- Department of Internal Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (Á.P.-R.); (D.A.-L.); (E.R.-C.)
| | - Héctor Olvera-Prado
- Department of Anesthesiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico;
| | - Kenia Ilian Rivas-Redonda
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (E.O.-M.); (D.F.H.-R.); (C.A.N.-Á.); (K.I.R.-R.); (L.G.L.-M.)
| | - Eric Ochoa-Hein
- Department of Hospital Epidemiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico;
| | - Luis Gerardo López-Mosqueda
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (E.O.-M.); (D.F.H.-R.); (C.A.N.-Á.); (K.I.R.-R.); (L.G.L.-M.)
| | - Estefano Rojas-Castañeda
- Department of Internal Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (Á.P.-R.); (D.A.-L.); (E.R.-C.)
| | - Said Urbina-Terán
- Emergency Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (S.U.-T.); (T.H.-G.)
| | - Luis Septién-Stute
- Department of Pneumology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico;
| | - Thierry Hernández-Gilsoul
- Emergency Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (S.U.-T.); (T.H.-G.)
| | - Diana Aguilar-León
- Department of Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Gonzalo Torres-Villalobos
- Departments of Experimental Surgery and Surgery, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Janette Furuzawa-Carballeda
- Departments of Experimental Surgery and Surgery, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
- School of Medicine, Universidad Panamericana, Mexico City 14080, Mexico
| |
Collapse
|
4
|
Stafford LS, Plummer CE, Smith WC, Gibson DJ, Sharma J, Vicuna V, Diakite S, Larkin J. A peptide mimic of SOCS1 modulates equine peripheral immune cells in vitro and ocular effector functions in vivo: implications for recurrent uveitis. Front Immunol 2025; 15:1513157. [PMID: 39867889 PMCID: PMC11757128 DOI: 10.3389/fimmu.2024.1513157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/17/2024] [Indexed: 01/28/2025] Open
Abstract
Introduction Recurrent uveitis (RU), an autoimmune disease, is a leading cause of ocular detriment in humans and horses. Equine and human RU share many similarities including spontaneous disease and aberrant cytokine signaling. Reduced levels of SOCS1, a critical regulator of cytokine signaling, is associated with several autoimmune diseases. Topical administration of SOCS1-KIR, a peptide mimic of SOCS1, was previously correlated to reduced ocular pathologies within ERU patients. Methods To further assess the translational potential of a SOCS1 mimetic to treat RU, we assessed peptide-mediated modulation of immune functions in vitro, using equine peripheral blood mononuclear cells (PBMC), and in vivo through topical administration of SOCS1-KIR into the eyes of experimental (non-uveitic) horses. Equine PBMCs from non-uveitic control and ERU horses were cultured with or without SOCS1-KIR pretreatment, followed by 72 hours of mitogen stimulation. Proliferation was assessed using MTT, and cytokine production within cell supernatants was assessed by Luminex. SOCS1-KIR or carrier eye-drops were topically applied to experimental horse eyes twice daily for 21 days, followed by enucleation and isolation of ocular aqueous and vitreous humor. Histology was used to assess peptide treatment safety and localization within treated equine eyes. Cytokine secretion within aqueous humor and vitreous, isolated from experimental equine eyes, was measured by Luminex. Results Following SOCS1-KIR pretreatment, cell proliferation significantly decreased in control, but not ERU-derived PBMCs. Despite differential regulation of cellular proliferation, SOCS1-KIR significantly reduced TNFα and IL-10 secretion in PHA-stimulated control and ERU equine PBMC. SOCS1-KIR increased PBMC secretion of IL-8. Topically administered SOCS1-KIR was well tolerated. Although SOCS1-KIR was undetectable within the eye, topically treated equine eyes had significant reductions in TNFα and IL-10. Interestingly, we found that while SOCS1-KIR treatment reduced TNFα and IL-10 production in healthy and ERU PBMC, SOCS1-KIR differentially modulated proliferation, IP-10 production, and RANTES within these two groups suggesting possible differences in cell types or activation status. Discussion Topical administration of a SOCS1 peptide mimic is safe to the equine eye and reduces ERU associated cytokines IL-10 and TNFα serving as potential biomarkers of drug efficacy in a future clinical trial.
Collapse
Affiliation(s)
- Lauren Stewart Stafford
- Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, United States
| | - Caryn E. Plummer
- Departments of Large and Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - W. Clay Smith
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Daniel J. Gibson
- Capstone College of Nursing, University of Alabama, Tuscaloosa, AL, United States
| | - Jatin Sharma
- Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, United States
| | - Valeria Vicuna
- Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, United States
| | - Sisse Diakite
- Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, United States
| | - Joseph Larkin
- Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, United States
| |
Collapse
|
5
|
Hashmat A, Ya J, Kadir R, Alwjwaj M, Bayraktutan U. Hyperglycaemia perturbs blood-brain barrier integrity through its effects on endothelial cell characteristics and function. Tissue Barriers 2025; 13:2350821. [PMID: 38712515 PMCID: PMC11970753 DOI: 10.1080/21688370.2024.2350821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
Breakdown of blood-brain barrier (BBB) represents a key pathology in hyperglycemia-mediated cerebrovascular damage after an ischemic stroke. As changes in the level and nature of vasoactive agents released by endothelial cells (ECs) may contribute to BBB dysfunction, this study first explored the specific impact of hyperglycemia on EC characteristics and secretome. It then assessed whether secretome obtained from ECs subjected to normoglycaemia or hyperglycemia might regulate pericytic cytokine profile differently. Using a triple cell culture model of human BBB, composed of brain microvascular EC (BMEC), astrocytes and pericytes, this study showed that exposure to hyperglycemia (25 mM D-glucose) for 72 h impaired the BBB integrity and function as evidenced by decreases in transendothelial electrical resistance and increases in paracellular flux of sodium fluorescein. Dissolution of zonula occludens-1, a tight junction protein, and appearance of stress fibers appeared to play a key role in this pathology. Despite elevations in angiogenin, endothelin-1, interleukin-8 and basic fibroblast growth factor levels and a decrease in placental growth factor levels in BMEC subjected to hyperglycemia vs normoglycaemia (5.5 mM D-glucose), tubulogenic capacity of BMECs remained similar in both settings. Similarly, pericytes subjected to secretome obtained from hyperglycemic BMEC released higher quantities of macrophage migration inhibitory factor and serpin and lower quantities of monocyte chemoattractant protein-1, intercellular adhesion molecule, interleukin-6 and interleukin-8. Taken together these findings indicate the complexity of the mechanisms leading to BBB disruption in hyperglycemic settings and emphasize the importance of endothelial cell-pericyte axis in the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Arshad Hashmat
- Academic Unit of Mental Health and Clinical Neurosciences, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Jingyuan Ya
- Academic Unit of Mental Health and Clinical Neurosciences, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Rais Kadir
- Academic Unit of Mental Health and Clinical Neurosciences, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Mansour Alwjwaj
- Academic Unit of Mental Health and Clinical Neurosciences, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Ulvi Bayraktutan
- Academic Unit of Mental Health and Clinical Neurosciences, School of Medicine, The University of Nottingham, Nottingham, UK
| |
Collapse
|
6
|
Eltahir HM, Shalkami AGS, Shehata AM, Almikhlafi M, Aldhafiri AJ, Alalawi A, Albadrani M, Mahmoud AB, Abouzied MM. Boswellia serrate Gum Resin Mitigates Renal Toxicity: Role of TNF-α, Interleukins, TGF-β, and Lipid Peroxidation. Life (Basel) 2024; 14:1669. [PMID: 39768376 PMCID: PMC11676428 DOI: 10.3390/life14121669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/14/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Background and aim: Being a central organ in homeostasis and maintaining the health of the biological system, kidneys are exposed to variable toxicants. Long-term exposure to nephrotoxic molecules causes chronic renal damage that causes fibrosis and loss of function. Such damage can be initiated by oxidative stress which provokes inflammation. We aim at investigating the potential therapeutic effects of Boswellia serrata (BS) gum resin extract in managing CCl4-induced renal toxicity. Methods: Male Wistar albino rats were assigned to groups: healthy control; CCl4-treated (CCl4, twice/week, for 6 weeks); CCl4 + BS-treated: CCl4 for 6 weeks followed by BS (150 mg/kg/day) for 2 weeks; and CCl4 + Silymarin-treated: CCl4 for 6 weeks followed by Silymarin (100 mg/kg/day) for 2 weeks. Blood and kidney tissue were utilized to assess oxidative stress status, inflammatory cytokines, and histopathological changes. Results: BS treatment ameliorated signs of renal damage and fibrosis as it improved renal antioxidant status and renal function markers and significantly reduced the levels of inflammatory cytokines TNF-α, IL-1β, IL-6, and IL-8 along with the fibrogenic marker TGF-β. Kidney tissues showed improved histological features after BS treatment. Conclusions: BS gum resin extract has significant therapeutic potential against CCl4-induced renal damage and fibrosis. These effects could be mediated via its previously reported antioxidant, free radical scavenging, and anti-inflammatory effects.
Collapse
Affiliation(s)
- Heba M. Eltahir
- Department of Pharmacology and Toxicology (Biochemistry Subdivision), College of Pharmacy, Taibah University, Madinah 41411, Saudi Arabia;
| | - Abdel-Gawad S. Shalkami
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt;
- Clinical Pharmacy Program, College of Health Science and Nursing, Al-Rayan Colleges, Madinah 41411, Saudi Arabia
| | - Ahmed M. Shehata
- Pharmaceutical Sciences Department, Fakeeh College for Medical Sciences, Jeddah 21461, Saudi Arabia;
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mohannad Almikhlafi
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madinah 41411, Saudi Arabia; (M.A.); (A.J.A.); (A.A.)
| | - Ahmed J. Aldhafiri
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madinah 41411, Saudi Arabia; (M.A.); (A.J.A.); (A.A.)
| | - Ali Alalawi
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madinah 41411, Saudi Arabia; (M.A.); (A.J.A.); (A.A.)
| | - Muayad Albadrani
- Department of Family and Community Medicine, College of Medicine, Taibah University, Madinah 41411, Saudi Arabia;
| | - Ahmad Bakur Mahmoud
- Health and Life Research Center, Taibah University, Madinah 41411, Saudi Arabia;
- College of Applied Medical Sciences, Taibah University, Madinah 42353, Saudi Arabia
| | - Mekky M. Abouzied
- Department of Pharmacology and Toxicology (Biochemistry Subdivision), College of Pharmacy, Taibah University, Madinah 41411, Saudi Arabia;
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| |
Collapse
|
7
|
Flögel L, Kaiser E, Hans MC, Goedicke-Fritz S, Bous M, Abdul-Khaliq H, Poryo M, Zemlin M, Weber R. Immunological characterization of pleural effusions in pediatric patients. Front Immunol 2024; 15:1506073. [PMID: 39737183 PMCID: PMC11682977 DOI: 10.3389/fimmu.2024.1506073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025] Open
Abstract
Background The pleural cavity represents a unique immunological compartment that can mount inflammatory reactions during infections, after surgery and in chronic immunological diseases. The connection between systemic immune reactions in the blood and local immune reactions in pleural effusions remains unclear. This study provides the first comprehensive immunological characterization of paired blood and pleural effusion samples, utilizing combined cell and cytokine analyses in pediatric patients undergoing cardiac surgery. Methods In 30 pediatric patients (median age: 22 months) with pleural effusion after cardiac surgery for congenital heart defects, corresponding peripheral blood and pleural effusion samples were analyzed for their immune response. We used flow cytometry and multiplex immunoassays to quantify 14 T cell subpopulations and 12 T cell associated cytokines in each biosample. Results IL-6, IL-8, IL-10, TNF (p<0.0001) levels were significantly higher in pleural effusion compared to plasma. In contrast, IFN-γ, GM-CSF, IL-17A levels were lower in pleural effusion than in plasma (p ≤ 0.0005). In comparison to peripheral blood, there was a significantly higher proportion of T helper cells 1 (Th1, p=0.0023), T helper cells 17 (Th17, p=0.0334) and memory effector cytotoxic T cells (CD3+CD8+CD45RO+CD62L-, p=0.0449) in pleural effusion and the same trend was observed for memory effector Th cells (CD3+CD4+CD45RO+CD62L-, p=0.0633) and double-negative T cells (CD3+CD4-CD8-) (p=0.1085). Naïve Th cells (CD3+CD4+CD45RO-CD62L+) and naïve cytotoxic T cells (CD3+CD8+CD45RO-CD62L+) were slightly reduced in pleural effusion compared to peripheral blood (not significant). Conclusion Immunological factors in pleural effusions differed significantly from the corresponding blood samples in pediatric patients after cardiac surgery. The results suggest localized production of specific cytokines within the pleural space, while the distribution of other cytokines in pleural effusions appears to be more reflective of the systemic immune response. We found evidence that on the cellular level, the surface marker CD62L may play a key role in navigating T cells between the blood and pleural effusion. This study confirms that the pleural cavity harbors a unique lymphatic compartment, the analysis of which may be useful for both diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Luca Flögel
- Department of General Pediatrics and Neonatology, Saarland University, Campus Homburg, Homburg, Germany
| | - Elisabeth Kaiser
- Department of General Pediatrics and Neonatology, Saarland University, Campus Homburg, Homburg, Germany
| | - Muriel Charlotte Hans
- Department of General Pediatrics and Neonatology, Saarland University, Campus Homburg, Homburg, Germany
| | - Sybelle Goedicke-Fritz
- Department of General Pediatrics and Neonatology, Saarland University, Campus Homburg, Homburg, Germany
| | - Michelle Bous
- Department of General Pediatrics and Neonatology, Saarland University, Campus Homburg, Homburg, Germany
| | - Hashim Abdul-Khaliq
- Department of Pediatric Cardiology, Saarland University Medical Center, Homburg, Germany
| | - Martin Poryo
- Department of Pediatric Cardiology, Saarland University Medical Center, Homburg, Germany
| | - Michael Zemlin
- Department of General Pediatrics and Neonatology, Saarland University, Campus Homburg, Homburg, Germany
| | - Regine Weber
- Department of General Pediatrics and Neonatology, Saarland University, Campus Homburg, Homburg, Germany
| |
Collapse
|
8
|
Zhou H, Scatena M, Tu LN, Giachelli CM, Nigam V. Monocyte adhesion to and transmigration through endothelium following cardiopulmonary bypass shearing is mediated by IL-8 signaling. Front Cardiovasc Med 2024; 11:1454302. [PMID: 39723411 PMCID: PMC11668754 DOI: 10.3389/fcvm.2024.1454302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction The use of cardiopulmonary bypass (CPB) can induce sterile systemic inflammation that contributes to morbidity and mortality, especially in children. Patients have been found to have increased expression of cytokines and transmigration of leukocytes during and after CPB. Previous work has demonstrated that the supraphysiologic shear stresses existing during CPB are sufficient to induce proinflammatory behavior in non-adherent monocytes. The interactions between shear stimulated monocytes and vascular endothelial cells have not been well studied and have important translational implications. With these studies, we tested the hypothesis that non-physiological shear stress experienced by monocytes during CPB affects the integrity and function of the endothelial monolayer. Methods We have used an in vitro CPB model to study the interaction between THP-1 monocyte-like cells and human neonatal dermal microvascular endothelial cells (HNDMVECs). THP-1 cells were sheared in polyvinyl chloride (PVC) tubing at 2.1 Pa, twice of the physiological shear stress, for 2 h. ELISA, adhesion and transmigration assays, qPCR, and RNA silencing were used to assess the interactions between THP-1 cells and HNDMVECs were characterized after co-culture. Results We found that sheared THP-1 cells adhered to and transmigrated through the HNDMVEC monolayer more readily than static THP-1 controls. Sheared THP-1 cells disrupted the VE-cadherin and led to the reorganization of cytoskeletal F-actin of HNDMVECs. A higher level of IL-8 was detected in the sheared THP-1 and HNDMVEC co-culture medium compared to the static THP-1 and HNDMVEC medium. Further, treating HNDMVECs with IL-8 resulted in increased adherence of non-sheared THP-1 cells, and upregulation in HNDMVECs of vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1). Finally, inhibition of HNDMVECs CXCR2/IL-8 receptor with Reparixin and of IL-8 expression with siRNA blocked sheared THP-1 cell adhesion to the endothelial monolayer. Conclusions These results suggest that CPB-like sheared monocytes promote IL-8 production followed by increased endothelium permeability, and monocyte adhesion and transmigration. This study revealed a novel mechanism of post-CPB inflammation and will contribute to the development of targeted therapeutics to prevent and repair the damage to neonatal patients.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Marta Scatena
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Lan N. Tu
- Seattle Children’s Hospital, Seattle, WA, United States
| | - Cecilia M. Giachelli
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Vishal Nigam
- Seattle Children’s Hospital, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
9
|
You DJ, Gorman BM, Goshi N, Hum NR, Sebastian A, Kim YH, Enright HA, Buchholz BA. Eucalyptus Wood Smoke Extract Elicits a Dose-Dependent Effect in Brain Endothelial Cells. Int J Mol Sci 2024; 25:10288. [PMID: 39408618 PMCID: PMC11476751 DOI: 10.3390/ijms251910288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
The frequency, duration, and size of wildfires have been increasing, and the inhalation of wildfire smoke particles poses a significant risk to human health. Epidemiological studies have shown that wildfire smoke exposure is positively associated with cognitive and neurological dysfunctions. However, there is a significant gap in knowledge on how wildfire smoke exposure can affect the blood-brain barrier and cause molecular and cellular changes in the brain. Our study aims to determine the acute effect of smoldering eucalyptus wood smoke extract (WSE) on brain endothelial cells for potential neurotoxicity in vitro. Primary human brain microvascular endothelial cells (HBMEC) and immortalized human brain endothelial cell line (hCMEC/D3) were treated with different doses of WSE for 24 h. WSE treatment resulted in a dose-dependent increase in IL-8 in both HBMEC and hCMEC/D3. RNA-seq analyses showed a dose-dependent upregulation of genes involved in aryl hydrocarbon receptor (AhR) and nuclear factor erythroid 2-related factor 2 (NRF2) pathways and a decrease in tight junction markers in both HBMEC and hCMEC/D3. When comparing untreated controls, RNA-seq analyses showed that HBMEC have a higher expression of tight junction markers compared to hCMEC/D3. In summary, our study found that 24 h WSE treatment increases IL-8 production dose-dependently and decreases tight junction markers in both HBMEC and hCMEC/D3 that may be mediated through the AhR and NRF2 pathways, and HBMEC could be a better in vitro model for studying the effect of wood smoke extract or particles on brain endothelial cells.
Collapse
Affiliation(s)
- Dorothy J. You
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (D.J.Y.)
| | - Bria M. Gorman
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (D.J.Y.)
| | - Noah Goshi
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (D.J.Y.)
| | - Nicholas R. Hum
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (D.J.Y.)
| | - Aimy Sebastian
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (D.J.Y.)
| | - Yong Ho Kim
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC 27709, USA
| | - Heather A. Enright
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (D.J.Y.)
| | - Bruce A. Buchholz
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| |
Collapse
|
10
|
Chowdhury RN, Armato A, Culver E, Shteynman L, Kurien C, Cradin B, Margolin F, Nguyen T, Cardona C, Kabir N, Garruto RM, Lum JK, Wander K. Quantitative and qualitative analysis of stability for 16 serum immunoregulators over 50 freeze-thaw cycles. Am J Hum Biol 2024; 36:e24087. [PMID: 38682460 DOI: 10.1002/ajhb.24087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/31/2024] [Accepted: 04/10/2024] [Indexed: 05/01/2024] Open
Abstract
OBJECTIVES To evaluate the reliability of data from the assay of bio-archived specimens, a 50-freeze-thaw-cycle (FTC) degradation study of fresh sera was conducted to test the stability of 16 immunoregulators. METHODS Twenty de-identified serum specimens were obtained from volunteers at United Health Services-Wilson Memorial Hospital. Specimens were stored at -20°C and underwent daily 1 h thawing and subsequent freezing for each FTC over 50 consecutive days. Immunoregulator concentrations were assessed via enzyme-linked immunosorbent assay (ELISA) in participant samples at 2 FTC (baseline), 25 FTC, and 50 FTC. Specific immunoregulators observed in the study were C-reactive protein (CRP), interleukin (IL)-1α, 4, 6, 8, 10, monocyte chemoattractant protein-1 (MCP-1, CCL2), monocyte chemoattractant protein-2 (MCP-2, CCL8), eotaxin-1, thymus-and-activation-regulated chemokine (TARC, CCL17), regulated on activation normal T-cell expressed and secreted (RANTES, CCL5), growth-regulated oncogene-alpha (GRO-α, CXCL1), small inducible cytokine A1 (I-309, CCL1), interferon-gamma (IFN-γ), interferon-gamma inducible protein-10 (IP-10, CXCL10), and tumor necrosis factor-alpha (TNF-α). RESULTS Quantitative stability of serum immunoregulators: Serum CRP, IL-8, IL-10, IFN-γ, IP-10, and eotaxin-1 levels appear to be statistically equivalent from baseline to 50 FTC (p ≤ .05). Retention of patterns in serum immunoregulators: patterns across FTC were retained for TARC (age) and CRP, IFN-γ, and MCP-2 (sex). CONCLUSIONS While the effect of multiple FTC on serum immunoregulator levels may not replicate prolonged freezer storage, the results of this study provide valuable information on the robustness of immunoregulators for research using bio-archived sera.
Collapse
Affiliation(s)
- R N Chowdhury
- Department of Anthropology, Binghamton University, Binghamton, New York, USA
- Department of Child and Family Studies, University of South Florida, Tampa, Florida, USA
| | - A Armato
- United Health Services Wilson Memorial Hospital, Johnson City, New York, USA
| | - E Culver
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
| | - L Shteynman
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - C Kurien
- Department of Integrative Neuroscience, Binghamton University, Binghamton, New York, USA
- College of Osteopathic Medicine, New York Institute of Technology, Long Island, New York, USA
| | - B Cradin
- Department of Integrative Neuroscience, Binghamton University, Binghamton, New York, USA
| | - F Margolin
- Department of Integrative Neuroscience, Binghamton University, Binghamton, New York, USA
| | - T Nguyen
- Department of Integrative Neuroscience, Binghamton University, Binghamton, New York, USA
| | - C Cardona
- Department of Integrative Neuroscience, Binghamton University, Binghamton, New York, USA
| | - N Kabir
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Lake Erie College of Osteopathic Medicine, Elmira, New York, USA
| | - R M Garruto
- Department of Anthropology, Binghamton University, Binghamton, New York, USA
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
| | - J K Lum
- Department of Anthropology, Binghamton University, Binghamton, New York, USA
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
| | - K Wander
- Department of Anthropology, Binghamton University, Binghamton, New York, USA
| |
Collapse
|
11
|
Petruccioli E, Sbarra S, Vita S, Salmi A, Cuzzi G, De Marco P, Matusali G, Navarra A, Pierelli L, Grifoni A, Sette A, Maggi F, Nicastri E, Goletti D. Characterization of the Monkeypox Virus [MPX]-Specific Immune Response in MPX-Cured Individuals Using Whole Blood to Monitor Memory Response. Vaccines (Basel) 2024; 12:964. [PMID: 39339995 PMCID: PMC11436000 DOI: 10.3390/vaccines12090964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/13/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Monkeypox (Mpox) is a zoonotic disease caused by monkeypox virus (MPXV), an Orthopoxvirus (OPXV). Since we are observing the first MPXV outbreak outside the African continent, the general population probably does not have a pre-existing memory response for MPXV but may have immunity against the previous smallpox vaccine based on a live replicating Vaccinia strain (VACV). Using a whole blood platform, we aim to study the MPXV- T-cell-specific response in Mpox-cured subjects. METHODS We enrolled 16 subjects diagnosed with Mpox in the previous 3-7 months and 15 healthy donors (HD) with no recent vaccination history. Whole blood was stimulated overnight with MPXV and VACV peptides to elicit CD4 and CD8 T-cell-specific responses, which were evaluated by ELISA and multiplex assay. RESULTS Mpox-cured subjects showed a significant IFN-γ T-cell response to MPXV and VACV. Besides IFN-γ, IL-6, IP-10, IL-8, IL-2, G-CSF, MCP-1, MIP1-α, MIP-1β, IL-1Rα, and IL-5 were significantly induced after specific stimulation compared to the unstimulated control. The specific response was mainly induced by the CD4 peptides MPX-CD4-E and VACV-CD4. CONCLUSIONS We showed that MPXV-specific responses have a mixed Th1- and Th2-response in a whole blood platform assay, which may be useful for monitoring the specific immunity induced by vaccination or infection.
Collapse
Affiliation(s)
- Elisa Petruccioli
- Translational Research Unit, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy; (E.P.); (S.S.)
| | - Settimia Sbarra
- Translational Research Unit, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy; (E.P.); (S.S.)
| | - Serena Vita
- Highly Infectious Diseases Isolation Unit, Clinical Department, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy
| | - Andrea Salmi
- Translational Research Unit, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy; (E.P.); (S.S.)
| | - Gilda Cuzzi
- Translational Research Unit, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy; (E.P.); (S.S.)
| | - Patrizia De Marco
- Highly Infectious Diseases Isolation Unit, Clinical Department, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy
| | - Giulia Matusali
- Laboratory of Virology and Biosafety Laboratories, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy
| | - Assunta Navarra
- Clinical Epidemiology Unit, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy
| | - Luca Pierelli
- Unità Operativa Complessa (UOC) Transfusion Medicine and Stem Cell, San Camillo Forlanini Hospital, 00149 Rome, Italy
| | - Alba Grifoni
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Fabrizio Maggi
- Laboratory of Virology and Biosafety Laboratories, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy
| | - Emanuele Nicastri
- Highly Infectious Diseases Isolation Unit, Clinical Department, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy; (E.P.); (S.S.)
| |
Collapse
|
12
|
Margutti P, D’Ambrosio A, Zamboni S. Microbiota-Derived Extracellular Vesicle as Emerging Actors in Host Interactions. Int J Mol Sci 2024; 25:8722. [PMID: 39201409 PMCID: PMC11354844 DOI: 10.3390/ijms25168722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
The human microbiota is an intricate micro-ecosystem comprising a diverse range of dynamic microbial populations mainly consisting of bacteria, whose interactions with hosts strongly affect several physiological and pathological processes. The gut microbiota is being increasingly recognized as a critical player in maintaining homeostasis, contributing to the main functions of the intestine and distal organs such as the brain. However, gut dysbiosis, characterized by composition and function alterations of microbiota with intestinal barrier dysfunction has been linked to the development and progression of several pathologies, including intestinal inflammatory diseases, systemic autoimmune diseases, such as rheumatic arthritis, and neurodegenerative diseases, such as Alzheimer's disease. Moreover, oral microbiota research has gained significant interest in recent years due to its potential impact on overall health. Emerging evidence on the role of microbiota-host interactions in health and disease has triggered a marked interest on the functional role of bacterial extracellular vesicles (BEVs) as mediators of inter-kingdom communication. Accumulating evidence reveals that BEVs mediate host interactions by transporting and delivering into host cells effector molecules that modulate host signaling pathways and cell processes, influencing health and disease. This review discusses the critical role of BEVs from the gut, lung, skin and oral cavity in the epithelium, immune system, and CNS interactions.
Collapse
Affiliation(s)
- Paola Margutti
- Department of Neurosciences, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.D.); (S.Z.)
| | | | | |
Collapse
|
13
|
Gupta G, Wang Z, Kissling VM, Gogos A, Wick P, Buerki-Thurnherr T. Boron Nitride Nanosheets Induce Lipid Accumulation and Autophagy in Human Alveolar Lung Epithelial Cells Cultivated at Air-Liquid Interface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308148. [PMID: 38290809 DOI: 10.1002/smll.202308148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/29/2023] [Indexed: 02/01/2024]
Abstract
Hexagonal boron nitride (hBN) is an emerging 2D material attracting significant attention due to its superior electrical, chemical, and therapeutic properties. However, inhalation toxicity mechanisms of hBN in human lung cells are poorly understood. Here, cellular interaction and effects of hBN nanosheets is investigated in alveolar epithelial cells cultured on porous inserts and exposed under air-liquid interface conditions for 24 h. hBN is taken up by the cells as determined in a label-free manner via RAMAN-confocal microscopy, ICP-MS, TEM, and SEM-EDX. No significant (p > 0.05) effects are observed on cell membrane integrity (LDH release), epithelial barrier integrity (TEER), interleukin-8 cytokine production or reactive oxygen production at tested dose ranges (1, 5, and 10 µg cm-2). However, it is observed that an enhanced accumulation of lipid granules in cells indicating the effect of hBN on lipid metabolism. In addition, it is observed that a significant (p < 0.05) and dose-dependent (5 and 10 µg cm-2) induction of autophagy in cells after exposure to hBN, potentially associated with the downstream processing and breakdown of excess lipid granules to maintain lipid homeostasis. Indeed, lysosomal co-localization of lipid granules supporting this argument is observed. Overall, the results suggest that the continuous presence of excess intracellular lipids may provoke adverse outcomes in the lungs.
Collapse
Affiliation(s)
- Govind Gupta
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), Empa, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Ziting Wang
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), Empa, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Vera M Kissling
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), Empa, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Alexander Gogos
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), Empa, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Peter Wick
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), Empa, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Tina Buerki-Thurnherr
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), Empa, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| |
Collapse
|
14
|
Bader El Din NG, Farouk S. Exploring the Impact of Different Inflammatory Cytokines on Hepatitis C Virus Infection. J Interferon Cytokine Res 2024; 44:233-243. [PMID: 38563804 DOI: 10.1089/jir.2024.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Hepatitis C virus (HCV) infection is a global health concern affecting millions worldwide. Chronic HCV infection often leads to liver inflammation and can progress to cirrhosis and hepatocellular carcinoma. Inflammatory cytokines are crucial in modulating the immune response during HCV infection. This review aims to investigate the impact of different inflammatory cytokines on HCV infection and associated immune responses. This review was conducted to identify relevant studies on the interplay between inflammatory cytokines and HCV infection. The analysis focused on the effects of key inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1 (IL-1), and interferon-gamma (IFN-γ), on HCV replication, immune cell activation, and liver inflammation. The findings reveal that these inflammatory cytokines can significantly influence HCV infection and the subsequent immune response. TNF-α, IL-6, and IL-1 have been shown to enhance HCV replication, while IFN-γ exerts antiviral effects by inhibiting viral replication and promoting immune cell-mediated clearance of infected hepatocytes. Moreover, these cytokines contribute to the recruitment and activation of immune cells, such as natural killer cells, T cells, and macrophages, which play critical roles in controlling HCV infection. Understanding the precise mechanisms by which inflammatory cytokines impact HCV infection is crucial for developing more targeted therapeutic strategies. Modulating the levels or activity of specific cytokines may provide opportunities to attenuate HCV replication, reduce liver inflammation, and improve treatment outcomes. In conclusion, this review highlights the significance of inflammatory cytokines in influencing HCV infection and associated immune responses.
Collapse
Affiliation(s)
- Noha G Bader El Din
- Microbial Biotechnology Department, Biotechnology Institute, National Research Center, Cairo, Egypt
| | - Sally Farouk
- Microbial Biotechnology Department, Biotechnology Institute, National Research Center, Cairo, Egypt
| |
Collapse
|
15
|
Choong MJ, Dewadas HD, Cheng Lim L, Sukuru SD, Tan CH, Cheong SK, Lim YM. Effects of house-cultivated edible bird's nest on immunoglobulin and cytokine release in vitro. Vet World 2024; 17:1370-1384. [PMID: 39077458 PMCID: PMC11283608 DOI: 10.14202/vetworld.2024.1370-1384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/14/2024] [Indexed: 07/31/2024] Open
Abstract
Background and Aim Edible bird's nest (EBN) is known as the "Caviar of the East" because of its high nutritional and medicinal values. Nevertheless, its effect on human immunity is yet to be explored. This study examined the effects of EBN's aqueous extract (EBNE) on human immunity through the modular immune in vitro construct (MIMIC) model consisting of peripheral tissue equivalent (PTE) and lymphoid tissue equivalent (LTE) modules. Materials and Methods One hundred twenty mL of full blood was obtained from four healthy human volunteers. The human immune system was simulated using an in vitro model, called MIMIC. Under EBNE treatment, monocyte transendothelial migration through reversed endothelial layers was observed. Using PTE and LTE modules, monocytes were differentiated into dendritic cells with lipopolysaccharide, then co-cultured with T- and B-cells for cytokine and immunoglobulin (Ig) production. The human cytokine array G2000 and quantitative human Ig isotyping array were used to identify the cytokine profile and Ig isotypes, respectively. Results IgE, IgA, and IgG3 levels were significantly raised by EBNE. These cytokines, including brain-derived neurotrophic factor, ciliary neurotrophic factor, glial cell line-derivative neurotrophic factor, insulin-like growth factor 1, and insulin-like growth factor binding protein 4, were generated. Conclusion For the first time, this work uses a MIMIC model to illustrate the impact of EBNE on human immune response. This new understanding of EBN's immunoregulatory effect allows for further exploration of how EBN interacts with the human immune system.
Collapse
Affiliation(s)
- Mel June Choong
- Centre for Cancer Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia
| | - Hemaniswarri Dewi Dewadas
- Centre for Biomedical and Nutrition Research, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Kampar, 31900, Perak, Malaysia
- Department of Business and Public Administration, Faculty of Business and Finance, Universiti Tunku Abdul Rahman, Jalan Universiti, Kampar, 31900, Perak, Malaysia
| | - Lay Cheng Lim
- Department of Life Sciences, School of Pharmacy, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Sheela Devi Sukuru
- Department of Nursing, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia
| | - Chee Hong Tan
- Inbit Biotech Sdn. Bhd., No. 8, Lorong University B, Seksyen 16, 46350 Petaling Jaya, Selangor, Malaysia
| | - Soon Keng Cheong
- Department of Medicine, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia
| | - Yang Mooi Lim
- Centre for Cancer Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia
- Department of Pre-clinical Sciences, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia
| |
Collapse
|
16
|
Lopuhaä BV, Guzel C, van der Lee A, van den Bosch TPP, van Kemenade FJ, Huisman MV, Kruip MJHA, Luider TM, von der Thüsen JH. Increase in venous thromboembolism in SARS-CoV-2 infected lung tissue: proteome analysis of lung parenchyma, isolated endothelium, and thrombi. Histopathology 2024; 84:967-982. [PMID: 38253958 DOI: 10.1111/his.15143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
AIMS COVID-19 pneumonia is characterized by an increased rate of deep venous thrombosis and pulmonary embolism. To better understand the pathophysiology behind thrombosis in COVID-19, we performed proteomics analysis on SARS-CoV-2 infected lung tissue. METHODS Liquid chromatography mass spectrometry was performed on SARS-CoV-2 infected postmortem lung tissue samples. Five protein profiling analyses were performed: whole slide lung parenchyma analysis, followed by analysis of isolated thrombi and endothelium, both stratified by disease (COVID-19 versus influenza) and thrombus morphology (embolism versus in situ). Influenza autopsy cases with pulmonary thrombi were used as controls. RESULTS Compared to influenza controls, both analyses of COVID-19 whole-tissue and isolated endothelium showed upregulation of proteins and pathways related to liver metabolism including urea cycle activation, with arginase being among the top upregulated proteins in COVID-19 lung tissue. Analysis of isolated COVID-19 thrombi showed significant downregulation of pathways related to platelet activation compared to influenza thrombi. Analysis of isolated thrombi based on histomorphology shows that in situ thrombi have significant upregulation of coronavirus pathogenesis proteins. CONCLUSIONS The decrease in platelet activation pathways in severe COVID-19 thrombi suggests a relative increase in venous thromboembolism, as thrombi from venous origin tend to contain fewer platelets than arterial thrombi. Based on histomorphology, in situ thrombi show upregulation of various proteins related to SARS-CoV-2 pathogenesis compared to thromboemboli, which may indicate increased in situ pulmonary thrombosis in COVID-19. Therefore, this study supports the increase of venous thromboembolism without undercutting the involvement of in situ thrombosis in severe COVID-19.
Collapse
Affiliation(s)
- Boaz V Lopuhaä
- Department of Pathology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Coşkun Guzel
- Laboratory of Neuro-Oncology, Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | | | | | | | - Menno V Huisman
- Department of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands
| | - Marieke J H A Kruip
- Department of Haematology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Theo M Luider
- Laboratory of Neuro-Oncology, Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Jan H von der Thüsen
- Department of Pathology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| |
Collapse
|
17
|
Achi NK, Eleazu CO, Onyeabo C, Kalu W, Eleazu K. Syzygium malaccense leaves methanol extract modulate some biochemical and inflammatory markers and prostate histology of testosterone-estradiol valerate induced benign prostatic hyperplasia in rats. AVICENNA JOURNAL OF PHYTOMEDICINE 2024; 14:305-324. [PMID: 39086866 PMCID: PMC11287027 DOI: 10.22038/ajp.2023.23526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/02/2023] [Indexed: 08/02/2024]
Abstract
OBJECTIVE The effect of Syzygium malaccense methanol leaf extract (SMLE) on some parameters of testosterone-estradiol valerate induced benign prostatic hyperplasia (BPH) in rats was assayed. MATERIALS AND METHODS Thirty male albino rats were used and they were grouped as: Control: received 1 mL/kg olive oil (oral and subcutaneous); BPH: received subcutaneously 9 mg/kg dihydrotestosterone (DHT)+0.9 mg/kg estradiol valerate (ESV) and orally 1 ml/kg olive oil; finasteride: received 9 mg/kg of DHT+0.9 mg/kg ESV (subcutaneously) and 5 mg/kg finasteride (orally) and test groups 1 and 2: received 9 mg/kg of DHT+0.9 mg/kg ESV (subcutaneously) and 200 and 400 mg/kg SMLE (orally). The duration of the treatment was 28 days. RESULTS The BPH group had increased prostatic total proteins, oxidative stress, interleukin 8, tumor necrosis factor-α, prostate weights, serum concentrations of prostate specific antigen, estradiol, follicle stimulating hormone, and C-reactive protein, dyslipidaemia, altered prostate histology and hormonal levels but had no significant change (p>0.05) in haematological indices relative to the control. Finasteride or S. malaccense modulated most of these parameters as corroborated by prostate histology. Acute toxicity study indicated the non-toxicity of SMLE. SMLE showed strong in vitro antioxidant activity which corroborated its in vivo antioxidant activity. CONCLUSION The study showed that S. malaccense could be useful in the management of BPH.
Collapse
Affiliation(s)
- Ngozi Kalu Achi
- Department of Biochemistry, Michael Okpara University of Agriculture, Umudike, Umuahia, Abia State, Nigeria
| | | | - Chimaraoke Onyeabo
- Department of Biochemistry, Michael Okpara University of Agriculture, Umudike, Umuahia, Abia State, Nigeria
| | - Winner Kalu
- Department of Biochemistry, Rhema University, Aba, Abia State, Nigeria
| | - Kate Eleazu
- Department of Biochemistry, Ebonyi State University, Ebonyi State, Abakaliki, Nigeria
| |
Collapse
|
18
|
McAlindon TE, Hunnicutt JL, Roberts MB, Haugen IK, Schaefer LF, Driban JB, Lu B, Duryea J, Smith SE, Booth SL, Petty GA, Mathiessen A, Zeng L, Eaton C. Associations of inflammatory and metabolic biomarkers with incident erosive hand osteoarthritis in the osteoarthritis initiative cohort. Osteoarthritis Cartilage 2024; 32:592-600. [PMID: 38311107 PMCID: PMC11031286 DOI: 10.1016/j.joca.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 02/06/2024]
Abstract
OBJECTIVE Erosive hand osteoarthritis (eHOA) is a subtype of hand osteoarthritis (OA) that develops in finger joints with pre-existing OA and is differentiated by clinical characteristics (hand pain/disability, inflammation, and erosions) that suggest inflammatory or metabolic processes. METHOD This was a longitudinal nested case-cohort design among Osteoarthritis Initiative participants who had hand radiographs at baseline and 48-months, and biospecimens collected at baseline. We classified incident radiographic eHOA in individuals with ≥1 joint with Kellgren-Lawrence ≥2 and a central erosion present at 48-months but not at baseline. We used a random representative sample (n = 1282) for comparison. We measured serum biomarkers of inflammation, insulin resistance and dysglycemia, and adipokines using immunoassays and enzymatic colorimetric procedures, blinded to case status. RESULTS Eighty-six participants developed incident radiographic eHOA. In the multivariate analyses adjusted for age, gender, race, smoking, and body mass index, and after adjustment for multiple analyses, incident radiographic eHOA was associated with elevated levels of interleukin-7 (risk ratio (RR) per SD = 1.30 [95% confidence interval (CI) 1.09, 1.55] p trend 0.01). CONCLUSION This exploratory study suggests an association of elevated interleukin-7, an inflammatory cytokine, with incident eHOA, while other cytokines or biomarkers of metabolic inflammation were not associated. Interleukin-7 may mediate inflammation and tissue damage in susceptible osteoarthritic finger joints and participate in erosive progression.
Collapse
Affiliation(s)
- Timothy E McAlindon
- Division of Rheumatology, Allergy, and Immunology, Tufts Medical Center, Boston, MA, USA.
| | | | - Mary B Roberts
- Care New England Medical Group/Primary Care and Specialty Services, Pawtucket, RI, USA.
| | - Ida K Haugen
- Center for Treatment of Rheumatic and Musculoskeletal Diseases (REMEDY), Diakonhjemmet Hospital, Oslo, Norway.
| | - Lena F Schaefer
- Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Jeffrey B Driban
- Division of Rheumatology, Allergy, and Immunology, Tufts Medical Center, Boston, MA, USA.
| | - Bing Lu
- UConn Health, University of Connecticut, Farmington, CT, USA.
| | - Jeffrey Duryea
- Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Stacy E Smith
- Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Sarah L Booth
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA.
| | - Gayle A Petty
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA.
| | - Alexander Mathiessen
- Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Li Zeng
- Department of Integrative Physiology and Pathobiology, School of Medicine, Tufts University, Boston, MA, USA.
| | - Charles Eaton
- Care New England Medical Group/Primary Care and Specialty Services, Pawtucket, RI, USA.
| |
Collapse
|
19
|
Megasari NLA, Khairunisa SQ, Arizandy RY, Wijaksana IKE, Wungu CDK. Cytokine profiles of mild-to-moderate SARS-CoV-2 infected and recovered pre-vaccinated individuals residing in Indonesia. PeerJ 2024; 12:e17257. [PMID: 38646483 PMCID: PMC11032655 DOI: 10.7717/peerj.17257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/27/2024] [Indexed: 04/23/2024] Open
Abstract
Background Accumulating evidence suggests the involvement of cytokine-mediated inflammation, in clinical severity and death related to SARS-CoV-2 infection, especially among pre-vaccinated individuals. An increased risk of death was also described among SARS-CoV-2 recovered individuals, which might be correlated with prolonged inflammatory responses. Despite being among the countries with the highest cumulative deaths due to COVID-19, evidence regarding cytokine profiles among SARS-CoV-2 infected and recovered pre-vaccinated individuals in Indonesia is scarce. Thus, this study aimed to describe the cytokines profiles of pre-vaccinated individuals residing in Indonesia, with mild-to-moderate SARS-CoV-2 infection and those who recovered. Methods Sixty-one sera from 24 hospitalized patients with mild-to-moderate SARS-CoV-2 infection, 24 individuals recovered from asymptomatic-to-moderate SARS-CoV-2 infection, and 13 healthy controls unexposed to SARS-CoV-2 were used in this study. Quantification of serum cytokine levels, including IL-6, IL-8, IP-10, TNF-α, CCL-2, CCL-3, CCL-4, and CXCL-13, was performed using a Luminex multi-analyte-profiling (xMAP)-based assay. Results The levels of IL-8 along with CCL-2 and CCL-4, were significantly higher (p ≤ 0.01) in hospitalized patients with mild-to-moderate SARS-CoV-2 infection and recovered individuals compared to healthy controls. However, no significant difference was observed in these cytokine levels between infected and recovered individuals. On the other hand, there were no significant differences in several other cytokine levels, including IL-6, IL-10, TNF-α, CCL-3, and CXCL-13, among all groups. Conclusion IL-8, CCL-2, and CCL-4 were significantly elevated in pre-vaccinated Indonesian individuals with mild-to-moderate SARS-CoV-2 infection and those who recovered. The cytokine profiles described in this study might indicate inflammatory responses not only among SARS-CoV-2 infected, but also recovered individuals.
Collapse
Affiliation(s)
- Ni Luh Ayu Megasari
- Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
- Postgraduate School, Airlangga University, Surabaya, Indonesia
| | | | | | - I. Komang Evan Wijaksana
- Department of Periodontology, Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia
| | - Citrawati Dyah Kencono Wungu
- Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
- Department of Physiology and Medical Biochemistry, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
20
|
Sivaraman K, Liu B, Martinez-Delgado B, Held J, Büttner M, Illig T, Volland S, Gomez-Mariano G, Jedicke N, Yevsa T, Welte T, DeLuca DS, Wrenger S, Olejnicka B, Janciauskiene S. Human Bronchial Epithelial Cell Transcriptome Changes in Response to Serum from Patients with Different Status of Inflammation. Lung 2024; 202:157-170. [PMID: 38494528 PMCID: PMC11009779 DOI: 10.1007/s00408-024-00679-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/02/2024] [Indexed: 03/19/2024]
Abstract
PURPOSE To investigate the transcriptome of human bronchial epithelial cells (HBEC) in response to serum from patients with different degrees of inflammation. METHODS Serum from 19 COVID-19 patients obtained from the Hannover Unified Biobank was used. At the time of sampling, 5 patients had a WHO Clinical Progression Scale (WHO-CPS) score of 9 (severe illness). The remaining 14 patients had a WHO-CPS of below 9 (range 1-7), and lower illness. Multiplex immunoassay was used to assess serum inflammatory markers. The culture medium of HBEC was supplemented with 2% of the patient's serum, and the cells were cultured at 37 °C, 5% CO2 for 18 h. Subsequently, cellular RNA was used for RNA-Seq. RESULTS Patients with scores below 9 had significantly lower albumin and serum levels of E-selectin, IL-8, and MCP-1 than patients with scores of 9. Principal component analysis based on 500 "core genes" of RNA-seq segregated cells into two subsets: exposed to serum from 4 (I) and 15 (II) patients. Cells from a subset (I) treated with serum from 4 patients with a score of 9 showed 5566 differentially expressed genes of which 2793 were up- and 2773 downregulated in comparison with cells of subset II treated with serum from 14 patients with scores between 1 and 7 and one with score = 9. In subset I cells, a higher expression of TLR4 and CXCL8 but a lower CDH1, ACE2, and HMOX1, and greater effects on genes involved in metabolic regulation, cytoskeletal organization, and kinase activity pathways were observed. CONCLUSION This simple model could be useful to characterize patient serum and epithelial cell properties.
Collapse
Affiliation(s)
- Kokilavani Sivaraman
- Department of Pulmonary and Infectious Diseases, Hannover Medical School, BREATH German Center for Lung Research (DZL), Feodor-Lynen-Str. 23, 30625, Hannover, Germany
| | - Bin Liu
- Department of Pulmonary and Infectious Diseases, Hannover Medical School, BREATH German Center for Lung Research (DZL), Feodor-Lynen-Str. 23, 30625, Hannover, Germany
| | - Beatriz Martinez-Delgado
- Department of Molecular Genetics, Institute of Health Carlos III, Institute for Rare Diseases Research, CIBER of Rare Diseases (CIBERER), Majadahonda, 28220, Madrid, Spain
| | - Julia Held
- Department of Pulmonary and Infectious Diseases, Hannover Medical School, BREATH German Center for Lung Research (DZL), Feodor-Lynen-Str. 23, 30625, Hannover, Germany
| | - Manuela Büttner
- Hannover Medical School, Central Animal Facility, Hannover, Germany
| | - Thomas Illig
- Hannover Medical School, Hannover Unified Biobank, Hannover, Germany
| | - Sonja Volland
- Hannover Medical School, Hannover Unified Biobank, Hannover, Germany
| | - Gema Gomez-Mariano
- Department of Molecular Genetics, Institute of Health Carlos III, Institute for Rare Diseases Research, CIBER of Rare Diseases (CIBERER), Majadahonda, 28220, Madrid, Spain
| | - Nils Jedicke
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Tetyana Yevsa
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- Department of Pulmonary and Infectious Diseases, Hannover Medical School, BREATH German Center for Lung Research (DZL), Feodor-Lynen-Str. 23, 30625, Hannover, Germany
| | - David S DeLuca
- Department of Pulmonary and Infectious Diseases, Hannover Medical School, BREATH German Center for Lung Research (DZL), Feodor-Lynen-Str. 23, 30625, Hannover, Germany
| | - Sabine Wrenger
- Department of Pulmonary and Infectious Diseases, Hannover Medical School, BREATH German Center for Lung Research (DZL), Feodor-Lynen-Str. 23, 30625, Hannover, Germany
| | - Beata Olejnicka
- Department of Pulmonary and Infectious Diseases, Hannover Medical School, BREATH German Center for Lung Research (DZL), Feodor-Lynen-Str. 23, 30625, Hannover, Germany
| | - Sabina Janciauskiene
- Department of Pulmonary and Infectious Diseases, Hannover Medical School, BREATH German Center for Lung Research (DZL), Feodor-Lynen-Str. 23, 30625, Hannover, Germany.
| |
Collapse
|
21
|
Vacharasin JM, Ward JA, McCord MM, Cox K, Imitola J, Lizarraga SB. Neuroimmune mechanisms in autism etiology - untangling a complex problem using human cellular models. OXFORD OPEN NEUROSCIENCE 2024; 3:kvae003. [PMID: 38665176 PMCID: PMC11044813 DOI: 10.1093/oons/kvae003] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/13/2024] [Accepted: 01/31/2024] [Indexed: 04/28/2024]
Abstract
Autism spectrum disorder (ASD) affects 1 in 36 people and is more often diagnosed in males than in females. Core features of ASD are impaired social interactions, repetitive behaviors and deficits in verbal communication. ASD is a highly heterogeneous and heritable disorder, yet its underlying genetic causes account only for up to 80% of the cases. Hence, a subset of ASD cases could be influenced by environmental risk factors. Maternal immune activation (MIA) is a response to inflammation during pregnancy, which can lead to increased inflammatory signals to the fetus. Inflammatory signals can cross the placenta and blood brain barriers affecting fetal brain development. Epidemiological and animal studies suggest that MIA could contribute to ASD etiology. However, human mechanistic studies have been hindered by a lack of experimental systems that could replicate the impact of MIA during fetal development. Therefore, mechanisms altered by inflammation during human pre-natal brain development, and that could underlie ASD pathogenesis have been largely understudied. The advent of human cellular models with induced pluripotent stem cell (iPSC) and organoid technology is closing this gap in knowledge by providing both access to molecular manipulations and culturing capability of tissue that would be otherwise inaccessible. We present an overview of multiple levels of evidence from clinical, epidemiological, and cellular studies that provide a potential link between higher ASD risk and inflammation. More importantly, we discuss how stem cell-derived models may constitute an ideal experimental system to mechanistically interrogate the effect of inflammation during the early stages of brain development.
Collapse
Affiliation(s)
- Janay M Vacharasin
- Department of Biological Sciences, and Center for Childhood Neurotherapeutics, Univ. of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
- Department of Biological Sciences, Francis Marion University, 4822 East Palmetto Street, Florence, S.C. 29506, USA
| | - Joseph A Ward
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
- Center for Translational Neuroscience, Carney Institute of Brain Science, Brown University, 70 Ship Street, Providence, RI 02903, USA
| | - Mikayla M McCord
- Department of Biological Sciences, and Center for Childhood Neurotherapeutics, Univ. of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
| | - Kaitlin Cox
- Department of Biological Sciences, and Center for Childhood Neurotherapeutics, Univ. of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
| | - Jaime Imitola
- Laboratory of Neural Stem Cells and Functional Neurogenetics, UConn Health, Departments of Neuroscience, Neurology, Genetics and Genome Sciences, UConn Health, 263 Farmington Avenue, Farmington, CT 06030-5357, USA
| | - Sofia B Lizarraga
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
- Center for Translational Neuroscience, Carney Institute of Brain Science, Brown University, 70 Ship Street, Providence, RI 02903, USA
| |
Collapse
|
22
|
Watrowski R, Schuster E, Hofstetter G, Fischer MB, Mahner S, Van Gorp T, Polterauer S, Zeillinger R, Obermayr E. Association of Four Interleukin-8 Polymorphisms (-251 A>T, +781 C>T, +1633 C>T, +2767 A>T) with Ovarian Cancer Risk: Focus on Menopausal Status and Endometriosis-Related Subtypes. Biomedicines 2024; 12:321. [PMID: 38397923 PMCID: PMC10886609 DOI: 10.3390/biomedicines12020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/22/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Interleukin-8 (IL-8) is involved in the regulation of inflammatory processes and carcinogenesis. Single-nucleotide polymorphisms (SNPs) within the IL-8 gene have been shown to alter the risks of lung, gastric, or hepatocellular carcinomas. To date, only one study examined the role of IL-8 SNPs in ovarian cancer (OC), suggesting an association between two IL-8 SNPs and OC risk. In this study, we investigated four common IL-8 SNPs, rs4073 (-251 A>T), rs2227306 (+781 C>T), rs2227543 (+1633 C>T), and rs1126647 (+2767 A>T), using the restriction fragment length polymorphism (PCR-RFLP) technique. Our study included a cohort of 413 women of Central European descent, consisting of 200 OC patients and 213 healthy controls. The most common (73.5%) histological type was high-grade serous OC (HGSOC), whereas 28/200 (14%) patients had endometriosis-related (clear cell or endometrioid) OC subtypes (EROC). In postmenopausal women, three of the four investigated SNPs, rs4073 (-251 A>T), rs2227306 (+781 C>T), and rs2227543 (+1633 C>T), were associated with OC risk. Furthermore, we are the first to report a significant relationship between the T allele or TT genotype of SNP rs1126647 (+2767 A>T) and the EROC subtype (p = 0.02 in the co-dominant model). The TT homozygotes were found more than twice as often in EROC compared to other OC subtypes (39% vs. 19%, p = 0.015). None of the examined SNPs appeared to influence OC risk in premenopausal women, nor were they associated with the aggressive HGSOC subtype or the stage of disease at the initial diagnosis.
Collapse
Affiliation(s)
- Rafał Watrowski
- Department of Obstetrics and Gynecology, Helios Hospital Muellheim, Teaching Hospital of the University of Freiburg, Heliosweg 1, 79379 Muellheim, Germany;
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynaecologic Cancer Unit, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria; (E.S.); (R.Z.)
| | - Eva Schuster
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynaecologic Cancer Unit, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria; (E.S.); (R.Z.)
| | - Gerda Hofstetter
- Department of Pathology, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria;
| | - Michael B. Fischer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria;
- Center for Biomedical Technology, Department for Biomedical Research, Danube University Krems, Dr.-Karl-Dorrek-Straße 30, 3500 Krems, Austria
| | - Sven Mahner
- Department of Gynaecology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
- Department of Obstetrics and Gynaecology, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Toon Van Gorp
- Division of Gynaecologic Oncology, University Hospital Leuven, 3000 Leuven, Belgium;
- Leuven Cancer Institute, Catholic University of Leuven, 3000 Leuven, Belgium
| | - Stefan Polterauer
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Robert Zeillinger
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynaecologic Cancer Unit, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria; (E.S.); (R.Z.)
| | - Eva Obermayr
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynaecologic Cancer Unit, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria; (E.S.); (R.Z.)
| |
Collapse
|
23
|
Elnosary ME, Shreadah MA, Ashour ML, Nabil-Adam A. Predictions based on inflammatory cytokine profiling of Egyptian COVID-19 with 2 potential therapeutic effects of certain marine-derived compounds. Int Immunopharmacol 2024; 126:111072. [PMID: 38006751 DOI: 10.1016/j.intimp.2023.111072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUNDS A worldwide coronavirus pandemic has affected many healthcare systems in 2019 (COVID-19). Following viral activation, cytokines and chemokines are released, causing inflammation and tissue death, particularly in the lungs, resulting in severe COVID-19 symptoms such as pneumonia and ARDS. COVID-19 induces the release of several chemokines and cytokines in different organs, such as the cardiovascular system and lungs. RESEARCH IDEA COVID-19 and its more severe effects, such as an elevated risk of death, are more common in patients with metabolic syndrome and the elderly. Cytokine storm and COVID-19 severity may be mitigated by immunomodulation targeting NF-κB activation in conjunction with TNF- α -inhibition. In severe cases of COVID-19, inhibiting the NF-κB/TNF- α, the pathway may be employed as a therapeutic option. MATERIAL AND METHODS The study will elaborate on the Egyptian pattern for COVID-19 patients in the first part of our study. An Egyptian patient with COVID-19 inflammatory profiling will be discussed in the second part of this article using approved marine drugs selected to inhabit the significant inflammatory signals. A biomarker profiling study is currently being performed on Egyptian patients with SARS-COV-2. According to the severity of the infection, participants were divided into four groups. The First Group was non-infected with SARS-CoV-2 (Control, n = 16), the Second Group was non-intensive care patients (non-ICU, n = 16), the Third Group was intensive care patients (ICU, n = 16), and the Fourth Group was ICU with endotracheal intubation (ICU + EI, n = 16). To investigate COVID-19 inflammatory biomarkers for Egyptian patients, several inflammatory, oxidative, antioxidant, and anti-inflammatory biomarkers were measured. The following are examples of blood tests: CRP, Ferritin, D-dimer, TNF-α, IL-8, IL-6., IL-Ib, CD8, NF-κB, MDA, and total antioxidants. RESULTS AND DISCUSSION The results of the current study revealed many logical findings, such as the elevation of CRP, Ferritin, D-dimer, TNF- α, CD8, IL-6, IL-, NF-κB, and MDA. Where a significant increase showed in ICU group results (23.05 ± 0.30, 2.35 ± 0.86, 433.4 ± 159.3, 26.67 ± 3.51, 7.52 ± 1.48, 7.49 ± 1.04, 5.76 ± 1.31, 7.41 ± 0.73) respectively, and also ICU group results (54.75 ± 3.44, 0.65 ± 0.13, 460.2 ± 121.42, 27.43 ± 2.52, 8.63 ± 2.68, 10.65 ± 2.75, 5.93 ± 1.4, 10.64 ± 0.86) respectively, as well as ICU + EI group results (117.63 ± 11.89, 1.22 ± 0.65, 918.8 ± 159.27, 26.68 ± 2.00, 6.68 ± 1.08, 11.68 ± 6.16, 6.23 ± 0.07, 22.41 ± 1.39),respectively.The elevation in laboratory biomarkers of cytokines storm in three infected groups with remarkable increases in the ICU + EI group was due to the elevation of oxidative stress and inflammatory storm molecules, which lead to highly inflammatory responses, specifically in severe patients of COVID-19. Another approach to be used in the current study is investigating new computational drug compounds for SARS-COV-2 protective agents from the marine environment. The results revealed that (Imatinib and Indinavir) had the highest affinity toward Inflammatory molecules and COVID-19 proteins (PDB ID: -7CZ4 and 7KJR), which may be used in the future as possible COVID-19 drug candidates. CONCLUSION The investigated inflammatory biomarkers in Egyptian COVID-19 patients showed a strong correlation between IL6, TNF-α, NF-κB, CRB, DHL, and ferritin as COVID-19 biomarkers and determined the severity of the infection. Also, the oxidative /antioxidant showed good biomarkers for infection recovery and progression of the patients.
Collapse
Affiliation(s)
- Mohamed E Elnosary
- Al-Azhar University, Faculty of Science, Botany and Microbiology Department, 11884 Nasr City, Cairo, Egypt.
| | - Mohamed Attia Shreadah
- Marine Biotechnology and Natural Products Laboratory, National Institute of Oceanography & Fisheries, Egypt
| | - Mohamed L Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, Cairo 11566, Egypt; Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia.
| | - Asmaa Nabil-Adam
- Marine Biotechnology and Natural Products Laboratory, National Institute of Oceanography & Fisheries, Egypt.
| |
Collapse
|
24
|
Rey I, Effendi-Ys R, Sukatendel K. The Comparison of Serum Interleukin-8 Levels Based on Severity of Liver Cirrhosis. Med Arch 2024; 78:92-94. [PMID: 38566873 PMCID: PMC10983089 DOI: 10.5455/medarh.2024.78.92-94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/28/2024] [Indexed: 04/04/2024] Open
Abstract
Background The molecule known as Interleukin-8 (IL-8), a chemotactic leukocyte, has been found to have a crucial role in the perpetuation of the inflammatory environment that is associated with hepatitis B virus (HBV) infection, as well as in the development of liver cirrhosis and cancer. Objective The aim of this study was to carefully examine the role of IL-8 in the inflammatory reaction and to compare the levels based on the severity of liver cirrhosis. Methods The study was conducted from February 2018 to September 2018 at the Gastroenterohepatology Division, Internal medicine Department, Faculty of Medicine, Universitas Sumatera Utara. The study was designed as an analytic comparative, cross-sectional study. The liver cirrhosis patients who participated in this study met the inclusion criteria and provided informed consent. Results A total of 70 patients were included in the study, from which we identified 1 individual with child-pugh A, 28 individuals with child-pugh B, and 41 individuals with child-pugh C. The serum level of IL-8 was found to be 98 (11-320) (pg/ml). The IL-8 levels between child-pugh B and C patients did not exhibit any noteworthy differences during our analysis (p = 0.109, p>0.05). Conclusion There is no notable inequality in the levels of IL-8 across different stages of liver cirrhosis.
Collapse
Affiliation(s)
- Imelda Rey
- Division of Gastroenterohepatology, Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
- Haji Adam Malik General Hospital, Medan, Indonesia
| | - Rustam Effendi-Ys
- Division of Gastroenterohepatology, Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
- Pirngadi General Hospital, Medan, Indonesia
| | - Khairani Sukatendel
- Department of Obstetric Gynecology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
25
|
Choi YJ, Lee MJ, Byun MK, Park S, Park J, Park D, Kim SH, Kim Y, Lim SY, Yoo KH, Jung KS, Park HJ. Roles of Inflammatory Biomarkers in Exhaled Breath Condensates in Respiratory Clinical Fields. Tuberc Respir Dis (Seoul) 2024; 87:65-79. [PMID: 37822233 PMCID: PMC10758305 DOI: 10.4046/trd.2023.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 08/12/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Exhaled condensates contain inflammatory biomarkers; however, their roles in the clinical field have been under-investigated. METHODS We prospectively enrolled subjects admitted to pulmonology clinics. We collected exhaled breath condensates (EBC) and analysed the levels of six and 12 biomarkers using conventional and multiplex enzyme-linked immunosorbent assay, respectively. RESULTS Among the 123 subjects, healthy controls constituted the largest group (81 participants; 65.9%), followed by the preserved ratio impaired spirometry group (21 patients; 17.1%) and the chronic obstructive pulmonary disease (COPD) group (21 patients; 17.1%). In COPD patients, platelet derived growth factor-AA exhibited strong positive correlations with COPD assessment test (ρ=0.5926, p=0.0423) and COPD-specific version of St. George's Respiratory Questionnaire (SGRQ-C) score (total, ρ=0.6725, p=0.0166; activity, ρ=0.7176, p=0.0086; and impacts, ρ=0.6151, p=0.0333). Granzyme B showed strong positive correlations with SGRQ-C score (symptoms, ρ=0.6078, p=0.0360; and impacts, ρ=0.6007, p=0.0389). Interleukin 6 exhibited a strong positive correlation with SGRQ-C score (activity, ρ=0.4671, p=0.0378). The absolute serum eosinophil and basophil counts showed positive correlations with pro-collagen I alpha 1 (ρ=0.6735, p=0.0164 and ρ=0.6295, p=0.0283, respectively). In healthy subjects, forced expiratory volume in 1 second (FEV1)/forced vital capacity demonstrated significant correlation with CC chemokine ligand 3 (CCL3)/macrophage inflammatory protein 1 alpha (ρ=0.3897 and p=0.0068). FEV1 exhibited significant correlation with CCL11/eotaxin (ρ=0.4445 and p=0.0017). CONCLUSION Inflammatory biomarkers in EBC might be useful to predict quality of life concerning respiratory symptoms and serologic markers. Further studies are needed.
Collapse
Affiliation(s)
- Yong Jun Choi
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Jae Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Kwang Byun
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sangho Park
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jimyung Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dongil Park
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Sang-Hoon Kim
- Department of Internal Medicine, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, Republic of Korea
| | - Youngsam Kim
- Division of Pulmonology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seong Yong Lim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kwang Ha Yoo
- Division of Pulmonary and Allergy, Department of Internal Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Ki Suck Jung
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Anyang, Republic of Korea
| | - Hye Jung Park
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
26
|
Singh P, Srivastava A, Philip L, Ahuja SK, Shivangi, Rawat C, Kutum R, Yadav J, Sood M, Chadda RK, Dash D, Vohora D, Kukreti R. Genome-wide transcriptomic and biochemical profiling of major depressive disorder: Unravelling association with susceptibility, severity, and antidepressant response. Genomics 2024; 116:110772. [PMID: 38158140 DOI: 10.1016/j.ygeno.2023.110772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/26/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Identifying biomarkers for diagnosing Major Depressive Disorder (MDD), assessing its severity, and guiding treatment is crucial. We conducted whole genome transcriptomic study in North Indian population, and analyzed biochemical parameters. Our longitudinal study investigated gene-expression profiles from 72 drug-free MDD patients and 50 healthy controls(HCs) at baseline and 24 patients after 12-weeks of treatment. Gene expression analyses identified differentially expressed genes(DEGs) associated with MDD susceptibility, symptom severity and treatment response, independently validated by qPCR. Hierarchical clustering revealed distinct expression patterns between MDD and HCs, also between mild and severe cases. Enrichment analyses of significant DEGs revealed inflammatory, apoptosis, and immune-related pathways in MDD susceptibility, severity, and treatment response. Simultaneously, we assessed thirty biochemical parameters in the same cohort, showed significant differences between MDD and HCs in 13 parameters with monocytes, eosinophils, creatinine, SGPT, and total protein remained independent predictors of MDD in a multivariate-regression model. Our study supports the role of altered immune/inflammatory signaling in MDD pathophysiology, offering clinically relevant biochemical parameters and insights into transcriptomic gene regulation in MDD pathogenesis and treatment response.
Collapse
Affiliation(s)
- Priyanka Singh
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ankit Srivastava
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi 110007, India; Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Lini Philip
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi 110007, India; Department of Psychiatry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Simranpreet Kaur Ahuja
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi 110007, India
| | - Shivangi
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi 110007, India; Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, New Delhi 110042, India
| | - Chitra Rawat
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rintu Kutum
- Department of Computer Science, Ashoka University, Haryana 131029, India
| | - Jyoti Yadav
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi 110007, India
| | - Mamta Sood
- Department of Psychiatry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Rakesh Kumar Chadda
- Department of Psychiatry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Debasis Dash
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
27
|
Pramanik S, Sil AK. Cigarette smoke extract induces foam cell formation by impairing machinery involved in lipid droplet degradation. Pflugers Arch 2024; 476:59-74. [PMID: 37910205 DOI: 10.1007/s00424-023-02870-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
The formation of foam cells, lipid-loaded macrophages, is the hallmark event of atherosclerosis. Since cigarette smoking is a risk factor for developing atherosclerosis, the current study investigated the effects of cigarette smoke extract (CSE) on different events like expressions of genes involved in lipid influx and efflux, lipophagy, etc., that play vital roles in foam cell formation. The accumulation of lipids after CSE treatment U937 macrophage cells was examined by staining lipids with specific dyes: Oil red O and BODIPY493/503. Results showed an accumulation of lipids in CSE-treated cells, confirming foam cell formation by CSE treatment. To decipher the mechanism, the levels of CD36, an ox-LDL receptor, and ABCA1, an exporter of lipids, were examined in CSE-treated and -untreated U937 cells by real-time PCR and immunofluorescence analysis. Consistent with lipid accumulation, an increased level of CD36 and a reduction in ABCA1 were observed in CSE-treated cells. Moreover, CSE treatment caused inhibition of lipophagy-mediated lipid degradation by blocking lipid droplets (LDs)-lysosome fusion and increasing the lysosomal pH. CSE also impaired mitochondrial lipid oxidation. Thus, the present study demonstrates that CSE treatment affects lipid homeostasis by altering its influx and efflux, lysosomal degradation, and mitochondrial utilization, leading to the formation of lipid-loaded foam cells. Moreover, the current study also showed that the leucine supplement caused a significant reduction of CSE-induced foam cell formation in vitro. Thus, the current study provides insight into CS-induced atherosclerosis and an agent to combat the disease.
Collapse
Affiliation(s)
- Soudipta Pramanik
- Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Ballygunge, Kolkata, West Bengal, India, PIN-700019
| | - Alok Kumar Sil
- Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Ballygunge, Kolkata, West Bengal, India, PIN-700019.
| |
Collapse
|
28
|
Mohanty D, Padhee S, Jena S, Sahoo A, Panda PC, Nayak S, Ray A. Exploration of Pharmacological Mechanism of Cinnamomum tamala Essential Oil in Treating Inflammation based on Network Pharmacology, Molecular Modelling, and Experimental Validation. Curr Pharm Des 2024; 30:2959-2977. [PMID: 39171467 DOI: 10.2174/0113816128342075240816104654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Cinnamomum tamala (Buch.-Ham.) T.Nees & Eberm., also known as Indian bay leaf, holds a distinctive position in complementary and alternative medicinal systems due to its anti-inflammatory properties. However, the active constituents and key molecular targets by which C. tamala essential oil (CTEO) exerts its anti-inflammatory action remain unclear. OBJECTIVE The present study used network pharmacology and experimental validation to investigate the mechanism of CTEO in the treatment of inflammation. METHODS GC-MS analysis was used to identify the constituents of CTEO. The key constituents and core targets of CTEO against inflammation were obtained by network pharmacology. The binding mechanism between the active compounds and inflammatory genes was ascertained by molecular docking and molecular dynamics simulation analysis. The pharmacological mechanism predicted by network pharmacology was verified in lipopolysaccharide-stimulated murine macrophage (RAW 264.7) cell lines. RESULTS Forty-nine constituents were identified by GC-MS analysis, with 44 constituents being drug-like candidates. A total of 549 compounds and 213 inflammation-related genes were obtained, revealing 68 overlapping genes between them. Compound target network analysis revealed cinnamaldehyde as the core bioactive compound with the highest degree score. PPI network analysis demonstrated Il-1β, TNF-α, IL8, IL6 and TLR4 as key hub anti-inflammatory targets. KEGG enrichment analysis revealed a Toll-like receptor signalling pathway as the principally regulated pathway associated with inflammation. A molecular docking study showed that cinnamaldehyde strongly interacted with the Il-1β, TNF-α and TLR-4 proteins. Molecular dynamics simulations and MMPBSA analysis revealed that these complexes are stable without much deviation and have better free energy values. In cellular experiments, CTEO showed no cytotoxic effects on RAW 264.7 murine macrophages. The cells treated with LPS exhibited significant reductions in NO, PGE2, IL-6, TNF-α, and IL-1β levels following treatment with CTEO. Additionally, CTEO treatment reduced the ROS levels and increased the antioxidant enzymes such as SOD, GSH, GPx and CAT. Immunofluorescence analysis revealed that CTEO inhibited LPS-stimulated NF-κB nuclear translocation. The mRNA expression of TLR4, MyD88 and TRAF6 in the CTEO group decreased significantly compared to the LPS-treated group. CONCLUSION The current findings suggest that CTEO attenuates inflammation by regulating TLR4/MyD88/NF- κB signalling pathway.
Collapse
Affiliation(s)
- Debajani Mohanty
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar 751003, India
| | - Sucheesmita Padhee
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar 751003, India
| | - Sudipta Jena
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar 751003, India
| | - Ambika Sahoo
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar 751003, India
| | - Pratap Chandra Panda
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar 751003, India
| | - Sanghamitra Nayak
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar 751003, India
| | - Asit Ray
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar 751003, India
| |
Collapse
|
29
|
Novo LC, Poindexter MB, Rezende FM, Santos JEP, Nelson CD, Hernandez LL, Kirkpatrick BW, Peñagaricano F. Identification of genetic variants and individual genes associated with postpartum hypocalcemia in Holstein cows. Sci Rep 2023; 13:21900. [PMID: 38082150 PMCID: PMC10713536 DOI: 10.1038/s41598-023-49496-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023] Open
Abstract
Periparturient hypocalcemia is a complex metabolic disorder that occurs at the onset of lactation because of a sudden irreversible loss of Ca incorporated into colostrum and milk. Some cows are unable to quickly adapt to this demand and succumb to clinical hypocalcemia, commonly known as milk fever, whereas a larger proportion of cows develop subclinical hypocalcemia. The main goal of this study was to identify causative mutations and candidate genes affecting postpartum blood calcium concentration in Holstein cows. Data consisted of blood calcium concentration measured in 2513 Holstein cows on the first three days after parturition. All cows had genotypic information for 79 k SNP markers. Two consecutive rounds of imputation were performed: first, the 2513 Holstein cows were imputed from 79 k to 312 k SNP markers. This imputation was performed using a reference set of 17,131 proven Holstein bulls with 312 k SNP markers. Then, the 2513 Holstein cows were imputed from 312 k markers to whole-genome sequence data. This second round of imputation used 179 Holstein animals from the 1000 Bulls Genome Project as a reference set. Three alternative phenotypes were evaluated: (1) total calcium concentration in the first 24 h postpartum, (2) total calcium concentration in the first 72 h postpartum calculated as the area under the curve; and (3) the recovery of total calcium concentration calculated as the difference in total calcium concentration between 72 and 24 h. The identification of genetic variants associated with these traits was performed using a two-step mixed model-based approach implemented in the R package MixABEL. The most significant variants were located within or near genes involved in calcium homeostasis and vitamin D transport (GC), calcium and potassium channels (JPH3 and KCNK13), energy and lipid metabolism (CA5A, PRORP, and SREBP1), and immune response (IL12RB2 and CXCL8), among other functions. This work provides the foundation for the development of novel breeding and management tools for reducing the incidence of periparturient hypocalcemia in dairy cattle.
Collapse
Affiliation(s)
- Larissa C Novo
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, 53706, USA
| | - Michael B Poindexter
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Fernanda M Rezende
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - José E P Santos
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Corwin D Nelson
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Laura L Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, 53706, USA
| | - Brian W Kirkpatrick
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, 53706, USA
| | - Francisco Peñagaricano
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, 53706, USA.
| |
Collapse
|
30
|
Vebr M, Pomahačová R, Sýkora J, Schwarz J. A Narrative Review of Cytokine Networks: Pathophysiological and Therapeutic Implications for Inflammatory Bowel Disease Pathogenesis. Biomedicines 2023; 11:3229. [PMID: 38137450 PMCID: PMC10740682 DOI: 10.3390/biomedicines11123229] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a lifelong inflammatory immune mediated disorder, encompassing Crohn's disease (CD) and ulcerative colitis (UC); however, the cause and specific pathogenesis of IBD is yet incompletely understood. Multiple cytokines produced by different immune cell types results in complex functional networks that constitute a highly regulated messaging network of signaling pathways. Applying biological mechanisms underlying IBD at the single omic level, technologies and genetic engineering enable the quantification of the pattern of released cytokines and new insights into the cytokine landscape of IBD. We focus on the existing literature dealing with the biology of pro- or anti-inflammatory cytokines and interactions that facilitate cell-based modulation of the immune system for IBD inflammation. We summarize the main roles of substantial cytokines in IBD related to homeostatic tissue functions and the remodeling of cytokine networks in IBD, which may be specifically valuable for successful cytokine-targeted therapies via marketed products. Cytokines and their receptors are validated targets for multiple therapeutic areas, we review the current strategies for therapeutic intervention and developing cytokine-targeted therapies. New biologics have shown efficacy in the last few decades for the management of IBD; unfortunately, many patients are nonresponsive or develop therapy resistance over time, creating a need for novel therapeutics. Thus, the treatment options for IBD beyond the immune-modifying anti-TNF agents or combination therapies are expanding rapidly. Further studies are needed to fully understand the immune response, networks of cytokines, and the direct pathogenetic relevance regarding individually tailored, safe and efficient targeted-biotherapeutics.
Collapse
Affiliation(s)
- Marek Vebr
- Departments of Pediatrics, Faculty Hospital, Faculty of Medicine in Pilsen, Charles University of Prague, 323 00 Pilsen, Czech Republic; (R.P.); (J.S.); (J.S.)
| | | | | | | |
Collapse
|
31
|
Qiu XN, Hong D, Shi ZR, Lu SY, Lai YX, Ren YL, Liu XT, Guo CP, Tan GZ, Wang LC. TNF-α promotes CXCL-1/8 production in keratinocytes by downregulating galectin-3 through NF-κB and hsa-miR-27a-3p pathway to contribute psoriasis development. Immunopharmacol Immunotoxicol 2023; 45:692-700. [PMID: 37358143 DOI: 10.1080/08923973.2023.2229510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
OBJECTIVE Treatment with TNF-α inhibitors improve psoriasis with minimize/minor neutrophils infiltration and CXCL-1/8 expression in psoriatic lesions. However, the fine mechanism of TNF-α initiating psoriatic inflammation by tuning keratinocytes is unclear. Our previous research identified the deficiency of intracellular galectin-3 was sufficient to promote psoriasis inflammation characterized by neutrophil accumulation. This study aims to investigate whether TNF-α participated in psoriasis development through dysregulating galectin-3 expression. METHODS mRNA levels were assessed through quantitative real-time PCR. Flow cytometry was used to detect cell cycle/apoptosis. Western blot was used to evaluate the activation of the NF-κB signaling pathway. HE staining and immunochemistry were used to detect epidermal thickness and MPO expression, respectively. Specific small interfering RNA (siRNA) was used to knock down hsa-miR-27a-3p while plasmids transfection was used to overexpress galectin-3. Further, the multiMiR R package was utilized to predict microRNA-target interaction. RESULTS AND DISCUSSION We found that TNF-α stimulation altered cell proliferation and differentiation and promoted the production of psoriasis-related inflammatory mediators along with the inhibition of galectin-3 expression in keratinocytes. Supplement of galectin-3 could counteract the rise of CXCL-1/8 but not the other phenotypes of keratinocytes induced by TNF-α. Mechanistically, inhibition of the NF-κB signaling pathway could counteract the decrease of galectin-3 and the increase of hsa-miR-27a-3p expression whereas silence of hsa-miR-27a-3p could counteract the decrease of galectin-3 expression induced by TNF-α treatment in keratinocytes. Intradermal injection of murine anti-CXCL-2 antibody greatly alleviated imiquimod-induced psoriasis-like dermatitis. CONCLUSION TNF-α initiates psoriatic inflammation by increasing CXCL-1/8 in keratinocytes mediated by the axis of NF-κB-hsa-miR-27a-3p-galectin-3 pathway.
Collapse
Affiliation(s)
- Xiao-Nan Qiu
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dan Hong
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhen-Rui Shi
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Si-Yao Lu
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu-Xian Lai
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan-Ling Ren
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiu-Ting Liu
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chi-Peng Guo
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guo-Zhen Tan
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liang-Chun Wang
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
32
|
McCarthy SD, Tilbury MA, Masterson CH, MacLoughlin R, González HE, Laffey JG, Wall JG, O'Toole D. Aerosol Delivery of a Novel Recombinant Modified Superoxide Dismutase Protein Reduces Oxidant Injury and Attenuates Escherichia coli Induced Lung Injury in Rats. J Aerosol Med Pulm Drug Deliv 2023; 36:246-256. [PMID: 37638822 DOI: 10.1089/jamp.2022.0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
Background: Acute respiratory distress syndrome (ARDS) is a life-threatening respiratory failure syndrome with diverse etiologies characterized by increased permeability of alveolar-capillary membranes, pulmonary edema, and acute onset hypoxemia. During the ARDS acute phase, neutrophil infiltration into the alveolar space results in uncontrolled release of reactive oxygen species (ROS) and proteases, overwhelming antioxidant defenses and causing alveolar epithelial and lung endothelial injury. Objectives: To investigate the therapeutic potential of a novel recombinant human Cu-Zn-superoxide dismutase (SOD) fusion protein in protecting against ROS injury and for aerosolized SOD delivery to treat Escherichia coli induced ARDS. Methods: Fusion proteins incorporating human Cu-Zn-SOD (hSOD1), with (pep1-hSOD1-his) and without (hSOD1-his) a fused hyaluronic acid-binding peptide, were expressed in E. coli. Purified proteins were evaluated in in vitro assays with human bronchial epithelial cells and through aerosolized delivery to the lung of an E. coli-induced ARDS rat model. Results: SOD proteins exhibited high SOD activity in vitro and protected bronchial epithelial cells from oxidative damage. hSOD1-his and pep1-hSOD1-his retained SOD activity postnebulization and exhibited no adverse effects in the rat. Pep1-hSOD1-his administered through instillation or nebulization to the lung of an E. coli-induced pneumonia rat improved arterial oxygenation and lactate levels compared to vehicle after 48 hours. Static lung compliance was improved when the pep1-hSOD1-his protein was delivered by instillation. White cell infiltration to the lung was significantly reduced by aerosolized delivery of protein, and reduction of cytokine-induced neutrophil chemoattractant-1, interferon-gamma, and interleukin 6 pro-inflammatory cytokine concentrations in bronchoalveolar lavage was observed. Conclusions: Aerosol delivery of a novel recombinant modified SOD protein reduces oxidant injury and attenuates E. coli induced lung injury in rats. The results provide a strong basis for further investigation of the therapeutic potential of hSOD1 in the treatment of ARDS.
Collapse
Affiliation(s)
- Sean D McCarthy
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- Discipline of Anaesthesia, School of Medicine, University of Galway, Galway, Ireland
| | - Maura A Tilbury
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Claire H Masterson
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | | | - Héctor E González
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- Discipline of Anaesthesia, School of Medicine, University of Galway, Galway, Ireland
| | - John G Laffey
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- Discipline of Anaesthesia, School of Medicine, University of Galway, Galway, Ireland
| | - J Gerard Wall
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Daniel O'Toole
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- Discipline of Anaesthesia, School of Medicine, University of Galway, Galway, Ireland
| |
Collapse
|
33
|
Wiffen L, D’Cruz LG, Brown T, Higenbottam TW, Bernstein JA, Campbell C, Moellman J, Ghosh D, Richardson C, Weston-Davies W, Chauhan AJ. Clinical severity classes in COVID-19 pneumonia have distinct immunological profiles, facilitating risk stratification by machine learning. Front Immunol 2023; 14:1192765. [PMID: 37731491 PMCID: PMC10508987 DOI: 10.3389/fimmu.2023.1192765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/25/2023] [Indexed: 09/22/2023] Open
Abstract
Objective Clinical triage in coronavirus disease 2019 (COVID-19) places a heavy burden on senior clinicians during a pandemic situation. However, risk stratification based on serum biomarker bioprofiling could be implemented by a larger, nonspecialist workforce. Method Measures of Complement Activation and inflammation in patientS with CoronAvirus DisEase 2019 (CASCADE) patients (n = 72), (clinicaltrials.gov: NCT04453527), classified as mild, moderate, or severe (by support needed to maintain SpO2 > 93%), and healthy controls (HC, n = 20), were bioprofiled using 76 immunological biomarkers and compared using ANOVA. Spearman correlation analysis on biomarker pairs was visualised via heatmaps. Linear Discriminant Analysis (LDA) models were generated to identify patients likely to deteriorate. An X-Gradient-boost (XGB) model trained on CASCADE data to triage patients as mild, moderate, and severe was retrospectively employed to classify COROnavirus Nomacopan Emergency Treatment for covid 19 infected patients with early signs of respiratory distress (CORONET) patients (n = 7) treated with nomacopan. Results The LDA models distinctly discriminated between deteriorators, nondeteriorators, and HC, with IL-27, IP-10, MDC, ferritin, C5, and sC5b-9 among the key predictor variables during deterioration. C3a and C5 were elevated in all severity classes vs. HC (p < 0.05). sC5b-9 was elevated in the "moderate" and "severe" categories vs. HC (p < 0.001). Heatmap analysis shows a pairwise increase of negatively correlated pairs with IL-27. The XGB model indicated sC5b-9, IL-8, MCP1, and prothrombin F1 and F2 were key discriminators in nomacopan-treated patients (CORONET study). Conclusion Distinct immunological fingerprints from serum biomarkers exist within different severity classes of COVID-19, and harnessing them using machine learning enabled the development of clinically useful triage and prognostic tools. Complement-mediated lung injury plays a key role in COVID-19 pneumonia, and preliminary results hint at the usefulness of a C5 inhibitor in COVID-19 recovery.
Collapse
Affiliation(s)
- Laura Wiffen
- Research and Innovation Department, Portsmouth Hospitals University National Health Service (NHS) Trust, Portsmouth, United Kingdom
| | - Leon Gerard D’Cruz
- Research and Innovation Department, Portsmouth Hospitals University National Health Service (NHS) Trust, Portsmouth, United Kingdom
- School of Pharmacy & Biomedical Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Thomas Brown
- Research and Innovation Department, Portsmouth Hospitals University National Health Service (NHS) Trust, Portsmouth, United Kingdom
| | | | - Jonathan A. Bernstein
- Department of Internal Medicine, Division of Rheumatology, Allergy and Immunology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Courtney Campbell
- Ohio State University Medical Centre, Department of Cardiovascular Medicine, Columbus, OH, United States
| | - Joseph Moellman
- Department of Emergency Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Debajyoti Ghosh
- Department of Internal Medicine, Division of Rheumatology, Allergy and Immunology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | | | | | - Anoop J. Chauhan
- Research and Innovation Department, Portsmouth Hospitals University National Health Service (NHS) Trust, Portsmouth, United Kingdom
- School of Pharmacy & Biomedical Science, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
34
|
Sanchez B, Ferraro S, Josset-Lamaugarny A, Pagnon A, Hee CK, Nakab L, Sigaudo-Roussel D, Fromy B. Skin Cell and Tissue Responses to Cross-Linked Hyaluronic Acid in Low-Grade Inflammatory Conditions. Int J Inflam 2023; 2023:3001080. [PMID: 37663889 PMCID: PMC10474960 DOI: 10.1155/2023/3001080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 07/18/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023] Open
Abstract
Hyaluronic acid (HA), used in a variety of medical applications, is associated in rare instances to long-term adverse effects. Although the aetiology of these events is unknown, a number of hypotheses have been proposed, including low molecular weight of HA (LMW-HA) in the filler products. We hypothesized that cross-linked HA and its degradation products, in a low-grade inflammatory microenvironment, could impact immune responses that could affect cell behaviours in the dermis. Using two different cross-linking technologies VYC-15L and HYC-24L+, and their hyaluronidase-induced degradation products, we observed for nondegraded HA, VYC-15L and HYC-24L+, a moderate and transient increase in IL-1β, TNF-α in M1 macrophages under low-grade inflammatory conditions. Endothelial cells and fibroblasts were preconditioned using inflammatory medium produced by M1 macrophages. 24 h after LMW-HA fragments and HA stimulation, no cytokine was released in these preconditioned cells. To further characterize HA responses, we used a novel in vivo murine model exhibiting a systemic low-grade inflammatory phenotype. The intradermal injection of VYC-15L and its degradation products induced an inflammation and cell infiltration into the skin that was more pronounced than those by HYC-24L+. This acute cutaneous inflammation was likely due to mechanical effects due to filler injection and tissue integration rather than its biological effects on inflammation. VYC-15L and its degradation product potentiated microvascular response to acetylcholine in the presence of a low-grade inflammation. The different responses with 2D cell models and mouse model using the two tested cross-linking HA technologies showed the importance to use integrative complex model to better understand the effects of HA products according to inflammatory state.
Collapse
Affiliation(s)
- Benjamin Sanchez
- Laboratoire Biologie Tissulaire et Ingénierie Thérapeutique, Centre national de la recherche scientifique (CNRS), UMR 5305, LBTI, 7 Passage du Vercors, F-69367 Lyon cedex 7, France
- University of Lyon 1, UMR 5305, LBTI, 7 Passage du Vercors, F-69367 Lyon cedex 7, France
| | - Sandra Ferraro
- Laboratoire Biologie Tissulaire et Ingénierie Thérapeutique, Centre national de la recherche scientifique (CNRS), UMR 5305, LBTI, 7 Passage du Vercors, F-69367 Lyon cedex 7, France
- University of Lyon 1, UMR 5305, LBTI, 7 Passage du Vercors, F-69367 Lyon cedex 7, France
| | - Audrey Josset-Lamaugarny
- Laboratoire Biologie Tissulaire et Ingénierie Thérapeutique, Centre national de la recherche scientifique (CNRS), UMR 5305, LBTI, 7 Passage du Vercors, F-69367 Lyon cedex 7, France
- University of Lyon 1, UMR 5305, LBTI, 7 Passage du Vercors, F-69367 Lyon cedex 7, France
| | - Aurélie Pagnon
- NOVOTEC, ZAC du Chêne Europarc, 11 Rue Edison, 69500 Bron, France
| | - Charlie K. Hee
- Allergan Aesthetics, An AbbVie Company, 2525 Dupont Dr., Irvine, CA 92612, USA
| | - Lauren Nakab
- Allergan Aesthetics, An AbbVie Company, 2525 Dupont Dr., Irvine, CA 92612, USA
| | - Dominique Sigaudo-Roussel
- Laboratoire Biologie Tissulaire et Ingénierie Thérapeutique, Centre national de la recherche scientifique (CNRS), UMR 5305, LBTI, 7 Passage du Vercors, F-69367 Lyon cedex 7, France
- University of Lyon 1, UMR 5305, LBTI, 7 Passage du Vercors, F-69367 Lyon cedex 7, France
| | - Bérengère Fromy
- Laboratoire Biologie Tissulaire et Ingénierie Thérapeutique, Centre national de la recherche scientifique (CNRS), UMR 5305, LBTI, 7 Passage du Vercors, F-69367 Lyon cedex 7, France
- University of Lyon 1, UMR 5305, LBTI, 7 Passage du Vercors, F-69367 Lyon cedex 7, France
| |
Collapse
|
35
|
Amma C, Inomata Y, Kohno R, Satake M, Furukawa A, Nagata Y, Sugiyama H, Seto T, Suzuki R. Copper in airborne fine particulate matter (PM 2.5) from urban sites causes the upregulation of pro-inflammatory cytokine IL-8 in human lung epithelial A549 cells. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5879-5891. [PMID: 37179508 DOI: 10.1007/s10653-023-01599-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Fine atmospheric particles, such as PM2.5, are strongly related to the onset and exacerbation of inflammatory responses leading to the development of respiratory and cardiovascular diseases. PM2.5 is a complex mixture of tiny particles with different properties (i.e., size, morphology, and chemical components). Moreover, the mechanism by which PM2.5 induces inflammatory responses has not been fully elucidated. Therefore, it is necessary to determine the composition of PM2.5 to identify the main factors causing PM2.5-associated inflammation and diseases. In the present study, we investigated PM2.5 from two sites (Fukue, a remote monitoring site, and Kawasaki, an urban monitoring site) with greatly different environments and PM2.5 compositions. The results of ICP-MS and EDX-SEM indicated that PM2.5 from Kawasaki contained more metals and significantly induced the expression of the pro-inflammatory cytokine gene IL-8 compared to the PM2.5 from Fukue. We also verified the increased secretion of IL-8 protein from exposure to PM2.5 from Kawasaki. We further investigated their effects on inflammatory response and cytotoxicity using metal nanoparticles (Cu, Zn, and Ni) and ions and found that the Cu nanoparticles caused a dose-dependent increase in IL-8 expression together with significant cell death. We also found that Cu nanoparticles enhanced the secretion of IL-8 protein. These results suggest that Cu in PM2.5 is involved in lung inflammation.
Collapse
Affiliation(s)
- Chisato Amma
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Yayoi Inomata
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Risa Kohno
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Minami Satake
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Atsushi Furukawa
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Yuka Nagata
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Hironori Sugiyama
- Instrumental Analysis Division, Engineering and Technology Department, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Takafumi Seto
- Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa, 920-1192, Japan.
| | - Ryo Suzuki
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
36
|
Zhou H, Tu LN, Giachelli C, Nigam V, Scatena M. Monocyte Adhesion and Transmigration Through Endothelium Following Cardiopulmonary Bypass Shearing is Mediated by IL-8 Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543811. [PMID: 37333089 PMCID: PMC10274614 DOI: 10.1101/2023.06.05.543811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
BackgroundThe use of cardiopulmonary bypass (CPB) can induce sterile systemic inflammation that contributes to morbidity and mortality, especially in children. Patients have been found to have increased expression of cytokines and transmigration of leukocytes during and after CPB. Previous work has demonstrated that the supraphysiologic shear stresses present during CPB are sufficient to induce proinflammatory behavior in non-adherent monocytes. The interactions between shear stimulated monocytes and vascular endothelial cells have not been well studied and have important translational implications.MethodsTo test the hypothesis that non-physiological shear stress experienced by monocytes during CPB affects the integrity and function of the endothelial monolayer via IL-8 signaling pathway, we have used an in vitro CPB model to study the interaction between THP-1 monocyte-like cells and human neonatal dermal microvascular endothelial cells (HNDMVECs). THP-1 cells were sheared in polyvinyl chloride (PVC) tubing at 2.1 Pa, twice of physiological shear stress, for 2 hours. Interactions between THP-1 cells and HNDMVECs were characterized after coculture.ResultsWe found that sheared THP-1 cells adhered to and transmigrated through the HNDMVEC monolayer more readily than static controls. When co-culturing, sheared THP-1 cells also disrupted in the VE-cadherin and led to reorganization of cytoskeletal F-actin of HNDMVECs. Treating HNDMVECs with IL-8 resulted in upregulation of vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) while also increasing the adherence of non-sheared THP-1 cells. Preincubating HNDMVECs with Reparixin, an inhibitor of CXCR2/IL-8 receptor inhibited sheared THP-1 cell adhesion to the HNDMVECs.ConclusionsThese results suggested that IL-8 not only increases the endothelium permeability during monocyte migration, but also affects the initial adhesion of monocytes in a CPB setup. This study revealed a novel mechanism of post-CPB inflammation and will contribute to the development of targeted therapeutics to prevent and repair the damage to neonatal patients.HighlightsShear stress in a CPB-like environment promoted the adhesion and transmigration of monocytes to and through endothelial monolayer.Treating endothelial monolayer with sheared monocytes led to disruption of VE-cadherin and reorganization of F-actin.Interaction between sheared monocytes resulted in a significant increase of IL-8 release.Inhibiting IL-8 receptor prevented sheared monocyte adhesion, while IL-8 promoted naive monocyte adhesion.
Collapse
Affiliation(s)
- Hao Zhou
- University of Washington, Seattle, WA
| | - Lan N Tu
- Seattle Children's Hospital, Seattle, WA
| | | | - Vishal Nigam
- University of Washington, Seattle, WA
- Seattle Children's Hospital, Seattle, WA
| | | |
Collapse
|
37
|
Padovani-Claudio DA, Ramos CJ, Capozzi ME, Penn JS. Elucidating glial responses to products of diabetes-associated systemic dyshomeostasis. Prog Retin Eye Res 2023; 94:101151. [PMID: 37028118 PMCID: PMC10683564 DOI: 10.1016/j.preteyeres.2022.101151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 04/08/2023]
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness in working age adults. DR has non-proliferative stages, characterized in part by retinal neuroinflammation and ischemia, and proliferative stages, characterized by retinal angiogenesis. Several systemic factors, including poor glycemic control, hypertension, and hyperlipidemia, increase the risk of DR progression to vision-threatening stages. Identification of cellular or molecular targets in early DR events could allow more prompt interventions pre-empting DR progression to vision-threatening stages. Glia mediate homeostasis and repair. They contribute to immune surveillance and defense, cytokine and growth factor production and secretion, ion and neurotransmitter balance, neuroprotection, and, potentially, regeneration. Therefore, it is likely that glia orchestrate events throughout the development and progression of retinopathy. Understanding glial responses to products of diabetes-associated systemic dyshomeostasis may reveal novel insights into the pathophysiology of DR and guide the development of novel therapies for this potentially blinding condition. In this article, first, we review normal glial functions and their putative roles in the development of DR. We then describe glial transcriptome alterations in response to systemic circulating factors that are upregulated in patients with diabetes and diabetes-related comorbidities; namely glucose in hyperglycemia, angiotensin II in hypertension, and the free fatty acid palmitic acid in hyperlipidemia. Finally, we discuss potential benefits and challenges associated with studying glia as targets of DR therapeutic interventions. In vitro stimulation of glia with glucose, angiotensin II and palmitic acid suggests that: 1) astrocytes may be more responsive than other glia to these products of systemic dyshomeostasis; 2) the effects of hyperglycemia on glia are likely to be largely osmotic; 3) fatty acid accumulation may compound DR pathophysiology by promoting predominantly proinflammatory and proangiogenic transcriptional alterations of macro and microglia; and 4) cell-targeted therapies may offer safer and more effective avenues for DR treatment as they may circumvent the complication of pleiotropism in retinal cell responses. Although several molecules previously implicated in DR pathophysiology are validated in this review, some less explored molecules emerge as potential therapeutic targets. Whereas much is known regarding glial cell activation, future studies characterizing the role of glia in DR and how their activation is regulated and sustained (independently or as part of retinal cell networks) may help elucidate mechanisms of DR pathogenesis and identify novel drug targets for this blinding disease.
Collapse
Affiliation(s)
- Dolly Ann Padovani-Claudio
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, B3321A Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232-0011, USA.
| | - Carla J Ramos
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, AA1324 Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232-0011, USA.
| | - Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University School of Medicine, 300 North Duke Street, Durham, NC, 27701, USA.
| | - John S Penn
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, B3307 Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232-0011, USA.
| |
Collapse
|
38
|
DHEA and Its Metabolites Reduce the Cytokines Involved in the Inflammatory Response and Fibrosis in Primary Biliary Cholangitis. Int J Mol Sci 2023; 24:ijms24065301. [PMID: 36982376 PMCID: PMC10049419 DOI: 10.3390/ijms24065301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Dehydroepiandrosterone (DHEA) is an abundant steroid and precursor of sex hormones. During aging, the reduction in DHEA synthesis causes a significant depletion of estrogens and androgens in different organs, such as the ovaries, brain, and liver. Primary Biliary Cholangitis (PBC) is a cholestatic liver disease that begins with immune-mediated bile duct damage, and is followed by liver fibrosis, and finally, cirrhosis. PBC primarily affects postmenopausal women, with an average age of diagnosis of 65 years, but younger women are also affected. Here, we analyzed the levels of DHEA, estradiol (E2), and estriol (E3) in the PBC sera of females at an age of diagnosis under 40 (n = 37) and above 65 (n = 29). Our results indicate that in PBC patients at an age of diagnosis under 40, E2 was significantly lower compared to that in healthy women. In contrast, the levels of DHEA and E3 were in a normal range. Furthermore, ELISA assays revealed that in PBC patients at an age of diagnosis above 65, the levels of DHEA, E2, and E3 significantly declined in comparison to those in younger patients. In addition, flow cytometry analysis showed that the level of IL-8 significantly decreased while the level of TNF-α increased in older PBC patients compared to younger ones. Moreover, we showed for the first time that the sulfonated form of DHEA, DHEA-S, reduces the levels of both pro-inflammatory interleukins, IL-8 and TNF-α, in PBC-like cholangiocytes (H69-miR506), while it diminishes the level of the pro-fibrotic interleukin, IL-13, in hepatocytes (Hep-G2). Finally, we demonstrated that the expression of the pro-fibrotic agent TGF-β significantly increased in both the early (F0–F3) and cirrhotic (F4) stages of PBC, and this elevation was accompanied by higher α-SMA expression.
Collapse
|
39
|
Comparison between Clinical Utility of CXCL-8 and Clinical Practice Tumor Markers for Colorectal Cancer Diagnosis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1213968. [PMID: 36567905 PMCID: PMC9788896 DOI: 10.1155/2022/1213968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/28/2022] [Accepted: 10/15/2022] [Indexed: 12/23/2022]
Abstract
Owing to the high incidence and mortality rates of colorectal cancer (CRC), novel biomarkers for CRC diagnosis are critically needed. Therefore, this study is aimed at exploring the clinical utility of serum C-X-C motif chemokine 8 (CXCL-8) for CRC diagnosis and progression compared to the routinely used biomarkers, carcinoembryonic antigen (CEA), and carbohydrate antigen-19-9 (CA19-9). This study included 227 patients with CRC, 110 patients with colorectal adenoma (CA), and 123 healthy participants, who were recruited from the Fujian Medical University Union Hospital from July 1, 2019 to October 31, 2020. Serum concentrations of CXCL-8, CEA, and CA19-9 were detected using enzyme-linked immunosorbent assay and chemiluminescent microparticle immunoassay. Clinicopathological features of patients with CRC were collected and analyzed. The diagnostic efficacy of CXCL-8, CEA, and CA19-9 for CRC was evaluated using receiver operating characteristic (ROC) curves. We found that the serum concentrations of CXCL-8, CEA, and CA19-9 were significantly higher in patients with CRC than those in patients with CA and healthy controls. The diagnostic sensitivity of CXCL-8 alone was higher than those of CEA and CA19-9 both and when combined; thus, CXCL-8 may be better at discriminating patients with CRC from healthy controls and patients with CA. Moreover, combining CXCL-8 with CEA or CA19-9 improved their respective diagnostic performances in distinguishing patients with CRC from CA patients and healthy participants. Notably, we also found that serum concentrations of CXCL-8 were positively correlated with metastases and tumor size. Therefore, our study suggests that serum CXCL-8 may serve as an improved biomarker for CRC diagnosis compared to the traditional tumor markers CEA and CA19-9. Moreover, our findings indicate the potential efficacy of serum CXCL-8 levels as a CRC prognostic biomarker.
Collapse
|
40
|
Are There Differences in Inflammatory and Fibrotic Pathways between IPAF, CTD-ILDs, and IIPs? A Single-Center Pilot Study. Int J Mol Sci 2022; 23:ijms232315205. [PMID: 36499525 PMCID: PMC9738037 DOI: 10.3390/ijms232315205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
In this pilot study, we aim to determine differences in pathogenetic pathways between interstitial pneumonia with autoimmune features (IPAF), connective-tissue-disease-associated interstitial lung diseases (CTD-ILDs), and idiopathic interstitial pneumonias (IIPs). Forty participants were recruited: 9 with IPAF, 15 with CTD-ILDs, and 16 with IIPs. Concentration of transforming growth factor beta (TGF-β1), surfactant proteins A and D (SP-A, SP-D), interleukin 8 (IL-8), and chemokine 1 (CXCL1) were assessed with ELISA assay in bronchoalveolar lavage (BAL) fluid. We revealed that IL-8 and TGF-β1 concentrations were significantly lower in the IPAF group than in the CTD-ILD group (p = 0.008 and p = 0.019, respectively), but similar to the concentrations in the IIP group. There were significant correlations of IL-8 (rs = 0.46; p = 0.003) and CXCL1 (rs = 0.52; p = 0.001) and BAL total cell count (TCC). A multivariate regression model revealed that IL-8 (β = 0.32; p = 0.037) and CXCL1 (β = 0.45; p = 0.004) are significant predictors of BAL TCC. We revealed that IL-8 and TGF-β1 BAL concentrations vary in patients with different ILDs and found that IL-8 is a predictor of BAL TCC in IPAF. However, this needs to be confirmed in a multicenter cooperative study (ClinicalTrials.gov Identifier: NCT03870828).
Collapse
|
41
|
Zieleniak A, Zurawska-Klis M, Cypryk K, Wozniak L, Wojcik M. Transcriptomic Dysregulation of Inflammation-Related Genes in Leukocytes of Patients with Gestational Diabetes Mellitus (GDM) during and after Pregnancy: Identifying Potential Biomarkers Relevant to Glycemic Abnormality. Int J Mol Sci 2022; 23:ijms232314677. [PMID: 36499008 PMCID: PMC9737950 DOI: 10.3390/ijms232314677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022] Open
Abstract
Although the immune system has been implicated in the pathophysiology of gestational diabetes mellitus (GDM) and postpartum abnormal glucose tolerance (AGT), little is known about the transcriptional response of inflammation-related genes linked to metabolic phenotypes of GDM women during and after pregnancy, which may be potential diagnostic classifiers for GDM and biomarkers for predicting AGT. To address these questions, gene expression of IL6, IL8, IL10, IL13, IL18, TNFA, and the nuclear factor κB (NFκB)/RELA transcription factor were quantified in leukocytes of 28 diabetic women at GDM diagnosis (GDM group) and 1-year postpartum (pGDM group: 10 women with AGT and 18 normoglycemic women), using a nested RT-PCR method. Control pregnancies with normal glucose tolerance (NGT group; n = 31) were closely matched for maternal age, gestational age, pre-pregnancy BMI, pregnancy weight, and gestational weight gain. Compared with the NGT group, IL8 was downregulated in the GDM group, and IL13 and RELA were upregulated in the pGDM group, whereas IL6, IL10, and IL18 were upregulated in the GDM and pGDM groups. The TNFA level did not change from pregnancy to postpartum. Associations of some cytokines with glycemic measures were detected in pregnancy (IL6 and RELA) and postpartum (IL10) (p < 0.05). Receiver operating characteristic (ROC) curves showed that IL6, IL8, and IL18, if employed alone, can discriminate GDM patients from NGT individuals at GDM diagnosis, with the area under the ROC curves (AUCs) of 0.844, (95% CI 0.736−0.953), 0.771 (95% CI 0.651−0.890), and 0.714 (95% CI 0.582−0.846), respectively. By the logistic regression method, we also identified a three-gene panel (IL8, IL13, and TNFA) for postpartum AGT prediction. This study demonstrates a different transcriptional response of the studied genes in clinically well-characterized women with GDM at GDM diagnosis and 1-year postpartum, and provides novel transcriptomic biomarkers for future efforts aimed at diagnosing GDM and identifying the high risk of postpartum AGT groups.
Collapse
Affiliation(s)
- Andrzej Zieleniak
- Department of Structural Biology, Faculty of Biomedical Sciences, Medical University of Lodz, 90-752 Lodz, Poland
| | - Monika Zurawska-Klis
- Department of Internal Diseases and Diabetology, Medical University of Lodz, 92-213 Lodz, Poland
| | - Katarzyna Cypryk
- Department of Internal Diseases and Diabetology, Medical University of Lodz, 92-213 Lodz, Poland
| | - Lucyna Wozniak
- Department of Structural Biology, Faculty of Biomedical Sciences, Medical University of Lodz, 90-752 Lodz, Poland
| | - Marzena Wojcik
- Department of Structural Biology, Faculty of Biomedical Sciences, Medical University of Lodz, 90-752 Lodz, Poland
- Correspondence: ; Tel.: +48-426-393-238
| |
Collapse
|
42
|
Harju N. Regulation of oxidative stress and inflammatory responses in human retinal pigment epithelial cells. Acta Ophthalmol 2022; 100 Suppl 273:3-59. [DOI: 10.1111/aos.15275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Niina Harju
- School of Pharmacy University of Eastern Finland Kuopio Finland
| |
Collapse
|
43
|
Blood Cell Responses Following Heavy Alcohol Consumption Coincide with Changes in Acute Phase Reactants of Inflammation, Indices of Hemolysis and Immune Responses to Ethanol Metabolites. Int J Mol Sci 2022; 23:ijms232112738. [PMID: 36361528 PMCID: PMC9656529 DOI: 10.3390/ijms232112738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/06/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Aberrations in blood cells are common among heavy alcohol drinkers. In order to shed further light on such responses, we compared blood cell status with markers of hemolysis, mediators of inflammation and immune responses to ethanol metabolites in alcohol-dependent patients at the time of admission for detoxification and after abstinence. Blood cell counts, indices of hemolysis (LDH, haptoglobin, bilirubin), calprotectin (a marker of neutrophil activation), suPAR, CD163, pro- and anti-inflammatory cytokines and autoantibodies against protein adducts with acetaldehyde, the first metabolite of ethanol, were measured from alcohol-dependent patients (73 men, 26 women, mean age 43.8 ± 10.4 years) at baseline and after 8 ± 1 days of abstinence. The assessments also included information on the quantities of alcohol drinking and assays for biomarkers of alcohol consumption (CDT), liver function (AST, ALT, ALP, GGT) and acute phase reactants of inflammation. At baseline, the patients showed elevated values of CDT and biomarkers of liver status, which decreased significantly during abstinence. A significant decrease also occurred in LDH, bilirubin, CD163 and IgA and IgM antibodies against acetaldehyde adducts, whereas a significant increase was noted in blood leukocytes, platelets, MCV and suPAR levels. The changes in blood leukocytes correlated with those in serum calprotectin (p < 0.001), haptoglobin (p < 0.001), IL-6 (p < 0.02) and suPAR (p < 0.02). The changes in MCV correlated with those in LDH (p < 0.02), MCH (p < 0.01), bilirubin (p < 0.001) and anti-adduct IgG (p < 0.01). The data indicates that ethanol-induced changes in blood leukocytes are related with acute phase reactants of inflammation and release of neutrophil calprotectin. The studies also highlight the role of hemolysis and immune responses to ethanol metabolites underlying erythrocyte abnormalities in alcohol abusers.
Collapse
|
44
|
Zamboni F, Ren G, Culebras M, O'Driscoll J, O'Dwyer J, Ryan EJ, Collins MN. Curcumin encapsulated polylactic acid nanoparticles embedded in alginate/gelatin bioinks for in situ immunoregulation: Characterization and biological assessment. Int J Biol Macromol 2022; 221:1218-1227. [PMID: 36087752 DOI: 10.1016/j.ijbiomac.2022.09.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/05/2022]
Abstract
Curcumin is a known naturally occurring anti-inflammatory agent derived from turmeric, and it is commonly used as a herbal food supplement. Here, in order to overcome the inherent hydrophobicity of curcumin (Cur), polylactic acid (PLA) nanoparticles (NPs) were synthesised using a solvent evaporation, and an oil-in-water emulsion method used to encapsulate curcumin. Polymeric NPs also offer the ability to control rate of drug release. The newly synthesised NPs were analysed using a scanning electron microscope (SEM), where results show the NPs range from 50 to 250 nm. NPs containing graded amounts of curcumin (0 %, 0.5 %, and 2 %) were added to cultures of NIH3T3 fibroblast cells for cytotoxicity evaluation using the Alamar Blue assay. Then, the curcumin NPs were incorporated into an alginate/gelatin solution, prior to crosslinking using a calcium chloride solution (200 nM). These hydrogels were then characterised with respect to their chemical, mechanical and rheological properties. Following hydrogel optimization, hydrogels loaded with NP containing 2 % curcumin were selected as a candidate as a bioink for three-dimensional (3D) printing. The biological assessment for these bioinks/hydrogels were conducted using THP-1 cells, a human monocytic cell line. Cell viability and immunomodulation were evaluated using lactate dehydrogenase (LHD) and a tumour necrosis factor alpha (TNF-α) enzyme-linked immunosorbent (ELISA) assay, respectively. Results show that the hydrogels were cytocompatible and supressed the production of TNF-α. These bioactive hydrogels are printable, supress immune cell activation and inflammation showing immense potential for the fabrication of tissue engineering constructs.
Collapse
Affiliation(s)
- Fernanda Zamboni
- Bernal Institute, University of Limerick, Ireland; Health Research Institute, University of Limerick, Ireland
| | - Guang Ren
- Bernal Institute, University of Limerick, Ireland
| | - Mario Culebras
- Institute of Material Science, University of Valencia, Spain
| | | | - Jack O'Dwyer
- School of Engineering, University of Limerick, Ireland
| | - Elizabeth J Ryan
- Health Research Institute, University of Limerick, Ireland; Department of Biological Sciences, University of Limerick, Ireland
| | - Maurice N Collins
- Bernal Institute, University of Limerick, Ireland; Health Research Institute, University of Limerick, Ireland; SFI AMBER, University of Limerick, Ireland.
| |
Collapse
|
45
|
Abdelaziz RR, Abdelrahman RS, Abdelmageed ME. SB332235, a CXCR2 antagonist, ameliorates thioacetamide-induced hepatic encephalopathy through modulation of the PI3K/AKT pathways in rats. Neurotoxicology 2022; 92:110-121. [PMID: 35961375 DOI: 10.1016/j.neuro.2022.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/27/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022]
Abstract
RATIONALE Hepatic encephalopathy (HE) is a neuropsychiatric disorder that results from either acute or chronic liver failure. CXCR2 plays an essential role in the pathophysiology of liver and brain diseases. In the present study, the potential beneficial effects of SB332235, a selective inhibitor of CXCR2, against HE were evaluated. METHODS HE was induced in male rats by thioacetamide injection (200 mg/kg, i.p.) at three alternative days. SB332235 was injected in rats 1 h before TAA at a dose of 1 and 3 mg/kg i.p. RESULTS SB332235 alleviated oxidative stress as shown by the decreased serum NO and reduced MDA, elevated GSH and SOD levels, and reduced TNF-α and NF-κB levels in both brain and liver tissues of rats. Additionally, SB332235 suppressed brain ASK-1, JNK, IL-8, and caspase-3 expression, and activated PI3K/AKT expression in brain tissues. Markers of brain dysfunction, such as ammonia, and markers of hepatic injury, such as LDH, albumin, bilirubin, γGT, AST, ALT, and ALP, were significantly ameliorated. Also, the protective effect of SB332235 was confirmed by histological examination of both brain and liver tissues. CONCLUSIONS Both doses (1 and 3 mg/kg) of SB332235 revealed significant hepatic/neuroprotective effects due to their anti-inflammatory, antioxidant, and antiapoptotic activities via activation of the PI3K/AKT pathway. Between the two, the 1 mg/kg dose provided significantly improved outcomes.
Collapse
Affiliation(s)
- Rania R Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - Rehab S Abdelrahman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Taibah University, Al-Madina Al-Munawwarah, 30001, Saudi Arabia
| | - Marwa E Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| |
Collapse
|
46
|
Laselva O, Criscione ML, Allegretta C, Di Gioia S, Liso A, Conese M. Insulin-Like Growth Factor Binding Protein (IGFBP-6) as a Novel Regulator of Inflammatory Response in Cystic Fibrosis Airway Cells. Front Mol Biosci 2022; 9:905468. [PMID: 35903151 PMCID: PMC9322660 DOI: 10.3389/fmolb.2022.905468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/31/2022] [Indexed: 12/02/2022] Open
Abstract
Cystic Fibrosis (CF) patients are prone to contracting bacterial lung infections with opportunistic pathogens, especially Pseudomonas aeruginosa. Prolonged P. aeruginosa infections have been linked to chronic inflammation in the CF lung, whose hallmarks are increased levels of cytokines (i.e., TNF-α, IL-1β, IL-6) and neutrophil attraction by chemokines, like IL-8. Recently, insulin-like growth factor binding protein 6 (IGFBP-6) has been shown to play a putative role in the immune system and was found at higher levels in the sera and synovial tissue of rheumatoid arthritis patients. Moreover, it has been demonstrated that IGFBP-6 has chemoattractant properties towards cells of the innate (neutrophils, monocytes) and adaptive (T cells) immunity. However, it is not known whether IGFBP-6 expression is dysregulated in airway epithelial cells under infection/inflammatory conditions. Therefore, we first measured the basal IGFBP-6 mRNA and protein levels in bronchial epithelial cells lines (Wt and F508del-CFTR CFBE), finding they both are upregulated in F508del-CFTR CFBE cells. Interestingly, LPS and IL-1β+TNFα treatments increased the IGFBP-6 mRNA level, that was reduced after treatment with an anti-inflammatory (Dimethyl Fumarate) in CFBE cell line and in patient-derived nasal epithelial cultures. Lastly, we demonstrated that IGFBP-6 reduced the level of pro-inflammatory cytokines in both CFBE and primary nasal epithelial cells, without affecting rescued CFTR expression and function. The addition of a neutralizing antibody to IGFBP-6 increased pro-inflammatory cytokines expression under challenge with LPS. Together, these data suggest that IGFBP-6 may play a direct role in the CF-associated inflammation.
Collapse
Affiliation(s)
- Onofrio Laselva
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- *Correspondence: Onofrio Laselva, ; Massimo Conese,
| | - Maria Laura Criscione
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Caterina Allegretta
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Sante Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Arcangelo Liso
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- *Correspondence: Onofrio Laselva, ; Massimo Conese,
| |
Collapse
|
47
|
Codo Toafode NM, Marquardt P, Ahyi V, Fester K, Spiegler V, Vissiennon C. Anti-Inflammatory Potential of Phenolic Compounds Isolated From Entada africana Guill. & Perr. Used in the Republic of Benin. Front Pharmacol 2022; 13:931240. [PMID: 35847017 PMCID: PMC9280145 DOI: 10.3389/fphar.2022.931240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
In West African medicine, Entada africana Guill. & Perr. from the family of Fabaceae is used to treat inflammatory conditions in the management of fractures, wounds, and sprains in the northern region of the Republic of Benin. The aim of the present study was to isolate and elucidate phenolic compounds from a hydroalcoholic leaf extract from E. africana and to identify compounds with anti-inflammatory activity in vitro. Eleven compounds were purified from three fractions, which have shown strong to medium anti-inflammatory activity. The isolated compounds were characterized by HRESI-MS and NMR methods as gallic acid (1), ethyl gallate (2), 5,7-dihydroxychromen-4-one (3), 3′,4′,7-trihydroxyflavone (4), dihydrokaempferol-7-O-glucoside (5), catechin (6), quercetin-3-O-[β-apiosyl-(1‴→2″)-β-glucoside] (7), quercetin-3-O-glucoside (8), naringenin-7-O-glucoside (9), aromadendrin (10), and myricetin-3-O-glucoside (11). Nine of the major phenolic compounds were tested using TNF-α stimulated human keratinocytes (HaCaT) as skin inflammation model to identify molecules, which may explain the use of the plant leaves as an anti-inflammatory remedy by assessing the release of proinflammatory cytokines IL-8 and IL-6. The hydroacoholic leaf extract of E. africana exerted a medium inhibitory effect on the release of IL-8. 3′,4′,7-trihydroxyflavone, aromadendrin, dihydrokaempferol-7-O-glucoside and ethyl gallate demonstrated a strong to medium effect on the release of IL-6. For the release of IL-8, 3′,4′,7-trihydroxyflavone demonstrated a medium activity. This study provides for the first time a detailed screening of phenolic compounds occurring in the hydroethanolic leaf extract of E. africana. Additionally, it is shown that E. africana contains active compounds which may justify its traditional medicinal use as an anti-inflammatory remedy to treat inflammatory and pain-related skin conditions in the Republic of Benin.
Collapse
Affiliation(s)
- Nonvignon Murielle Codo Toafode
- Inter-Regional University of Industrial Engineering Biotechnologies and Applied Sciences, IRGIB Africa University, Cotonou, Benin
- Institute of Medical Physics and Biophysics, Leipzig University, Leipzig, Germany
- *Correspondence: Nonvignon Murielle Codo Toafode, ; Cica Vissiennon,
| | - Peter Marquardt
- Faculty of Natural and Environmental Sciences, Zittau/Görlitz University of Applied Sciences, Zittau, Germany
| | - Virgile Ahyi
- Inter-Regional University of Industrial Engineering Biotechnologies and Applied Sciences, IRGIB Africa University, Cotonou, Benin
| | - Karin Fester
- Faculty of Natural and Environmental Sciences, Zittau/Görlitz University of Applied Sciences, Zittau, Germany
| | - Verena Spiegler
- Institute for Pharmaceutical Biology and Phytochemistry, University of Münster, Münster, Germany
| | - Cica Vissiennon
- Institute of Medical Physics and Biophysics, Leipzig University, Leipzig, Germany
- Repha GmbH Biologische Arzneimittel, Langenhagen, Germany
- *Correspondence: Nonvignon Murielle Codo Toafode, ; Cica Vissiennon,
| |
Collapse
|
48
|
Nabavi-Rad A, Azizi M, Jamshidizadeh S, Sadeghi A, Aghdaei HA, Yadegar A, Zali MR. The Effects of Vitamins and Micronutrients on Helicobacter pylori Pathogenicity, Survival, and Eradication: A Crosstalk between Micronutrients and Immune System. J Immunol Res 2022; 2022:4713684. [PMID: 35340586 PMCID: PMC8942682 DOI: 10.1155/2022/4713684] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/19/2022] [Accepted: 02/25/2022] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori as a class I carcinogen is correlated with a variety of severe gastroduodenal diseases; therefore, H. pylori eradication has become a priority to prevent gastric carcinogenesis. However, due to the emergence and spread of multidrug and single drug resistance mechanisms in H. pylori, as well as serious side effects of currently used antibiotic interventions, achieving successful H. pylori eradication has become exceedingly difficult. Recent studies expressed the intention of seeking novel strategies to improve H. pylori management and reduce the risk of H. pylori-associated intestinal and extragastrointestinal disorders. For which, vitamin supplementation has been demonstrated in many studies to have a tight interaction with H. pylori infection, either directly through the regulation of the host inflammatory pathways or indirectly by promoting the host immune response. On the other hand, H. pylori infection is reported to result in micronutrient malabsorption or deficiency. Furthermore, serum levels of particular micronutrients, especially vitamin D, are inversely correlated to the risk of H. pylori infection and eradication failure. Accordingly, vitamin supplementation might increase the efficiency of H. pylori eradication and reduce the risk of drug-related adverse effects. Therefore, this review aims at highlighting the regulatory role of micronutrients in H. pylori-induced host immune response and their potential capacity, as intrinsic antioxidants, for reducing oxidative stress and inflammation. We also discuss the uncovered mechanisms underlying the molecular and serological interactions between micronutrients and H. pylori infection to present a perspective for innovative in vitro investigations, as well as novel clinical implications.
Collapse
Affiliation(s)
- Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Azizi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Jamshidizadeh
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Mirata S, Almonti V, Di Giuseppe D, Fornasini L, Raneri S, Vernazza S, Bersani D, Gualtieri AF, Bassi AM, Scarfì S. The Acute Toxicity of Mineral Fibres: A Systematic In Vitro Study Using Different THP-1 Macrophage Phenotypes. Int J Mol Sci 2022; 23:2840. [PMID: 35269982 PMCID: PMC8911508 DOI: 10.3390/ijms23052840] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 02/05/2023] Open
Abstract
Alveolar macrophages are the first line of defence against detrimental inhaled stimuli. To date, no comparative data have been obtained on the inflammatory response induced by different carcinogenic mineral fibres in the three main macrophage phenotypes: M0 (non-activated), M1 (pro-inflammatory) and M2 (alternatively activated). To gain new insights into the different toxicity mechanisms of carcinogenic mineral fibres, the acute effects of fibrous erionite, crocidolite and chrysotile in the three phenotypes obtained by THP-1 monocyte differentiation were investigated. The three mineral fibres apparently act by different toxicity mechanisms. Crocidolite seems to exert its toxic effects mostly as a result of its biodurability, ROS and cytokine production and DNA damage. Chrysotile, due to its low biodurability, displays toxic effects related to the release of toxic metals and the production of ROS and cytokines. Other mechanisms are involved in explaining the toxicity of biodurable fibrous erionite, which induces lower ROS and toxic metal release but exhibits a cation-exchange capacity able to alter the intracellular homeostasis of important cations. Concerning the differences among the three macrophage phenotypes, similar behaviour in the production of pro-inflammatory mediators was observed. The M2 phenotype, although known as a cell type recruited to mitigate the inflammatory state, in the case of asbestos fibres and erionite, serves to support the process by supplying pro-inflammatory mediators.
Collapse
Affiliation(s)
- Serena Mirata
- Department Earth, Environment and Life Sciences, University of Genova, 16132 Genova, Italy;
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy; (V.A.); (S.V.); (A.M.B.)
| | - Vanessa Almonti
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy; (V.A.); (S.V.); (A.M.B.)
- Department Experimental Medicine, University of Genova, 16132 Genova, Italy
| | - Dario Di Giuseppe
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy; (D.D.G.); (A.F.G.)
| | - Laura Fornasini
- ICCOM-CNR—Institute of Chemistry of OrganoMetallic Compounds, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (L.F.); (S.R.)
| | - Simona Raneri
- ICCOM-CNR—Institute of Chemistry of OrganoMetallic Compounds, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (L.F.); (S.R.)
| | - Stefania Vernazza
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy; (V.A.); (S.V.); (A.M.B.)
- Department Experimental Medicine, University of Genova, 16132 Genova, Italy
| | - Danilo Bersani
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/A, 43124 Parma, Italy;
| | - Alessandro F. Gualtieri
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy; (D.D.G.); (A.F.G.)
| | - Anna Maria Bassi
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy; (V.A.); (S.V.); (A.M.B.)
- Department Experimental Medicine, University of Genova, 16132 Genova, Italy
| | - Sonia Scarfì
- Department Earth, Environment and Life Sciences, University of Genova, 16132 Genova, Italy;
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy; (V.A.); (S.V.); (A.M.B.)
| |
Collapse
|
50
|
Taylor AG, Ignaszewski AI, Bredin SSD, Hill JS, Shellington EM, Warburton DER. High Intensity Interval Training Leads to Similar Inflammatory Activation as Seen With Traditional Training in Chronic Heart Failure. Front Cardiovasc Med 2022; 8:752531. [PMID: 35211515 PMCID: PMC8860824 DOI: 10.3389/fcvm.2021.752531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/21/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Inflammatory activation has been associated with the severity and progression of chronic heart failure (CHF). Although cardiac rehabilitation is an important therapy, acute bouts of exercise may lead to increases in pro-inflammatory cytokines with exercise intensity mediating these changes. OBJECTIVE To evaluate the acute inflammatory response in patients living with CHF during a randomized trial following Steady State (SS) or High Intensity Interval (HIIT) training. METHODS Patients living with CHF (n = 14) were stratified (for body mass and aerobic power) and randomized into SS and HIIT cycle exercise. The HIIT exercise training involved 2 min work:recovery phases at 90:40% heart rate reserve. The SS exercise training involved continuous exercise at 65% of heart rate reserve (matched total work). Acute inflammatory markers were evaluated (via ELISA) at baseline, immediately following the bout, and at 6, 24, and 48 h post-exercise. RESULTS There was limited differences in the changes in inflammatory biomarkers across time between the HIIT and SS groups. Both groups experienced a significant (p < 0.05) change in Interleukin-6 immediately post-exercise. CONCLUSIONS A single bout of HIIT or SS does not result in excessive inflammatory activation in CHF patients. Acute HIIT and SS result in similar changes in inflammatory markers. These findings have important implications for exercise training and rehabilitation programs in persons living with CHF.
Collapse
Affiliation(s)
- Arlana G. Taylor
- Cardiovascular Physiology and Rehabilitation Laboratory, University of British Columbia, Vancouver, BC, Canada
- Healthy Heart Program, St. Paul's Hospital, Vancouver, BC, Canada
| | | | - Shannon S. D. Bredin
- Indigenous Health and Physical Activity Program, University of British Columbia, Vancouver, BC, Canada
- Laboratory for Knowledge Mobilization, University of British Columbia, Vancouver, BC, Canada
| | - John S. Hill
- University of British Columbia James Hogg Research Centre, Institute of Heart and Lung Health, Vancouver, BC, Canada
| | - Erin M. Shellington
- Indigenous Health and Physical Activity Program, University of British Columbia, Vancouver, BC, Canada
- Laboratory for Knowledge Mobilization, University of British Columbia, Vancouver, BC, Canada
| | - Darren E. R. Warburton
- Cardiovascular Physiology and Rehabilitation Laboratory, University of British Columbia, Vancouver, BC, Canada
- Indigenous Health and Physical Activity Program, University of British Columbia, Vancouver, BC, Canada
- Experimental Medicine Program, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|